blob: 0b8a10fd729448aa862f59989f5ec0a7df528762 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2007
* Sascha Hauer, Pengutronix
*
* (C) Copyright 2009 Freescale Semiconductor, Inc.
*/
#include <command.h>
#include <log.h>
#include <asm/io.h>
#include <linux/errno.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/crm_regs.h>
#include <asm/arch/clock.h>
#include <div64.h>
#include <asm/arch/sys_proto.h>
enum pll_clocks {
PLL1_CLOCK = 0,
PLL2_CLOCK,
PLL3_CLOCK,
#ifdef CONFIG_MX53
PLL4_CLOCK,
#endif
PLL_CLOCKS,
};
struct mxc_pll_reg *mxc_plls[PLL_CLOCKS] = {
[PLL1_CLOCK] = (struct mxc_pll_reg *)PLL1_BASE_ADDR,
[PLL2_CLOCK] = (struct mxc_pll_reg *)PLL2_BASE_ADDR,
[PLL3_CLOCK] = (struct mxc_pll_reg *)PLL3_BASE_ADDR,
#ifdef CONFIG_MX53
[PLL4_CLOCK] = (struct mxc_pll_reg *)PLL4_BASE_ADDR,
#endif
};
#define AHB_CLK_ROOT 133333333
#define SZ_DEC_1M 1000000
#define PLL_PD_MAX 16 /* Actual pd+1 */
#define PLL_MFI_MAX 15
#define PLL_MFI_MIN 5
#define ARM_DIV_MAX 8
#define IPG_DIV_MAX 4
#define AHB_DIV_MAX 8
#define EMI_DIV_MAX 8
#define NFC_DIV_MAX 8
#define MX5_CBCMR 0x00015154
#define MX5_CBCDR 0x02888945
struct fixed_pll_mfd {
u32 ref_clk_hz;
u32 mfd;
};
const struct fixed_pll_mfd fixed_mfd[] = {
{MXC_HCLK, 24 * 16},
};
struct pll_param {
u32 pd;
u32 mfi;
u32 mfn;
u32 mfd;
};
#define PLL_FREQ_MAX(ref_clk) (4 * (ref_clk) * PLL_MFI_MAX)
#define PLL_FREQ_MIN(ref_clk) \
((2 * (ref_clk) * (PLL_MFI_MIN - 1)) / PLL_PD_MAX)
#define MAX_DDR_CLK 420000000
#define NFC_CLK_MAX 34000000
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)MXC_CCM_BASE;
void set_usboh3_clk(void)
{
clrsetbits_le32(&mxc_ccm->cscmr1,
MXC_CCM_CSCMR1_USBOH3_CLK_SEL_MASK,
MXC_CCM_CSCMR1_USBOH3_CLK_SEL(1));
clrsetbits_le32(&mxc_ccm->cscdr1,
MXC_CCM_CSCDR1_USBOH3_CLK_PODF_MASK |
MXC_CCM_CSCDR1_USBOH3_CLK_PRED_MASK,
MXC_CCM_CSCDR1_USBOH3_CLK_PRED(4) |
MXC_CCM_CSCDR1_USBOH3_CLK_PODF(1));
}
void enable_usboh3_clk(bool enable)
{
unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
clrsetbits_le32(&mxc_ccm->CCGR2,
MXC_CCM_CCGR2_USBOH3_60M(MXC_CCM_CCGR_CG_MASK),
MXC_CCM_CCGR2_USBOH3_60M(cg));
}
#ifdef CONFIG_SYS_I2C_MXC
/* i2c_num can be from 0, to 1 for i.MX51 and 2 for i.MX53 */
int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
{
u32 mask;
#if defined(CONFIG_MX51)
if (i2c_num > 1)
#elif defined(CONFIG_MX53)
