| /* ****************************************************************** |
| * huff0 huffman decoder, |
| * part of Finite State Entropy library |
| * Copyright (c) Yann Collet, Facebook, Inc. |
| * |
| * You can contact the author at : |
| * - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| ****************************************************************** */ |
| |
| /* ************************************************************** |
| * Dependencies |
| ****************************************************************/ |
| #include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */ |
| #include "../common/compiler.h" |
| #include "../common/bitstream.h" /* BIT_* */ |
| #include "../common/fse.h" /* to compress headers */ |
| #define HUF_STATIC_LINKING_ONLY |
| #include "../common/huf.h" |
| #include "../common/error_private.h" |
| #include "../common/zstd_internal.h" |
| |
| /* ************************************************************** |
| * Constants |
| ****************************************************************/ |
| |
| #define HUF_DECODER_FAST_TABLELOG 11 |
| |
| /* ************************************************************** |
| * Macros |
| ****************************************************************/ |
| |
| /* These two optional macros force the use one way or another of the two |
| * Huffman decompression implementations. You can't force in both directions |
| * at the same time. |
| */ |
| #if defined(HUF_FORCE_DECOMPRESS_X1) && \ |
| defined(HUF_FORCE_DECOMPRESS_X2) |
| #error "Cannot force the use of the X1 and X2 decoders at the same time!" |
| #endif |
| |
| #if ZSTD_ENABLE_ASM_X86_64_BMI2 && DYNAMIC_BMI2 |
| # define HUF_ASM_X86_64_BMI2_ATTRS BMI2_TARGET_ATTRIBUTE |
| #else |
| # define HUF_ASM_X86_64_BMI2_ATTRS |
| #endif |
| |
| #define HUF_EXTERN_C |
| #define HUF_ASM_DECL HUF_EXTERN_C |
| |
| #if DYNAMIC_BMI2 || (ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)) |
| # define HUF_NEED_BMI2_FUNCTION 1 |
| #else |
| # define HUF_NEED_BMI2_FUNCTION 0 |
| #endif |
| |
| #if !(ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)) |
| # define HUF_NEED_DEFAULT_FUNCTION 1 |
| #else |
| # define HUF_NEED_DEFAULT_FUNCTION 0 |
| #endif |
| |
| /* ************************************************************** |
| * Error Management |
| ****************************************************************/ |
| #define HUF_isError ERR_isError |
| |
| /* ************************************************************** |
| * Byte alignment for workSpace management |
| ****************************************************************/ |
| #define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1) |
| #define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask)) |
| |
| /* ************************************************************** |
| * BMI2 Variant Wrappers |
| ****************************************************************/ |
| #if DYNAMIC_BMI2 |
| |
| #define HUF_DGEN(fn) \ |
| \ |
| static size_t fn##_default( \ |
| void* dst, size_t dstSize, \ |
| const void* cSrc, size_t cSrcSize, \ |
| const HUF_DTable* DTable) \ |
| { \ |
| return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ |
| } \ |
| \ |
| static BMI2_TARGET_ATTRIBUTE size_t fn##_bmi2( \ |
| void* dst, size_t dstSize, \ |
| const void* cSrc, size_t cSrcSize, \ |
| const HUF_DTable* DTable) \ |
| { \ |
| return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ |
| } \ |
| \ |
| static size_t fn(void* dst, size_t dstSize, void const* cSrc, \ |
| size_t cSrcSize, HUF_DTable const* DTable, int bmi2) \ |
| { \ |
| if (bmi2) { \ |
| return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \ |
| } \ |
| return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \ |
| } |
| |
| #else |
| |
| #define HUF_DGEN(fn) \ |
| static size_t fn(void* dst, size_t dstSize, void const* cSrc, \ |
| size_t cSrcSize, HUF_DTable const* DTable, int bmi2) \ |
| { \ |
| (void)bmi2; \ |
| return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ |
| } |
| |
| #endif |
| |
| /*-***************************/ |
| /* generic DTableDesc */ |
| /*-***************************/ |
| typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc; |
| |
| static DTableDesc HUF_getDTableDesc(const HUF_DTable* table) |
| { |
| DTableDesc dtd; |
| ZSTD_memcpy(&dtd, table, sizeof(dtd)); |
| return dtd; |
| } |
| |
| #if ZSTD_ENABLE_ASM_X86_64_BMI2 |
| |
| static size_t HUF_initDStream(BYTE const* ip) { |
