blob: 1bceb41494f76e4d41f89c20aa48765bce3370d7 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
/*
* Copyright (C) 2018, STMicroelectronics - All Rights Reserved
*/
#define LOG_CATEGORY LOGC_BOARD
#include <common.h>
#include <adc.h>
#include <bootm.h>
#include <clk.h>
#include <config.h>
#include <dm.h>
#include <env.h>
#include <env_internal.h>
#include <fdt_support.h>
#include <g_dnl.h>
#include <generic-phy.h>
#include <hang.h>
#include <i2c.h>
#include <init.h>
#include <led.h>
#include <log.h>
#include <malloc.h>
#include <misc.h>
#include <mtd_node.h>
#include <net.h>
#include <netdev.h>
#include <phy.h>
#include <remoteproc.h>
#include <reset.h>
#include <syscon.h>
#include <usb.h>
#include <watchdog.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <asm/gpio.h>
#include <asm/arch/stm32.h>
#include <asm/arch/sys_proto.h>
#include <jffs2/load_kernel.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/iopoll.h>
#include <power/regulator.h>
#include <usb/dwc2_udc.h>
#include "../../st/common/stusb160x.h"
/* SYSCFG registers */
#define SYSCFG_BOOTR 0x00
#define SYSCFG_PMCSETR 0x04
#define SYSCFG_IOCTRLSETR 0x18
#define SYSCFG_ICNR 0x1C
#define SYSCFG_CMPCR 0x20
#define SYSCFG_CMPENSETR 0x24
#define SYSCFG_PMCCLRR 0x44
#define SYSCFG_BOOTR_BOOT_MASK GENMASK(2, 0)
#define SYSCFG_BOOTR_BOOTPD_SHIFT 4
#define SYSCFG_IOCTRLSETR_HSLVEN_TRACE BIT(0)
#define SYSCFG_IOCTRLSETR_HSLVEN_QUADSPI BIT(1)
#define SYSCFG_IOCTRLSETR_HSLVEN_ETH BIT(2)
#define SYSCFG_IOCTRLSETR_HSLVEN_SDMMC BIT(3)
#define SYSCFG_IOCTRLSETR_HSLVEN_SPI BIT(4)
#define SYSCFG_CMPCR_SW_CTRL BIT(1)
#define SYSCFG_CMPCR_READY BIT(8)
#define SYSCFG_CMPENSETR_MPU_EN BIT(0)
#define SYSCFG_PMCSETR_ETH_CLK_SEL BIT(16)
#define SYSCFG_PMCSETR_ETH_REF_CLK_SEL BIT(17)
#define SYSCFG_PMCSETR_ETH_SELMII BIT(20)
#define SYSCFG_PMCSETR_ETH_SEL_MASK GENMASK(23, 21)
#define SYSCFG_PMCSETR_ETH_SEL_GMII_MII 0
#define SYSCFG_PMCSETR_ETH_SEL_RGMII BIT(21)
#define SYSCFG_PMCSETR_ETH_SEL_RMII BIT(23)
/*
* Get a global data pointer
*/
DECLARE_GLOBAL_DATA_PTR;
#define USB_LOW_THRESHOLD_UV 200000
#define USB_WARNING_LOW_THRESHOLD_UV 660000
#define USB_START_LOW_THRESHOLD_UV 1230000
#define USB_START_HIGH_THRESHOLD_UV 2150000
int board_early_init_f(void)
{
/* nothing to do, only used in SPL */
return 0;
}
int checkboard(void)
{
int ret;
char *mode;
u32 otp;
struct udevice *dev;
const char *fdt_compat;
int fdt_compat_len;
if (IS_ENABLED(CONFIG_TFABOOT)) {
if (IS_ENABLED(CONFIG_STM32MP15x_STM32IMAGE))
mode = "trusted - stm32image";
else
mode = "trusted";
} else {
mode = "basic";
}
fdt_compat = fdt_getprop(gd->fdt_blob, 0, "compatible",
&fdt_compat_len);
log_info("Board: stm32mp1 in %s mode (%s)\n", mode,
fdt_compat && fdt_compat_len ? fdt_compat : "");
/* display the STMicroelectronics board identification */