if (i2c_num > 2)
#endif
return -EINVAL;
mask = MXC_CCM_CCGR_CG_MASK <<
(MXC_CCM_CCGR1_I2C1_OFFSET + (i2c_num << 1));
if (enable)
setbits_le32(&mxc_ccm->CCGR1, mask);
else
clrbits_le32(&mxc_ccm->CCGR1, mask);
return 0;
}
#endif
void set_usb_phy_clk(void)
{
clrbits_le32(&mxc_ccm->cscmr1, MXC_CCM_CSCMR1_USB_PHY_CLK_SEL);
}
#if defined(CONFIG_MX51)
void enable_usb_phy1_clk(bool enable)
{
unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
clrsetbits_le32(&mxc_ccm->CCGR2,
MXC_CCM_CCGR2_USB_PHY(MXC_CCM_CCGR_CG_MASK),
MXC_CCM_CCGR2_USB_PHY(cg));
}
void enable_usb_phy2_clk(bool enable)
{
/* i.MX51 has a single USB PHY clock, so do nothing here. */
}
#elif defined(CONFIG_MX53)
void enable_usb_phy1_clk(bool enable)
{
unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
clrsetbits_le32(&mxc_ccm->CCGR4,
MXC_CCM_CCGR4_USB_PHY1(MXC_CCM_CCGR_CG_MASK),
MXC_CCM_CCGR4_USB_PHY1(cg));
}
void enable_usb_phy2_clk(bool enable)
{
unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
clrsetbits_le32(&mxc_ccm->CCGR4,
MXC_CCM_CCGR4_USB_PHY2(MXC_CCM_CCGR_CG_MASK),
MXC_CCM_CCGR4_USB_PHY2(cg));
}
#endif
/*
* Calculate the frequency of PLLn.
*/
static uint32_t decode_pll(struct mxc_pll_reg *pll, uint32_t infreq)
{
uint32_t ctrl, op, mfd, mfn, mfi, pdf, ret;
uint64_t refclk, temp;
int32_t mfn_abs;
ctrl = readl(&pll->ctrl);
if (ctrl & MXC_DPLLC_CTL_HFSM) {
mfn = readl(&pll->hfs_mfn);
mfd = readl(&pll->hfs_mfd);
op = readl(&pll->hfs_op);
} else {
mfn = readl(&pll->mfn);
mfd = readl(&pll->mfd);
op = readl(&pll->op);
}
mfd &= MXC_DPLLC_MFD_MFD_MASK;
mfn &= MXC_DPLLC_MFN_MFN_MASK;
pdf = op & MXC_DPLLC_OP_PDF_MASK;
mfi = MXC_DPLLC_OP_MFI_RD(op);
/* 21.2.3 */
if (mfi < 5)
mfi = 5;
/* Sign extend */
if (mfn >= 0x04000000) {
mfn |= 0xfc000000;
mfn_abs = -mfn;
} else
mfn_abs = mfn;
refclk = infreq * 2;
if (ctrl & MXC_DPLLC_CTL_DPDCK0_2_EN)
refclk *= 2;
do_div(refclk, pdf + 1);
temp = refclk * mfn_abs;
do_div(temp, mfd + 1);
ret = refclk * mfi;
if ((int)mfn < 0)
ret -= temp;
else
ret += temp;
return ret;
}
#ifdef CONFIG_MX51
/*
* This function returns the Frequency Pre-Multiplier clock.
*/
static u32 get_fpm(void)
{
u32 mult;
u32 ccr = readl(&mxc_ccm->ccr);
if (ccr & MXC_CCM_CCR_FPM_MULT)
mult = 1024;
else
mult = 512;
return MXC_CLK32 * mult;
}
#endif
/*
* This function returns the low power audio clock.
