blob: 693706257c969f4ae0019eda4e906245d6b2098c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 Marvell International Ltd.
*/
#include <dm.h>
#include <dm/of_access.h>
#include <malloc.h>
#include <memalign.h>
#include <nand.h>
#include <pci.h>
#include <pci_ids.h>
#include <time.h>
#include <linux/bitfield.h>
#include <linux/ctype.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/ioport.h>
#include <linux/libfdt.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand_bch.h>
#include <linux/mtd/nand_ecc.h>
#include <asm/io.h>
#include <asm/types.h>
#include <asm/dma-mapping.h>
#include <asm/arch/clock.h>
#include "octeontx_bch.h"
#ifdef DEBUG
# undef CONFIG_LOGLEVEL
# define CONFIG_LOGLEVEL 8
#endif
LIST_HEAD(octeontx_bch_devices);
static unsigned int num_vfs = BCH_NR_VF;
static void *bch_pf;
static void *bch_vf;
static void *token;
static bool bch_pf_initialized;
static bool bch_vf_initialized;
static int pci_enable_sriov(struct udevice *dev, int nr_virtfn)
{
int ret;
ret = pci_sriov_init(dev, nr_virtfn);
if (ret)
printf("%s(%s): pci_sriov_init returned %d\n", __func__,
dev->name, ret);
return ret;
}
void *octeontx_bch_getv(void)
{
if (!bch_vf)
return NULL;
if (bch_vf_initialized && bch_pf_initialized)
return bch_vf;
else
return NULL;
}
void octeontx_bch_putv(void *token)
{
bch_vf_initialized = !!token;
bch_vf = token;
}
void *octeontx_bch_getp(void)
{
return token;
}
void octeontx_bch_putp(void *token)
{
bch_pf = token;
bch_pf_initialized = !!token;
}
static int do_bch_init(struct bch_device *bch)
{
return 0;
}
static void bch_reset(struct bch_device *bch)
{
writeq(1, bch->reg_base + BCH_CTL);
mdelay(2);
}
static void bch_disable(struct bch_device *bch)
{
writeq(~0ull, bch->reg_base + BCH_ERR_INT_ENA_W1C);
writeq(~0ull, bch->reg_base + BCH_ERR_INT);
bch_reset(bch);
}
static u32 bch_check_bist_status(struct bch_device *bch)
{
return readq(bch->reg_base + BCH_BIST_RESULT);
}
static int bch_device_init(struct bch_device *bch)
{
u64 bist;
int rc;
debug("%s: Resetting...\n", __func__);
/* Reset the PF when probed first */
bch_reset(bch);
debug("%s: Checking BIST...\n", __func__);
/* Check BIST status */
bist = (u64)bch_check_bist_status(bch);
if (bist) {
dev_err(dev, "BCH BIST failed with code 0x%llx\n", bist);
return -ENODEV;
}
/* Get max VQs/VFs supported by the device */
bch->max_vfs = pci_sriov_get_totalvfs(bch->dev);
debug("%s: %d vfs\n", __func__, bch->max_vfs);
if (num_vfs > bch->max_vfs) {
dev_warn(dev, "Num of VFs to enable %d is greater than max available. Enabling %d VFs.\n",
num_vfs, bch->max_vfs);
num_vfs = bch->max_vfs;
}
bch->vfs_enabled = bch->max_vfs;
/* Get number of VQs/VFs to be enabled */
/* TODO: Get CLK frequency */
/* Reset device parameters */
debug("%s: Doing initialization\n", __func__);
rc = do_bch_init(bch);
return rc;
}
static int bch_sriov_configure(struct udevice *dev, int numvfs)
{
struct bch_device *bch = dev_get_priv(dev);
int ret = -EBUSY;
debug("%s(%s, %d), bch: %p, vfs_in_use: %d, enabled: %d\n", __func__,
dev->name, numvfs, bch, bch->vfs_in_use, bch->vfs_enabled);