if (CONFIG_IS_ENABLED(CMD_STBOARD)) {
ret = uclass_get_device_by_driver(UCLASS_MISC,
DM_DRIVER_GET(stm32mp_bsec),
&dev);
if (!ret)
ret = misc_read(dev, STM32_BSEC_SHADOW(BSEC_OTP_BOARD),
&otp, sizeof(otp));
if (ret > 0 && otp)
log_info("Board: MB%04x Var%d.%d Rev.%c-%02d\n",
otp >> 16,
(otp >> 12) & 0xF,
(otp >> 4) & 0xF,
((otp >> 8) & 0xF) - 1 + 'A',
otp & 0xF);
}
return 0;
}
static void board_key_check(void)
{
ofnode node;
struct gpio_desc gpio;
enum forced_boot_mode boot_mode = BOOT_NORMAL;
if (!IS_ENABLED(CONFIG_FASTBOOT) && !IS_ENABLED(CONFIG_CMD_STM32PROG))
return;
node = ofnode_path("/config");
if (!ofnode_valid(node)) {
log_debug("no /config node?\n");
return;
}
if (IS_ENABLED(CONFIG_FASTBOOT)) {
if (gpio_request_by_name_nodev(node, "st,fastboot-gpios", 0,
&gpio, GPIOD_IS_IN)) {
log_debug("could not find a /config/st,fastboot-gpios\n");
} else {
udelay(20);
if (dm_gpio_get_value(&gpio)) {
log_notice("Fastboot key pressed, ");
boot_mode = BOOT_FASTBOOT;
}
dm_gpio_free(NULL, &gpio);
}
}
if (IS_ENABLED(CONFIG_CMD_STM32PROG)) {
if (gpio_request_by_name_nodev(node, "st,stm32prog-gpios", 0,
&gpio, GPIOD_IS_IN)) {
log_debug("could not find a /config/st,stm32prog-gpios\n");
} else {
udelay(20);
if (dm_gpio_get_value(&gpio)) {
log_notice("STM32Programmer key pressed, ");
boot_mode = BOOT_STM32PROG;
}
dm_gpio_free(NULL, &gpio);
}
}
if (boot_mode != BOOT_NORMAL) {
log_notice("entering download mode...\n");
clrsetbits_le32(TAMP_BOOT_CONTEXT,
TAMP_BOOT_FORCED_MASK,
boot_mode);
}
}
int g_dnl_board_usb_cable_connected(void)
{
struct udevice *dwc2_udc_otg;
int ret;
if (!IS_ENABLED(CONFIG_USB_GADGET_DWC2_OTG))
return -ENODEV;
/* if typec stusb160x is present, means DK1 or DK2 board */
ret = stusb160x_cable_connected();
if (ret >= 0)
return ret;
ret = uclass_get_device_by_driver(UCLASS_USB_GADGET_GENERIC,
DM_DRIVER_GET(dwc2_udc_otg),
&dwc2_udc_otg);
if (ret) {
log_debug("dwc2_udc_otg init failed\n");
return ret;
}
return dwc2_udc_B_session_valid(dwc2_udc_otg);
}
#ifdef CONFIG_USB_GADGET_DOWNLOAD
#define STM32MP1_G_DNL_DFU_PRODUCT_NUM 0xdf11
#define STM32MP1_G_DNL_FASTBOOT_PRODUCT_NUM 0x0afb
int g_dnl_bind_fixup(struct usb_device_descriptor *dev, const char *name)
{
if (IS_ENABLED(CONFIG_DFU_OVER_USB) &&
!strcmp(name, "usb_dnl_dfu"))
put_unaligned(STM32MP1_G_DNL_DFU_PRODUCT_NUM, &dev->idProduct);
else if (IS_ENABLED(CONFIG_FASTBOOT) &&
!strcmp(name, "usb_dnl_fastboot"))
put_unaligned(STM32MP1_G_DNL_FASTBOOT_PRODUCT_NUM,
&dev->idProduct);
else
put_unaligned(CONFIG_USB_GADGET_PRODUCT_NUM, &dev->idProduct);
return 0;
}
#endif /* CONFIG_USB_GADGET_DOWNLOAD */
static int get_led(struct udevice **dev, char *led_string)
{
char *led_name;
int ret;
led_name = fdtdec_get_config_string(gd->fdt_blob, led_string);
if (!led_name) {