*/
static u32 get_lp_apm(void)
{
u32 ret_val = 0;
u32 ccsr = readl(&mxc_ccm->ccsr);
if (ccsr & MXC_CCM_CCSR_LP_APM)
#if defined(CONFIG_MX51)
ret_val = get_fpm();
#elif defined(CONFIG_MX53)
ret_val = decode_pll(mxc_plls[PLL4_CLOCK], MXC_HCLK);
#endif
else
ret_val = MXC_HCLK;
return ret_val;
}
/*
* Get mcu main rate
*/
u32 get_mcu_main_clk(void)
{
u32 reg, freq;
reg = MXC_CCM_CACRR_ARM_PODF_RD(readl(&mxc_ccm->cacrr));
freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
return freq / (reg + 1);
}
/*
* Get the rate of peripheral's root clock.
*/
u32 get_periph_clk(void)
{
u32 reg;
reg = readl(&mxc_ccm->cbcdr);
if (!(reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL))
return decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
reg = readl(&mxc_ccm->cbcmr);
switch (MXC_CCM_CBCMR_PERIPH_CLK_SEL_RD(reg)) {
case 0:
return decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
case 1:
return decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
case 2:
return get_lp_apm();
default:
return 0;
}
/* NOTREACHED */
}
/*
* Get the rate of ipg clock.
*/
static u32 get_ipg_clk(void)
{
uint32_t freq, reg, div;
freq = get_ahb_clk();
reg = readl(&mxc_ccm->cbcdr);
div = MXC_CCM_CBCDR_IPG_PODF_RD(reg) + 1;
return freq / div;
}
/*
* Get the rate of ipg_per clock.
*/
static u32 get_ipg_per_clk(void)
{
u32 freq, pred1, pred2, podf;
if (readl(&mxc_ccm->cbcmr) & MXC_CCM_CBCMR_PERCLK_IPG_CLK_SEL)
return get_ipg_clk();
if (readl(&mxc_ccm->cbcmr) & MXC_CCM_CBCMR_PERCLK_LP_APM_CLK_SEL)
freq = get_lp_apm();
else
freq = get_periph_clk();
podf = readl(&mxc_ccm->cbcdr);
pred1 = MXC_CCM_CBCDR_PERCLK_PRED1_RD(podf);
pred2 = MXC_CCM_CBCDR_PERCLK_PRED2_RD(podf);
podf = MXC_CCM_CBCDR_PERCLK_PODF_RD(podf);
return freq / ((pred1 + 1) * (pred2 + 1) * (podf + 1));
}
/* Get the output clock rate of a standard PLL MUX for peripherals. */
static u32 get_standard_pll_sel_clk(u32 clk_sel)
{
u32 freq = 0;
switch (clk_sel & 0x3) {
case 0:
freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
break;
case 1:
freq = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
break;
case 2:
freq = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
break;
case 3:
freq = get_lp_apm();
break;
}
return freq;
}
/*
* Get the rate of uart clk.
*/
static u32 get_uart_clk(void)
{
unsigned int clk_sel, freq, reg, pred, podf;
reg = readl(&mxc_ccm->cscmr1);
clk_sel = MXC_CCM_CSCMR1_UART_CLK_SEL_RD(reg);
freq = get_standard_pll_sel_clk(clk_sel);
reg = readl(&mxc_ccm->cscdr1);
pred = MXC_CCM_CSCDR1_UART_CLK_PRED_RD(reg);
podf = MXC_CCM_CSCDR1_UART_CLK_PODF_RD(reg);
freq /= (pred + 1) * (podf + 1);
return freq;
}
/*
* get cspi clock rate.
*/
static u32 imx_get_cspiclk(void)
{
u32 ret_val = 0, pdf, pre_pdf, clk_sel, freq;
u32 cscmr1 = readl(&mxc_ccm->cscmr1);
u32 cscdr2 = readl(&mxc_ccm->cscdr2);
pre_pdf = MXC_CCM_CSCDR2_CSPI_CLK_PRED_RD(cscdr2);
pdf = MXC_CCM_CSCDR2_CSPI_CLK_PODF_RD(cscdr2);
clk_sel = MXC_CCM_CSCMR1_CSPI_CLK_SEL_RD(cscmr1);
freq = get_standard_pll_sel_clk(clk_sel);
ret_val = freq / ((pre_pdf + 1) * (pdf + 1));
return ret_val;
}
/*
* get esdhc clock rate.