if (bch->vfs_in_use)
goto exit;
ret = 0;
if (numvfs > 0) {
debug("%s: Enabling sriov\n", __func__);
ret = pci_enable_sriov(dev, numvfs);
if (ret == 0) {
bch->flags |= BCH_FLAG_SRIOV_ENABLED;
ret = numvfs;
bch->vfs_enabled = numvfs;
}
}
debug("VFs enabled: %d\n", ret);
exit:
debug("%s: Returning %d\n", __func__, ret);
return ret;
}
static int octeontx_pci_bchpf_probe(struct udevice *dev)
{
struct bch_device *bch;
int ret;
debug("%s(%s)\n", __func__, dev->name);
bch = dev_get_priv(dev);
if (!bch)
return -ENOMEM;
bch->reg_base = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0, PCI_REGION_MEM);
bch->dev = dev;
debug("%s: base address: %p\n", __func__, bch->reg_base);
ret = bch_device_init(bch);
if (ret) {
printf("%s(%s): init returned %d\n", __func__, dev->name, ret);
return ret;
}
INIT_LIST_HEAD(&bch->list);
list_add(&bch->list, &octeontx_bch_devices);
token = (void *)dev;
debug("%s: Configuring SRIOV\n", __func__);
bch_sriov_configure(dev, num_vfs);
debug("%s: Done.\n", __func__);
octeontx_bch_putp(bch);
return 0;
}
static const struct pci_device_id octeontx_bchpf_pci_id_table[] = {
{ PCI_VDEVICE(CAVIUM, PCI_DEVICE_ID_CAVIUM_BCH) },
{},
};
static const struct pci_device_id octeontx_bchvf_pci_id_table[] = {
{ PCI_VDEVICE(CAVIUM, PCI_DEVICE_ID_CAVIUM_BCHVF)},
{},
};
/**
* Given a data block calculate the ecc data and fill in the response
*
* @param[in] block 8-byte aligned pointer to data block to calculate ECC
* @param block_size Size of block in bytes, must be a multiple of two.
* @param bch_level Number of errors that must be corrected. The number of
* parity bytes is equal to ((15 * bch_level) + 7) / 8.
* Must be 4, 8, 16, 24, 32, 40, 48, 56, 60 or 64.
* @param[out] ecc 8-byte aligned pointer to where ecc data should go
* @param[in] resp pointer to where responses will be written.
*
* @return Zero on success, negative on failure.
*/
int octeontx_bch_encode(struct bch_vf *vf, dma_addr_t block, u16 block_size,
u8 bch_level, dma_addr_t ecc, dma_addr_t resp)
{
union bch_cmd cmd;
int rc;
memset(&cmd, 0, sizeof(cmd));
cmd.s.cword.ecc_gen = eg_gen;
cmd.s.cword.ecc_level = bch_level;
cmd.s.cword.size = block_size;
cmd.s.oword.ptr = ecc;
cmd.s.iword.ptr = block;
cmd.s.rword.ptr = resp;
rc = octeontx_cmd_queue_write(QID_BCH, 1,
sizeof(cmd) / sizeof(uint64_t), cmd.u);
if (rc)
return -1;
octeontx_bch_write_doorbell(1, vf);
return 0;
}
/**
* Given a data block and ecc data correct the data block
*
* @param[in] block_ecc_in 8-byte aligned pointer to data block with ECC
* data concatenated to the end to correct
* @param block_size Size of block in bytes, must be a multiple of
* two.
* @param bch_level Number of errors that must be corrected. The
* number of parity bytes is equal to
* ((15 * bch_level) + 7) / 8.
* Must be 4, 8, 16, 24, 32, 40, 48, 56, 60 or 64.
* @param[out] block_out 8-byte aligned pointer to corrected data buffer.
* This should not be the same as block_ecc_in.
* @param[in] resp pointer to where responses will be written.
*
* @return Zero on success, negative on failure.