log_debug("could not find %s config string\n", led_string);
return -ENOENT;
}
ret = led_get_by_label(led_name, dev);
if (ret) {
log_debug("get=%d\n", ret);
return ret;
}
return 0;
}
static int setup_led(enum led_state_t cmd)
{
struct udevice *dev;
int ret;
if (!CONFIG_IS_ENABLED(LED))
return 0;
ret = get_led(&dev, "u-boot,boot-led");
if (ret)
return ret;
ret = led_set_state(dev, cmd);
return ret;
}
static void __maybe_unused led_error_blink(u32 nb_blink)
{
int ret;
struct udevice *led;
u32 i;
if (!nb_blink)
return;
if (CONFIG_IS_ENABLED(LED)) {
ret = get_led(&led, "u-boot,error-led");
if (!ret) {
/* make u-boot,error-led blinking */
/* if U32_MAX and 125ms interval, for 17.02 years */
for (i = 0; i < 2 * nb_blink; i++) {
led_set_state(led, LEDST_TOGGLE);
mdelay(125);
WATCHDOG_RESET();
}
led_set_state(led, LEDST_ON);
}
}
/* infinite: the boot process must be stopped */
if (nb_blink == U32_MAX)
hang();
}
static int adc_measurement(ofnode node, int adc_count, int *min_uV, int *max_uV)
{
struct ofnode_phandle_args adc_args;
struct udevice *adc;
unsigned int raw;
int ret, uV;
int i;
for (i = 0; i < adc_count; i++) {
if (ofnode_parse_phandle_with_args(node, "st,adc_usb_pd",
"#io-channel-cells", 0, i,
&adc_args)) {
log_debug("can't find /config/st,adc_usb_pd\n");
return 0;
}
ret = uclass_get_device_by_ofnode(UCLASS_ADC, adc_args.node,
&adc);
if (ret) {
log_err("Can't get adc device(%d)\n", ret);
return ret;
}
ret = adc_channel_single_shot(adc->name, adc_args.args[0],
&raw);
if (ret) {
log_err("single shot failed for %s[%d]!\n",
adc->name, adc_args.args[0]);
return ret;
}
/* Convert to uV */
if (!adc_raw_to_uV(adc, raw, &uV)) {
if (uV > *max_uV)
*max_uV = uV;
if (uV < *min_uV)
*min_uV = uV;
log_debug("%s[%02d] = %u, %d uV\n",
adc->name, adc_args.args[0], raw, uV);
} else {
log_err("Can't get uV value for %s[%d]\n",
adc->name, adc_args.args[0]);
}
}
return 0;
}
static int board_check_usb_power(void)
{
ofnode node;
int max_uV = 0;
int min_uV = USB_START_HIGH_THRESHOLD_UV;
int adc_count, ret;
u32 nb_blink;
u8 i;
if (!IS_ENABLED(CONFIG_ADC))
return -ENODEV;
node = ofnode_path("/config");
if (!ofnode_valid(node)) {
log_debug("no /config node?\n");
return -ENOENT;
}
/*
* Retrieve the ADC channels devices and get measurement
* for each of them
*/
adc_count = ofnode_count_phandle_with_args(node, "st,adc_usb_pd",
"#io-channel-cells", 0);
if (adc_count < 0) {
if (adc_count == -ENOENT)
return 0;
log_err("Can't find adc channel (%d)\n", adc_count);
return adc_count;
}
/* perform maximum of 2 ADC measurements to detect power supply current */
for (i = 0; i < 2; i++) {
ret = adc_measurement(node, adc_count, &min_uV, &max_uV);
if (ret)
return ret;
/*
* If highest value is inside 1.23 Volts and 2.10 Volts, that means
* board is plugged on an USB-C 3A power supply and boot process can
* continue.