*/
static u32 get_esdhc_clk(u32 port)
{
u32 clk_sel = 0, pred = 0, podf = 0, freq = 0;
u32 cscmr1 = readl(&mxc_ccm->cscmr1);
u32 cscdr1 = readl(&mxc_ccm->cscdr1);
switch (port) {
case 0:
clk_sel = MXC_CCM_CSCMR1_ESDHC1_MSHC1_CLK_SEL_RD(cscmr1);
pred = MXC_CCM_CSCDR1_ESDHC1_MSHC1_CLK_PRED_RD(cscdr1);
podf = MXC_CCM_CSCDR1_ESDHC1_MSHC1_CLK_PODF_RD(cscdr1);
break;
case 1:
clk_sel = MXC_CCM_CSCMR1_ESDHC2_MSHC2_CLK_SEL_RD(cscmr1);
pred = MXC_CCM_CSCDR1_ESDHC2_MSHC2_CLK_PRED_RD(cscdr1);
podf = MXC_CCM_CSCDR1_ESDHC2_MSHC2_CLK_PODF_RD(cscdr1);
break;
case 2:
if (cscmr1 & MXC_CCM_CSCMR1_ESDHC3_CLK_SEL)
return get_esdhc_clk(1);
else
return get_esdhc_clk(0);
case 3:
if (cscmr1 & MXC_CCM_CSCMR1_ESDHC4_CLK_SEL)
return get_esdhc_clk(1);
else
return get_esdhc_clk(0);
default:
break;
}
freq = get_standard_pll_sel_clk(clk_sel) / ((pred + 1) * (podf + 1));
return freq;
}
static u32 get_axi_a_clk(void)
{
u32 cbcdr = readl(&mxc_ccm->cbcdr);
u32 pdf = MXC_CCM_CBCDR_AXI_A_PODF_RD(cbcdr);
return get_periph_clk() / (pdf + 1);
}
static u32 get_axi_b_clk(void)
{
u32 cbcdr = readl(&mxc_ccm->cbcdr);
u32 pdf = MXC_CCM_CBCDR_AXI_B_PODF_RD(cbcdr);
return get_periph_clk() / (pdf + 1);
}
static u32 get_emi_slow_clk(void)
{
u32 cbcdr = readl(&mxc_ccm->cbcdr);
u32 emi_clk_sel = cbcdr & MXC_CCM_CBCDR_EMI_CLK_SEL;
u32 pdf = MXC_CCM_CBCDR_EMI_PODF_RD(cbcdr);
if (emi_clk_sel)
return get_ahb_clk() / (pdf + 1);
return get_periph_clk() / (pdf + 1);
}
static u32 get_ddr_clk(void)
{
u32 ret_val = 0;
u32 cbcmr = readl(&mxc_ccm->cbcmr);
u32 ddr_clk_sel = MXC_CCM_CBCMR_DDR_CLK_SEL_RD(cbcmr);
#ifdef CONFIG_MX51
u32 cbcdr = readl(&mxc_ccm->cbcdr);
if (cbcdr & MXC_CCM_CBCDR_DDR_HIFREQ_SEL) {
u32 ddr_clk_podf = MXC_CCM_CBCDR_DDR_PODF_RD(cbcdr);
ret_val = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
ret_val /= ddr_clk_podf + 1;
return ret_val;
}
#endif
switch (ddr_clk_sel) {
case 0:
ret_val = get_axi_a_clk();
break;
case 1:
ret_val = get_axi_b_clk();
break;
case 2:
ret_val = get_emi_slow_clk();
break;
case 3:
ret_val = get_ahb_clk();
break;
default:
break;
}
return ret_val;
}
/*
* The API of get mxc clocks.