*/
int octeontx_bch_decode(struct bch_vf *vf, dma_addr_t block_ecc_in,
u16 block_size, u8 bch_level,
dma_addr_t block_out, dma_addr_t resp)
{
union bch_cmd cmd;
int rc;
memset(&cmd, 0, sizeof(cmd));
cmd.s.cword.ecc_gen = eg_correct;
cmd.s.cword.ecc_level = bch_level;
cmd.s.cword.size = block_size;
cmd.s.oword.ptr = block_out;
cmd.s.iword.ptr = block_ecc_in;
cmd.s.rword.ptr = resp;
rc = octeontx_cmd_queue_write(QID_BCH, 1,
sizeof(cmd) / sizeof(uint64_t), cmd.u);
if (rc)
return -1;
octeontx_bch_write_doorbell(1, vf);
return 0;
}
EXPORT_SYMBOL(octeontx_bch_decode);
int octeontx_bch_wait(struct bch_vf *vf, union bch_resp *resp,
dma_addr_t handle)
{
ulong start = get_timer(0);
__iormb(); /* HW is updating *resp */
while (!resp->s.done && get_timer(start) < 10)
__iormb(); /* HW is updating *resp */
if (resp->s.done)
return 0;
return -ETIMEDOUT;
}
struct bch_q octeontx_bch_q[QID_MAX];
static int octeontx_cmd_queue_initialize(struct udevice *dev, int queue_id,
int max_depth, int fpa_pool,
int pool_size)
{
/* some params are for later merge with CPT or cn83xx */
struct bch_q *q = &octeontx_bch_q[queue_id];
unsigned long paddr;
u64 *chunk_buffer;
int chunk = max_depth + 1;
int i, size;
if ((unsigned int)queue_id >= QID_MAX)
return -EINVAL;
if (max_depth & chunk) /* must be 2^N - 1 */
return -EINVAL;
size = NQS * chunk * sizeof(u64);
chunk_buffer = dma_alloc_coherent(size, &paddr);
if (!chunk_buffer)
return -ENOMEM;
q->base_paddr = paddr;
q->dev = dev;
q->index = 0;
q->max_depth = max_depth;
q->pool_size_m1 = pool_size;
q->base_vaddr = chunk_buffer;
for (i = 0; i < NQS; i++) {
u64 *ixp;
int inext = (i + 1) * chunk - 1;
int j = (i + 1) % NQS;
int jnext = j * chunk;
dma_addr_t jbase = q->base_paddr + jnext * sizeof(u64);
ixp = &chunk_buffer[inext];
*ixp = jbase;
}
return 0;
}
static int octeontx_pci_bchvf_probe(struct udevice *dev)
{
struct bch_vf *vf;
union bch_vqx_ctl ctl;
union bch_vqx_cmd_buf cbuf;
int err;
debug("%s(%s)\n", __func__, dev->name);
vf = dev_get_priv(dev);
if (!vf)
return -ENOMEM;
vf->dev = dev;
/* Map PF's configuration registers */
vf->reg_base = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0, PCI_REGION_MEM);
debug("%s: reg base: %p\n", __func__, vf->reg_base);
err = octeontx_cmd_queue_initialize(dev, QID_BCH, QDEPTH - 1, 0,
sizeof(union bch_cmd) * QDEPTH);
if (err) {
dev_err(dev, "octeontx_cmd_queue_initialize() failed\n");
goto release;
}
ctl.u = readq(vf->reg_base + BCH_VQX_CTL(0));
cbuf.u = 0;
cbuf.s.ldwb = 1;
cbuf.s.dfb = 1;
cbuf.s.size = QDEPTH;
writeq(cbuf.u, vf->reg_base + BCH_VQX_CMD_BUF(0));
writeq(ctl.u, vf->reg_base + BCH_VQX_CTL(0));
writeq(octeontx_bch_q[QID_BCH].base_paddr,
vf->reg_base + BCH_VQX_CMD_PTR(0));
octeontx_bch_putv(vf);
debug("%s: bch vf initialization complete\n", __func__);
if (octeontx_bch_getv())
return octeontx_pci_nand_deferred_probe();
return -1;
release:
return err;
}
static int octeontx_pci_bchpf_remove(struct udevice *dev)
{
struct bch_device *bch = dev_get_priv(dev);
bch_disable(bch);
return 0;
}
U_BOOT_DRIVER(octeontx_pci_bchpf) = {
.name = BCHPF_DRIVER_NAME,
.id = UCLASS_MISC,
.probe = octeontx_pci_bchpf_probe,
.remove = octeontx_pci_bchpf_remove,
.priv_auto_alloc_size = sizeof(struct bch_device),
.flags = DM_FLAG_OS_PREPARE,
};
U_BOOT_DRIVER(octeontx_pci_bchvf) = {
.name = BCHVF_DRIVER_NAME,
.id = UCLASS_MISC,
.probe = octeontx_pci_bchvf_probe,
.priv_auto_alloc_size = sizeof(struct bch_vf),
};
U_BOOT_PCI_DEVICE(octeontx_pci_bchpf, octeontx_bchpf_pci_id_table);
U_BOOT_PCI_DEVICE(octeontx_pci_bchvf, octeontx_bchvf_pci_id_table);