*/
if (max_uV > USB_START_LOW_THRESHOLD_UV &&
max_uV <= USB_START_HIGH_THRESHOLD_UV &&
min_uV <= USB_LOW_THRESHOLD_UV)
return 0;
if (i == 0) {
log_err("Previous ADC measurements was not the one expected, retry in 20ms\n");
mdelay(20); /* equal to max tPDDebounce duration (min 10ms - max 20ms) */
}
}
log_notice("****************************************************\n");
/*
* If highest and lowest value are either both below
* USB_LOW_THRESHOLD_UV or both above USB_LOW_THRESHOLD_UV, that
* means USB TYPE-C is in unattached mode, this is an issue, make
* u-boot,error-led blinking and stop boot process.
*/
if ((max_uV > USB_LOW_THRESHOLD_UV &&
min_uV > USB_LOW_THRESHOLD_UV) ||
(max_uV <= USB_LOW_THRESHOLD_UV &&
min_uV <= USB_LOW_THRESHOLD_UV)) {
log_notice("* ERROR USB TYPE-C connection in unattached mode *\n");
log_notice("* Check that USB TYPE-C cable is correctly plugged *\n");
/* with 125ms interval, led will blink for 17.02 years ....*/
nb_blink = U32_MAX;
}
if (max_uV > USB_LOW_THRESHOLD_UV &&
max_uV <= USB_WARNING_LOW_THRESHOLD_UV &&
min_uV <= USB_LOW_THRESHOLD_UV) {
log_notice("* WARNING 500mA power supply detected *\n");
nb_blink = 2;
}
if (max_uV > USB_WARNING_LOW_THRESHOLD_UV &&
max_uV <= USB_START_LOW_THRESHOLD_UV &&
min_uV <= USB_LOW_THRESHOLD_UV) {
log_notice("* WARNING 1.5A power supply detected *\n");
nb_blink = 3;
}
/*
* If highest value is above 2.15 Volts that means that the USB TypeC
* supplies more than 3 Amp, this is not compliant with TypeC specification
*/
if (max_uV > USB_START_HIGH_THRESHOLD_UV) {
log_notice("* USB TYPE-C charger not compliant with *\n");
log_notice("* specification *\n");
log_notice("****************************************************\n\n");
/* with 125ms interval, led will blink for 17.02 years ....*/
nb_blink = U32_MAX;
} else {
log_notice("* Current too low, use a 3A power supply! *\n");
log_notice("****************************************************\n\n");
}
led_error_blink(nb_blink);
return 0;
}
static void sysconf_init(void)
{
u8 *syscfg;
struct udevice *pwr_dev;
struct udevice *pwr_reg;
struct udevice *dev;
u32 otp = 0;
int ret;
u32 bootr, val;
syscfg = (u8 *)syscon_get_first_range(STM32MP_SYSCON_SYSCFG);
/* interconnect update : select master using the port 1 */
/* LTDC = AXI_M9 */
/* GPU = AXI_M8 */
/* today information is hardcoded in U-Boot */
writel(BIT(9), syscfg + SYSCFG_ICNR);
/* disable Pull-Down for boot pin connected to VDD */
bootr = readl(syscfg + SYSCFG_BOOTR);
bootr &= ~(SYSCFG_BOOTR_BOOT_MASK << SYSCFG_BOOTR_BOOTPD_SHIFT);
bootr |= (bootr & SYSCFG_BOOTR_BOOT_MASK) << SYSCFG_BOOTR_BOOTPD_SHIFT;
writel(bootr, syscfg + SYSCFG_BOOTR);
/* High Speed Low Voltage Pad mode Enable for SPI, SDMMC, ETH, QSPI
* and TRACE. Needed above ~50MHz and conditioned by AFMUX selection.