*/
unsigned int mxc_get_clock(enum mxc_clock clk)
{
switch (clk) {
case MXC_ARM_CLK:
return get_mcu_main_clk();
case MXC_AHB_CLK:
return get_ahb_clk();
case MXC_IPG_CLK:
return get_ipg_clk();
case MXC_IPG_PERCLK:
case MXC_I2C_CLK:
return get_ipg_per_clk();
case MXC_UART_CLK:
return get_uart_clk();
case MXC_CSPI_CLK:
return imx_get_cspiclk();
case MXC_ESDHC_CLK:
return get_esdhc_clk(0);
case MXC_ESDHC2_CLK:
return get_esdhc_clk(1);
case MXC_ESDHC3_CLK:
return get_esdhc_clk(2);
case MXC_ESDHC4_CLK:
return get_esdhc_clk(3);
case MXC_FEC_CLK:
return get_ipg_clk();
case MXC_SATA_CLK:
return get_ahb_clk();
case MXC_DDR_CLK:
return get_ddr_clk();
default:
break;
}
return -EINVAL;
}
u32 imx_get_uartclk(void)
{
return get_uart_clk();
}
u32 imx_get_fecclk(void)
{
return get_ipg_clk();
}
static int gcd(int m, int n)
{
int t;
while (m > 0) {
if (n > m) {
t = m;
m = n;
n = t;
} /* swap */
m -= n;
}
return n;
}
/*
* This is to calculate various parameters based on reference clock and
* targeted clock based on the equation:
* t_clk = 2*ref_freq*(mfi + mfn/(mfd+1))/(pd+1)
* This calculation is based on a fixed MFD value for simplicity.
*/
static int calc_pll_params(u32 ref, u32 target, struct pll_param *pll)
{
u64 pd, mfi = 1, mfn, mfd, t1;
u32 n_target = target;
u32 n_ref = ref, i;
/*
* Make sure targeted freq is in the valid range.
* Otherwise the following calculation might be wrong!!!
*/
if (n_target < PLL_FREQ_MIN(ref) ||
n_target > PLL_FREQ_MAX(ref)) {
printf("Targeted peripheral clock should be"
"within [%d - %d]\n",
PLL_FREQ_MIN(ref) / SZ_DEC_1M,
PLL_FREQ_MAX(ref) / SZ_DEC_1M);
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(fixed_mfd); i++) {
if (fixed_mfd[i].ref_clk_hz == ref) {
mfd = fixed_mfd[i].mfd;
break;
}
}
if (i == ARRAY_SIZE(fixed_mfd))
return -EINVAL;
/* Use n_target and n_ref to avoid overflow */
for (pd = 1; pd <= PLL_PD_MAX; pd++) {
t1 = n_target * pd;
do_div(t1, (4 * n_ref));
mfi = t1;
if (mfi > PLL_MFI_MAX)
return -EINVAL;
else if (mfi < 5)
continue;
break;
}
/*
* Now got pd and mfi already
*
* mfn = (((n_target * pd) / 4 - n_ref * mfi) * mfd) / n_ref;
*/
t1 = n_target * pd;
do_div(t1, 4);
t1 -= n_ref * mfi;
t1 *= mfd;
do_div(t1, n_ref);
mfn = t1;
debug("ref=%d, target=%d, pd=%d," "mfi=%d,mfn=%d, mfd=%d\n",
ref, n_target, (u32)pd, (u32)mfi, (u32)mfn, (u32)mfd);
i = 1;
if (mfn != 0)
i = gcd(mfd, mfn);
pll->pd = (u32)pd;
pll->mfi = (u32)mfi;
do_div(mfn, i);
pll->mfn = (u32)mfn;
do_div(mfd, i);
pll->mfd = (u32)mfd;
return 0;
}
#define calc_div(tgt_clk, src_clk, limit) ({ \
u32 v = 0; \
if (((src_clk) % (tgt_clk)) <= 100) \
v = (src_clk) / (tgt_clk); \
