blob: 9ea217cd8544536432dbf06a38ed3f08bbac4218 [file] [log] [blame]
#ifndef _MICROBLAZE_BITOPS_H
#define _MICROBLAZE_BITOPS_H
/*
* Copyright 1992, Linus Torvalds.
*/
#include <asm/byteorder.h> /* swab32 */
#include <asm/system.h> /* save_flags */
#include <asm-generic/bitops/fls.h>
#include <asm-generic/bitops/__fls.h>
#include <asm-generic/bitops/fls64.h>
#include <asm-generic/bitops/__ffs.h>
#ifdef __KERNEL__
/*
* The __ functions are not atomic
*/
/*
* ffz = Find First Zero in word. Undefined if no zero exists,
* so code should check against ~0UL first..
*/
static inline unsigned long ffz(unsigned long word)
{
unsigned long result = 0;
while(word & 1) {
result++;
word >>= 1;
}
return result;
}
static inline void set_bit(int nr, volatile void *addr)
{
int * a = (int *) addr;
int mask;
unsigned long flags;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
save_flags_cli(flags);
*a |= mask;
restore_flags(flags);
}
static inline void __set_bit(int nr, volatile void *addr)
{
int * a = (int *) addr;
int mask;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
*a |= mask;
}
#define PLATFORM__SET_BIT
/*
* clear_bit() doesn't provide any barrier for the compiler.
*/
#define smp_mb__before_clear_bit() barrier()
#define smp_mb__after_clear_bit() barrier()
static inline void clear_bit(int nr, volatile void *addr)
{
int * a = (int *) addr;
int mask;
unsigned long flags;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
save_flags_cli(flags);
*a &= ~mask;
restore_flags(flags);
}
#define __clear_bit(nr, addr) clear_bit(nr, addr)
#define PLATFORM__CLEAR_BIT
static inline void change_bit(int nr, volatile void *addr)
{
int mask;
unsigned long flags;
unsigned long *ADDR = (unsigned long *) addr;
ADDR += nr >> 5;
mask = 1 << (nr & 31);
save_flags_cli(flags);
*ADDR ^= mask;
restore_flags(flags);
}
static inline void __change_bit(int nr, volatile void *addr)
{
int mask;
unsigned long *ADDR = (unsigned long *) addr;
ADDR += nr >> 5;
mask = 1 << (nr & 31);
*ADDR ^= mask;
}
static inline int test_and_set_bit(int nr, volatile void *addr)
{
int mask, retval;
volatile unsigned int *a = (volatile unsigned int *) addr;
unsigned long flags;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
save_flags_cli(flags);
retval = (mask & *a) != 0;
*a |= mask;
restore_flags(flags);
return retval;
}
static inline int __test_and_set_bit(int nr, volatile void *addr)
{
int mask, retval;
volatile unsigned int *a = (volatile unsigned int *) addr;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
retval = (mask & *a) != 0;
*a |= mask;
return retval;
}
static inline int test_and_clear_bit(int nr, volatile void *addr)
{
int mask, retval;
volatile unsigned int *a = (volatile unsigned int *) addr;
unsigned long flags;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
save_flags_cli(flags);
retval = (mask & *a) != 0;
*a &= ~mask;
restore_flags(flags);
return retval;
}
static inline int __test_and_clear_bit(int nr, volatile void *addr)
{
int mask, retval;
volatile unsigned int *a = (volatile unsigned int *) addr;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
retval = (mask & *a) != 0;
*a &= ~mask;
return retval;
}
static inline int test_and_change_bit(int nr, volatile void *addr)
{
int mask, retval;
volatile unsigned int *a = (volatile unsigned int *) addr;
unsigned long flags;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
save_flags_cli(flags);
retval = (mask & *a) != 0;
*a ^= mask;
restore_flags(flags);
return retval;
}
static inline int __test_and_change_bit(int nr, volatile void *addr)
{
int mask, retval;
volatile unsigned int *a = (volatile unsigned int *) addr;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
retval = (mask & *a) != 0;
*a ^= mask;
return retval;
}
/*
* This routine doesn't need to be atomic.