* The customer will have to disable this for low frequencies
* or if AFMUX is selected but the function not used, typically for
* TRACE. Otherwise, impact on power consumption.
*
* WARNING:
* enabling High Speed mode while VDD>2.7V
* with the OTP product_below_2v5 (OTP 18, BIT 13)
* erroneously set to 1 can damage the IC!
* => U-Boot set the register only if VDD < 2.7V (in DT)
* but this value need to be consistent with board design
*/
ret = uclass_get_device_by_driver(UCLASS_PMIC,
DM_DRIVER_GET(stm32mp_pwr_pmic),
&pwr_dev);
if (!ret && IS_ENABLED(CONFIG_DM_REGULATOR)) {
ret = uclass_get_device_by_driver(UCLASS_MISC,
DM_DRIVER_GET(stm32mp_bsec),
&dev);
if (ret) {
log_err("Can't find stm32mp_bsec driver\n");
return;
}
ret = misc_read(dev, STM32_BSEC_SHADOW(18), &otp, 4);
if (ret > 0)
otp = otp & BIT(13);
/* get VDD = vdd-supply */
ret = device_get_supply_regulator(pwr_dev, "vdd-supply",
&pwr_reg);
/* check if VDD is Low Voltage */
if (!ret) {
if (regulator_get_value(pwr_reg) < 2700000) {
writel(SYSCFG_IOCTRLSETR_HSLVEN_TRACE |
SYSCFG_IOCTRLSETR_HSLVEN_QUADSPI |
SYSCFG_IOCTRLSETR_HSLVEN_ETH |
SYSCFG_IOCTRLSETR_HSLVEN_SDMMC |
SYSCFG_IOCTRLSETR_HSLVEN_SPI,
syscfg + SYSCFG_IOCTRLSETR);
if (!otp)
log_err("product_below_2v5=0: HSLVEN protected by HW\n");
} else {
if (otp)
log_err("product_below_2v5=1: HSLVEN update is destructive, no update as VDD>2.7V\n");
}
} else {
log_debug("VDD unknown");
}
}
/* activate automatic I/O compensation
* warning: need to ensure CSI enabled and ready in clock driver
*/
writel(SYSCFG_CMPENSETR_MPU_EN, syscfg + SYSCFG_CMPENSETR);
/* poll until ready (1s timeout) */
ret = readl_poll_timeout(syscfg + SYSCFG_CMPCR, val,
val & SYSCFG_CMPCR_READY,
1000000);
if (ret) {
log_err("SYSCFG: I/O compensation failed, timeout.\n");
led_error_blink(10);
}
clrbits_le32(syscfg + SYSCFG_CMPCR, SYSCFG_CMPCR_SW_CTRL);
}
/* Fix to make I2C1 usable on DK2 for touchscreen usage in kernel */
static int dk2_i2c1_fix(void)
{
ofnode node;
struct gpio_desc hdmi, audio;
int ret = 0;
if (!IS_ENABLED(CONFIG_DM_REGULATOR))
return -ENODEV;
node = ofnode_path("/soc/i2c@40012000/hdmi-transmitter@39");
if (!ofnode_valid(node)) {
log_debug("no hdmi-transmitter@39 ?\n");
return -ENOENT;
}
if (gpio_request_by_name_nodev(node, "reset-gpios", 0,
&hdmi, GPIOD_IS_OUT)) {
log_debug("could not find reset-gpios\n");
return -ENOENT;
}
node = ofnode_path("/soc/i2c@40012000/cs42l51@4a");
if (!ofnode_valid(node)) {
log_debug("no cs42l51@4a ?\n");
return -ENOENT;
}
if (gpio_request_by_name_nodev(node, "reset-gpios", 0,
&audio, GPIOD_IS_OUT)) {
log_debug("could not find reset-gpios\n");