else \
v = ((src_clk) / (tgt_clk)) + 1;\
if (v > limit) \
v = limit; \
(v - 1); \
})
#define CHANGE_PLL_SETTINGS(pll, pd, fi, fn, fd) \
{ \
writel(0x1232, &pll->ctrl); \
writel(0x2, &pll->config); \
writel((((pd) - 1) << 0) | ((fi) << 4), \
&pll->op); \
writel(fn, &(pll->mfn)); \
writel((fd) - 1, &pll->mfd); \
writel((((pd) - 1) << 0) | ((fi) << 4), \
&pll->hfs_op); \
writel(fn, &pll->hfs_mfn); \
writel((fd) - 1, &pll->hfs_mfd); \
writel(0x1232, &pll->ctrl); \
while (!readl(&pll->ctrl) & 0x1) \
;\
}
static int config_pll_clk(enum pll_clocks index, struct pll_param *pll_param)
{
u32 ccsr = readl(&mxc_ccm->ccsr);
struct mxc_pll_reg *pll = mxc_plls[index];
switch (index) {
case PLL1_CLOCK:
/* Switch ARM to PLL2 clock */
writel(ccsr | MXC_CCM_CCSR_PLL1_SW_CLK_SEL,
&mxc_ccm->ccsr);
CHANGE_PLL_SETTINGS(pll, pll_param->pd,
pll_param->mfi, pll_param->mfn,
pll_param->mfd);
/* Switch back */
writel(ccsr & ~MXC_CCM_CCSR_PLL1_SW_CLK_SEL,
&mxc_ccm->ccsr);
break;
case PLL2_CLOCK:
/* Switch to pll2 bypass clock */
writel(ccsr | MXC_CCM_CCSR_PLL2_SW_CLK_SEL,
&mxc_ccm->ccsr);
CHANGE_PLL_SETTINGS(pll, pll_param->pd,
pll_param->mfi, pll_param->mfn,
pll_param->mfd);
/* Switch back */
writel(ccsr & ~MXC_CCM_CCSR_PLL2_SW_CLK_SEL,
&mxc_ccm->ccsr);
break;
case PLL3_CLOCK:
/* Switch to pll3 bypass clock */
writel(ccsr | MXC_CCM_CCSR_PLL3_SW_CLK_SEL,
&mxc_ccm->ccsr);
CHANGE_PLL_SETTINGS(pll, pll_param->pd,
pll_param->mfi, pll_param->mfn,
pll_param->mfd);
/* Switch back */
writel(ccsr & ~MXC_CCM_CCSR_PLL3_SW_CLK_SEL,
&mxc_ccm->ccsr);
break;
#ifdef CONFIG_MX53
case PLL4_CLOCK:
/* Switch to pll4 bypass clock */
writel(ccsr | MXC_CCM_CCSR_PLL4_SW_CLK_SEL,
&mxc_ccm->ccsr);
CHANGE_PLL_SETTINGS(pll, pll_param->pd,
pll_param->mfi, pll_param->mfn,
pll_param->mfd);
/* Switch back */
writel(ccsr & ~MXC_CCM_CCSR_PLL4_SW_CLK_SEL,
&mxc_ccm->ccsr);
break;
#endif
default:
return -EINVAL;
}
return 0;
}
/* Config CPU clock */
static int config_core_clk(u32 ref, u32 freq)
{
int ret = 0;
struct pll_param pll_param;
memset(&pll_param, 0, sizeof(struct pll_param));
/* The case that periph uses PLL1 is not considered here */
ret = calc_pll_params(ref, freq, &pll_param);
if (ret != 0) {
printf("Error:Can't find pll parameters: %d\n", ret);
return ret;
}
return config_pll_clk(PLL1_CLOCK, &pll_param);
}
static int config_nfc_clk(u32 nfc_clk)
{
u32 parent_rate = get_emi_slow_clk();
u32 div;
if (nfc_clk == 0)
return -EINVAL;
div = parent_rate / nfc_clk;
if (div == 0)
div++;
if (parent_rate / div > NFC_CLK_MAX)
div++;
clrsetbits_le32(&mxc_ccm->cbcdr,
MXC_CCM_CBCDR_NFC_PODF_MASK,
MXC_CCM_CBCDR_NFC_PODF(div - 1));