*/
static inline int __constant_test_bit(int nr, const volatile void *addr)
{
return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
}
static inline int __test_bit(int nr, volatile void *addr)
{
int * a = (int *) addr;
int mask;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
return ((mask & *a) != 0);
}
#define test_bit(nr,addr) \
(__builtin_constant_p(nr) ? \
__constant_test_bit((nr),(addr)) : \
__test_bit((nr),(addr)))
#define find_first_zero_bit(addr, size) \
find_next_zero_bit((addr), (size), 0)
static inline int find_next_zero_bit(void *addr, int size, int offset)
{
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
unsigned long result = offset & ~31UL;
unsigned long tmp;
if (offset >= size)
return size;
size -= result;
offset &= 31UL;
if (offset) {
tmp = *(p++);
tmp |= ~0UL >> (32-offset);
if (size < 32)
goto found_first;
if (~tmp)
goto found_middle;
size -= 32;
result += 32;
}
while (size & ~31UL) {
if (~(tmp = *(p++)))
goto found_middle;
result += 32;
size -= 32;
}
if (!size)
return result;
tmp = *p;
found_first:
tmp |= ~0UL >> size;
found_middle:
return result + ffz(tmp);
}
/*
* hweightN: returns the hamming weight (i.e. the number
* of bits set) of a N-bit word
*/
#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)
static inline int ext2_set_bit(int nr, volatile void *addr)
{
int mask, retval;
unsigned long flags;
volatile unsigned char *ADDR = (unsigned char *) addr;
ADDR += nr >> 3;
mask = 1 << (nr & 0x07);
save_flags_cli(flags);
retval = (mask & *ADDR) != 0;
*ADDR |= mask;
restore_flags(flags);
return retval;
}
static inline int ext2_clear_bit(int nr, volatile void *addr)
{
int mask, retval;
unsigned long flags;
volatile unsigned char *ADDR = (unsigned char *) addr;
ADDR += nr >> 3;
mask = 1 << (nr & 0x07);
save_flags_cli(flags);
retval = (mask & *ADDR) != 0;
*ADDR &= ~mask;
restore_flags(flags);
return retval;
}
static inline int ext2_test_bit(int nr, const volatile void *addr)
{
int mask;
const volatile unsigned char *ADDR = (const unsigned char *) addr;
ADDR += nr >> 3;
mask = 1 << (nr & 0x07);
return ((mask & *ADDR) != 0);
}
#define ext2_find_first_zero_bit(addr, size) \
ext2_find_next_zero_bit((addr), (size), 0)
static inline unsigned long ext2_find_next_zero_bit(void *addr,
unsigned long size, unsigned long offset)
{
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
unsigned long result = offset & ~31UL;
unsigned long tmp;
if (offset >= size)
return size;
size -= result;
offset &= 31UL;
if(offset) {
/* We hold the little endian value in tmp, but then the
* shift is illegal. So we could keep a big endian value
* in tmp, like this:
*
* tmp = __swab32(*(p++));
* tmp |= ~0UL >> (32-offset);
*
* but this would decrease preformance, so we change the
* shift:
*/
tmp = *(p++);
tmp |= __swab32(~0UL >> (32-offset));
if(size < 32)
goto found_first;
if(~tmp)
goto found_middle;
size -= 32;
result += 32;
}
while(size & ~31UL) {
if(~(tmp = *(p++)))
goto found_middle;
result += 32;
size -= 32;
}
if(!size)
return result;
tmp = *p;
found_first:
/* tmp is little endian, so we would have to swab the shift,
* see above. But then we have to swab tmp below for ffz, so
* we might as well do this here.
*/
return result + ffz(__swab32(tmp) | (~0UL << size));
found_middle:
return result + ffz(__swab32(tmp));
}
/* Bitmap functions for the minix filesystem. */
#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
#define minix_set_bit(nr,addr) set_bit(nr,addr)
#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
#define minix_test_bit(nr,addr) test_bit(nr,addr)
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
/**
* hweightN - returns the hamming weight of a N-bit word
* @x: the word to weigh
*
* The Hamming Weight of a number is the total number of bits set in it.
*/
#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)
#endif /* __KERNEL__ */
#endif /* _MICROBLAZE_BITOPS_H */