return -ENOENT;
}
/* before power up, insure that HDMI and AUDIO IC is under reset */
ret = dm_gpio_set_value(&hdmi, 1);
if (ret) {
log_err("can't set_value for hdmi_nrst gpio");
goto error;
}
ret = dm_gpio_set_value(&audio, 1);
if (ret) {
log_err("can't set_value for audio_nrst gpio");
goto error;
}
/* power-up audio IC */
regulator_autoset_by_name("v1v8_audio", NULL);
/* power-up HDMI IC */
regulator_autoset_by_name("v1v2_hdmi", NULL);
regulator_autoset_by_name("v3v3_hdmi", NULL);
error:
return ret;
}
static bool board_is_dk2(void)
{
if (CONFIG_IS_ENABLED(TARGET_ST_STM32MP15x) &&
of_machine_is_compatible("st,stm32mp157c-dk2"))
return true;
return false;
}
static bool board_is_ev1(void)
{
if (CONFIG_IS_ENABLED(TARGET_ST_STM32MP15x) &&
(of_machine_is_compatible("st,stm32mp157a-ev1") ||
of_machine_is_compatible("st,stm32mp157c-ev1") ||
of_machine_is_compatible("st,stm32mp157d-ev1") ||
of_machine_is_compatible("st,stm32mp157f-ev1")))
return true;
return false;
}
/* touchscreen driver: only used for pincontrol configuration */
static const struct udevice_id goodix_ids[] = {
{ .compatible = "goodix,gt9147", },
{ }
};
U_BOOT_DRIVER(goodix) = {
.name = "goodix",
.id = UCLASS_NOP,
.of_match = goodix_ids,
};
static void board_ev1_init(void)
{
struct udevice *dev;
/* configure IRQ line on EV1 for touchscreen before LCD reset */
uclass_get_device_by_driver(UCLASS_NOP, DM_DRIVER_GET(goodix), &dev);
}
/* board dependent setup after realloc */
int board_init(void)
{
if (CONFIG_IS_ENABLED(DM_GPIO_HOG))
gpio_hog_probe_all();
board_key_check();
if (board_is_ev1())
board_ev1_init();
if (board_is_dk2())
dk2_i2c1_fix();
if (IS_ENABLED(CONFIG_DM_REGULATOR))
regulators_enable_boot_on(_DEBUG);
if (!IS_ENABLED(CONFIG_TFABOOT))
sysconf_init();
if (CONFIG_IS_ENABLED(LED))
led_default_state();
setup_led(LEDST_ON);
return 0;
}
int board_late_init(void)
{
const void *fdt_compat;
int fdt_compat_len;
int ret;
u32 otp;
struct udevice *dev;
char buf[10];
char dtb_name[256];
int buf_len;
if (IS_ENABLED(CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG)) {
fdt_compat = fdt_getprop(gd->fdt_blob, 0, "compatible",
&fdt_compat_len);
if (fdt_compat && fdt_compat_len) {
if (strncmp(fdt_compat, "st,", 3) != 0) {
env_set("board_name", fdt_compat);
} else {
env_set("board_name", fdt_compat + 3);
buf_len = sizeof(dtb_name);
strncpy(dtb_name, fdt_compat + 3, buf_len);
buf_len -= strlen(fdt_compat + 3);
strncat(dtb_name, ".dtb", buf_len);
env_set("fdtfile", dtb_name);
}
}
ret = uclass_get_device_by_driver(UCLASS_MISC,
DM_DRIVER_GET(stm32mp_bsec),
&dev);
if (!ret)