while (readl(&mxc_ccm->cdhipr) != 0)
;
return 0;
}
void enable_nfc_clk(unsigned char enable)
{
unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
clrsetbits_le32(&mxc_ccm->CCGR5,
MXC_CCM_CCGR5_EMI_ENFC(MXC_CCM_CCGR_CG_MASK),
MXC_CCM_CCGR5_EMI_ENFC(cg));
}
#ifdef CONFIG_FSL_IIM
void enable_efuse_prog_supply(bool enable)
{
if (enable)
setbits_le32(&mxc_ccm->cgpr,
MXC_CCM_CGPR_EFUSE_PROG_SUPPLY_GATE);
else
clrbits_le32(&mxc_ccm->cgpr,
MXC_CCM_CGPR_EFUSE_PROG_SUPPLY_GATE);
}
#endif
/* Config main_bus_clock for periphs */
static int config_periph_clk(u32 ref, u32 freq)
{
int ret = 0;
struct pll_param pll_param;
memset(&pll_param, 0, sizeof(struct pll_param));
if (readl(&mxc_ccm->cbcdr) & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
ret = calc_pll_params(ref, freq, &pll_param);
if (ret != 0) {
printf("Error:Can't find pll parameters: %d\n",
ret);
return ret;
}
switch (MXC_CCM_CBCMR_PERIPH_CLK_SEL_RD(
readl(&mxc_ccm->cbcmr))) {
case 0:
return config_pll_clk(PLL1_CLOCK, &pll_param);
break;
case 1:
return config_pll_clk(PLL3_CLOCK, &pll_param);
break;
default:
return -EINVAL;
}
}
return 0;
}
static int config_ddr_clk(u32 emi_clk)
{
u32 clk_src;
s32 shift = 0, clk_sel, div = 1;
u32 cbcmr = readl(&mxc_ccm->cbcmr);
if (emi_clk > MAX_DDR_CLK) {
printf("Warning:DDR clock should not exceed %d MHz\n",
MAX_DDR_CLK / SZ_DEC_1M);
emi_clk = MAX_DDR_CLK;
}
clk_src = get_periph_clk();
/* Find DDR clock input */
clk_sel = MXC_CCM_CBCMR_DDR_CLK_SEL_RD(cbcmr);
switch (clk_sel) {
case 0:
shift = 16;
break;
case 1:
shift = 19;
break;
case 2:
shift = 22;
break;
case 3:
shift = 10;
break;
default:
return -EINVAL;
}
if ((clk_src % emi_clk) < 10000000)
div = clk_src / emi_clk;
else
div = (clk_src / emi_clk) + 1;
if (div > 8)
div = 8;
clrsetbits_le32(&mxc_ccm->cbcdr, 0x7 << shift, (div - 1) << shift);
while (readl(&mxc_ccm->cdhipr) != 0)
;
writel(0x0, &mxc_ccm->ccdr);
return 0;
}
#ifdef CONFIG_MX53
static int config_ldb_clk(u32 ref, u32 freq)
{
int ret = 0;
struct pll_param pll_param;
memset(&pll_param, 0, sizeof(struct pll_param));
ret = calc_pll_params(ref, freq, &pll_param);
if (ret != 0) {
printf("Error:Can't find pll parameters: %d\n",
ret);
return ret;
}
return config_pll_clk(PLL4_CLOCK, &pll_param);
}
#else
static int config_ldb_clk(u32 ref, u32 freq)
{
/* Platform not supported */
return -EINVAL;
}
#endif
/*
* This function assumes the expected core clock has to be changed by
* modifying the PLL. This is NOT true always but for most of the times,
* it is. So it assumes the PLL output freq is the same as the expected
* core clock (presc=1) unless the core clock is less than PLL_FREQ_MIN.