ret = misc_read(dev, STM32_BSEC_SHADOW(BSEC_OTP_BOARD),
&otp, sizeof(otp));
if (ret > 0 && otp) {
snprintf(buf, sizeof(buf), "0x%04x", otp >> 16);
env_set("board_id", buf);
snprintf(buf, sizeof(buf), "0x%04x",
((otp >> 8) & 0xF) - 1 + 0xA);
env_set("board_rev", buf);
}
}
/* for DK1/DK2 boards */
board_check_usb_power();
return 0;
}
void board_quiesce_devices(void)
{
setup_led(LEDST_OFF);
}
/* eth init function : weak called in eqos driver */
int board_interface_eth_init(struct udevice *dev,
phy_interface_t interface_type)
{
u8 *syscfg;
u32 value;
bool eth_clk_sel_reg = false;
bool eth_ref_clk_sel_reg = false;
/* Gigabit Ethernet 125MHz clock selection. */
eth_clk_sel_reg = dev_read_bool(dev, "st,eth-clk-sel");
/* Ethernet 50Mhz RMII clock selection */
eth_ref_clk_sel_reg =
dev_read_bool(dev, "st,eth-ref-clk-sel");
syscfg = (u8 *)syscon_get_first_range(STM32MP_SYSCON_SYSCFG);
if (!syscfg)
return -ENODEV;
switch (interface_type) {
case PHY_INTERFACE_MODE_MII:
value = SYSCFG_PMCSETR_ETH_SEL_GMII_MII |
SYSCFG_PMCSETR_ETH_REF_CLK_SEL;
log_debug("PHY_INTERFACE_MODE_MII\n");
break;
case PHY_INTERFACE_MODE_GMII:
if (eth_clk_sel_reg)
value = SYSCFG_PMCSETR_ETH_SEL_GMII_MII |
SYSCFG_PMCSETR_ETH_CLK_SEL;
else
value = SYSCFG_PMCSETR_ETH_SEL_GMII_MII;
log_debug("PHY_INTERFACE_MODE_GMII\n");
break;
case PHY_INTERFACE_MODE_RMII:
if (eth_ref_clk_sel_reg)
value = SYSCFG_PMCSETR_ETH_SEL_RMII |
SYSCFG_PMCSETR_ETH_REF_CLK_SEL;
else
value = SYSCFG_PMCSETR_ETH_SEL_RMII;
log_debug("PHY_INTERFACE_MODE_RMII\n");
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
if (eth_clk_sel_reg)
value = SYSCFG_PMCSETR_ETH_SEL_RGMII |
SYSCFG_PMCSETR_ETH_CLK_SEL;
else
value = SYSCFG_PMCSETR_ETH_SEL_RGMII;
log_debug("PHY_INTERFACE_MODE_RGMII\n");
break;
default:
log_debug("Do not manage %d interface\n",
interface_type);
/* Do not manage others interfaces */
return -EINVAL;
}
/* clear and set ETH configuration bits */
writel(SYSCFG_PMCSETR_ETH_SEL_MASK | SYSCFG_PMCSETR_ETH_SELMII |
SYSCFG_PMCSETR_ETH_REF_CLK_SEL | SYSCFG_PMCSETR_ETH_CLK_SEL,
syscfg + SYSCFG_PMCCLRR);
writel(value, syscfg + SYSCFG_PMCSETR);
return 0;
}
enum env_location env_get_location(enum env_operation op, int prio)
{
u32 bootmode = get_bootmode();
if (prio)
return ENVL_UNKNOWN;
switch (bootmode & TAMP_BOOT_DEVICE_MASK) {
case BOOT_FLASH_SD:
case BOOT_FLASH_EMMC:
if (CONFIG_IS_ENABLED(ENV_IS_IN_MMC))
return ENVL_MMC;
else if (CONFIG_IS_ENABLED(ENV_IS_IN_EXT4))
return ENVL_EXT4;
else
return ENVL_NOWHERE;
case BOOT_FLASH_NAND:
case BOOT_FLASH_SPINAND:
if (CONFIG_IS_ENABLED(ENV_IS_IN_UBI))
return ENVL_UBI;
else
return ENVL_NOWHERE;
case BOOT_FLASH_NOR:
if (CONFIG_IS_ENABLED(ENV_IS_IN_SPI_FLASH))
return ENVL_SPI_FLASH;
else
return ENVL_NOWHERE;
default:
return ENVL_NOWHERE;
}
}
const char *env_ext4_get_intf(void)
{
u32 bootmode = get_bootmode();
switch (bootmode & TAMP_BOOT_DEVICE_MASK) {
case BOOT_FLASH_SD:
case BOOT_FLASH_EMMC:
return "mmc";
default:
return "";
}
}
int mmc_get_boot(void)
{
struct udevice *dev;
u32 boot_mode = get_bootmode();
unsigned int instance = (boot_mode & TAMP_BOOT_INSTANCE_MASK) - 1;
char cmd[20];
const u32 sdmmc_addr[] = {
STM32_SDMMC1_BASE,
STM32_SDMMC2_BASE,
STM32_SDMMC3_BASE
};
if (instance > ARRAY_SIZE(sdmmc_addr))
return 0;
/* search associated sdmmc node in devicetree */
snprintf(cmd, sizeof(cmd), "mmc@%x", sdmmc_addr[instance]);
if (uclass_get_device_by_name(UCLASS_MMC, cmd, &dev)) {
log_err("mmc%d = %s not found in device tree!\n", instance, cmd);
return 0;
}
return dev_seq(dev);
};
const char *env_ext4_get_dev_part(void)
{
static char *const env_dev_part =
#ifdef CONFIG_ENV_EXT4_DEVICE_AND_PART
CONFIG_ENV_EXT4_DEVICE_AND_PART;
#else
"";
#endif
static char *const dev_part[] = {"0:auto", "1:auto", "2:auto"};
if (strlen(env_dev_part) > 0)
return env_dev_part;
return dev_part[mmc_get_boot()];
}
int mmc_get_env_dev(void)
{
if (CONFIG_SYS_MMC_ENV_DEV >= 0)
return CONFIG_SYS_MMC_ENV_DEV;
/* use boot instance to select the correct mmc device identifier */
return mmc_get_boot();
}
#if defined(CONFIG_OF_BOARD_SETUP)
int ft_board_setup(void *blob, struct bd_info *bd)
{
static const struct node_info nodes[] = {
{ "st,stm32f469-qspi", MTD_DEV_TYPE_NOR, },
{ "st,stm32f469-qspi", MTD_DEV_TYPE_SPINAND},
{ "st,stm32mp15-fmc2", MTD_DEV_TYPE_NAND, },
{ "st,stm32mp1-fmc2-nfc", MTD_DEV_TYPE_NAND, },
};
char *boot_device;
/* Check the boot-source and don't update MTD for serial or usb boot */
boot_device = env_get("boot_device");
if (!boot_device ||
(strcmp(boot_device, "serial") && strcmp(boot_device, "usb")))
if (IS_ENABLED(CONFIG_FDT_FIXUP_PARTITIONS))
fdt_fixup_mtdparts(blob, nodes, ARRAY_SIZE(nodes));
return 0;
}
#endif
static void board_copro_image_process(ulong fw_image, size_t fw_size)
{
int ret, id = 0; /* Copro id fixed to 0 as only one coproc on mp1 */
if (!rproc_is_initialized())
if (rproc_init()) {
log_err("Remote Processor %d initialization failed\n",
id);
return;
}
ret = rproc_load(id, fw_image, fw_size);
log_err("Load Remote Processor %d with data@addr=0x%08lx %u bytes:%s\n",
id, fw_image, fw_size, ret ? " Failed!" : " Success!");
if (!ret)
rproc_start(id);
}
U_BOOT_FIT_LOADABLE_HANDLER(IH_TYPE_COPRO, board_copro_image_process);