* In the latter case, it will try to increase the presc value until
* (presc*core_clk) is greater than PLL_FREQ_MIN. It then makes call to
* calc_pll_params() and obtains the values of PD, MFI,MFN, MFD based
* on the targeted PLL and reference input clock to the PLL. Lastly,
* it sets the register based on these values along with the dividers.
* Note 1) There is no value checking for the passed-in divider values
* so the caller has to make sure those values are sensible.
* 2) Also adjust the NFC divider such that the NFC clock doesn't
* exceed NFC_CLK_MAX.
* 3) IPU HSP clock is independent of AHB clock. Even it can go up to
* 177MHz for higher voltage, this function fixes the max to 133MHz.
* 4) This function should not have allowed diag_printf() calls since
* the serial driver has been stoped. But leave then here to allow
* easy debugging by NOT calling the cyg_hal_plf_serial_stop().
*/
int mxc_set_clock(u32 ref, u32 freq, enum mxc_clock clk)
{
freq *= SZ_DEC_1M;
switch (clk) {
case MXC_ARM_CLK:
if (config_core_clk(ref, freq))
return -EINVAL;
break;
case MXC_PERIPH_CLK:
if (config_periph_clk(ref, freq))
return -EINVAL;
break;
case MXC_DDR_CLK:
if (config_ddr_clk(freq))
return -EINVAL;
break;
case MXC_NFC_CLK:
if (config_nfc_clk(freq))
return -EINVAL;
break;
case MXC_LDB_CLK:
if (config_ldb_clk(ref, freq))
return -EINVAL;
break;
default:
printf("Warning:Unsupported or invalid clock type\n");
}
return 0;
}
#ifdef CONFIG_MX53
/*
* The clock for the external interface can be set to use internal clock
* if fuse bank 4, row 3, bit 2 is set.
* This is an undocumented feature and it was confirmed by Freescale's support:
* Fuses (but not pins) may be used to configure SATA clocks.
* Particularly the i.MX53 Fuse_Map contains the next information
* about configuring SATA clocks : SATA_ALT_REF_CLK[1:0] (offset 0x180C)
* '00' - 100MHz (External)
* '01' - 50MHz (External)
* '10' - 120MHz, internal (USB PHY)
* '11' - Reserved
*/
void mxc_set_sata_internal_clock(void)
{
u32 *tmp_base =
(u32 *)(IIM_BASE_ADDR + 0x180c);
set_usb_phy_clk();
clrsetbits_le32(tmp_base, 0x6, 0x4);
}
#endif
#ifndef CONFIG_SPL_BUILD
/*
* Dump some core clockes.
*/
static int do_mx5_showclocks(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
u32 freq;
freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
printf("PLL1 %8d MHz\n", freq / 1000000);
freq = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
printf("PLL2 %8d MHz\n", freq / 1000000);
freq = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
printf("PLL3 %8d MHz\n", freq / 1000000);
#ifdef CONFIG_MX53
freq = decode_pll(mxc_plls[PLL4_CLOCK], MXC_HCLK);
printf("PLL4 %8d MHz\n", freq / 1000000);
#endif
printf("\n");
printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
#ifdef CONFIG_MXC_SPI
printf("CSPI %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
#endif
return 0;
}
/***************************************************/
U_BOOT_CMD(
clocks, CONFIG_SYS_MAXARGS, 1, do_mx5_showclocks,
"display clocks",
""
);
#endif