| BYTE const lastByte = ip[7]; |
| size_t const bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0; |
| size_t const value = MEM_readLEST(ip) | 1; |
| assert(bitsConsumed <= 8); |
| return value << bitsConsumed; |
| } |
| typedef struct { |
| BYTE const* ip[4]; |
| BYTE* op[4]; |
| U64 bits[4]; |
| void const* dt; |
| BYTE const* ilimit; |
| BYTE* oend; |
| BYTE const* iend[4]; |
| } HUF_DecompressAsmArgs; |
| |
| /* |
| * Initializes args for the asm decoding loop. |
| * @returns 0 on success |
| * 1 if the fallback implementation should be used. |
| * Or an error code on failure. |
| */ |
| static size_t HUF_DecompressAsmArgs_init(HUF_DecompressAsmArgs* args, void* dst, size_t dstSize, void const* src, size_t srcSize, const HUF_DTable* DTable) |
| { |
| void const* dt = DTable + 1; |
| U32 const dtLog = HUF_getDTableDesc(DTable).tableLog; |
| |
| const BYTE* const ilimit = (const BYTE*)src + 6 + 8; |
| |
| BYTE* const oend = (BYTE*)dst + dstSize; |
| |
| /* The following condition is false on x32 platform, |
| * but HUF_asm is not compatible with this ABI */ |
| if (!(MEM_isLittleEndian() && !MEM_32bits())) return 1; |
| |
| /* strict minimum : jump table + 1 byte per stream */ |
| if (srcSize < 10) |
| return ERROR(corruption_detected); |
| |
| /* Must have at least 8 bytes per stream because we don't handle initializing smaller bit containers. |
| * If table log is not correct at this point, fallback to the old decoder. |
| * On small inputs we don't have enough data to trigger the fast loop, so use the old decoder. |
| */ |
| if (dtLog != HUF_DECODER_FAST_TABLELOG) |
| return 1; |
| |
| /* Read the jump table. */ |
| { |
| const BYTE* const istart = (const BYTE*)src; |
| size_t const length1 = MEM_readLE16(istart); |
| size_t const length2 = MEM_readLE16(istart+2); |
| size_t const length3 = MEM_readLE16(istart+4); |
| size_t const length4 = srcSize - (length1 + length2 + length3 + 6); |
| args->iend[0] = istart + 6; /* jumpTable */ |
| args->iend[1] = args->iend[0] + length1; |
| args->iend[2] = args->iend[1] + length2; |
| args->iend[3] = args->iend[2] + length3; |
| |
| /* HUF_initDStream() requires this, and this small of an input |
| * won't benefit from the ASM loop anyways. |
| * length1 must be >= 16 so that ip[0] >= ilimit before the loop |
| * starts. |
| */ |
| if (length1 < 16 || length2 < 8 || length3 < 8 || length4 < 8) |
| return 1; |
| if (length4 > srcSize) return ERROR(corruption_detected); /* overflow */ |
| } |
| /* ip[] contains the position that is currently loaded into bits[]. */ |
| args->ip[0] = args->iend[1] - sizeof(U64); |
| args->ip[1] = args->iend[2] - sizeof(U64); |
| args->ip[2] = args->iend[3] - sizeof(U64); |
| args->ip[3] = (BYTE const*)src + srcSize - sizeof(U64); |
| |
| /* op[] contains the output pointers. */ |
| args->op[0] = (BYTE*)dst; |
| args->op[1] = args->op[0] + (dstSize+3)/4; |
| args->op[2] = args->op[1] + (dstSize+3)/4; |
| args->op[3] = args->op[2] + (dstSize+3)/4; |
| |
| /* No point to call the ASM loop for tiny outputs. */ |
| if (args->op[3] >= oend) |
| return 1; |
| |
| /* bits[] is the bit container. |
| * It is read from the MSB down to the LSB. |
| * It is shifted left as it is read, and zeros are |
| * shifted in. After the lowest valid bit a 1 is |
| * set, so that CountTrailingZeros(bits[]) can be used |
| * to count how many bits we've consumed. |
| */ |
| args->bits[0] = HUF_initDStream(args->ip[0]); |
| args->bits[1] = HUF_initDStream(args->ip[1]); |
| args->bits[2] = HUF_initDStream(args->ip[2]); |
| args->bits[3] = HUF_initDStream(args->ip[3]); |
| |
| /* If ip[] >= ilimit, it is guaranteed to be safe to |
| * reload bits[]. It may be beyond its section, but is |
| * guaranteed to be valid (>= istart). |
| */ |
| args->ilimit = ilimit; |
| |
| args->oend = oend; |
| args->dt = dt; |
| |
| return 0; |
| } |
| |
| static size_t HUF_initRemainingDStream(BIT_DStream_t* bit, HUF_DecompressAsmArgs const* args, int stream, BYTE* segmentEnd) |
| { |
| /* Validate that we haven't overwritten. */ |
| if (args->op[stream] > segmentEnd) |
| return ERROR(corruption_detected); |
| /* Validate that we haven't read beyond iend[]. |
| * Note that ip[] may be < iend[] because the MSB is |
| * the next bit to read, and we may have consumed 100% |
| * of the stream, so down to iend[i] - 8 is valid. |
| */ |
| if (args->ip[stream] < args->iend[stream] - 8) |
| return ERROR(corruption_detected); |
| |
| /* Construct the BIT_DStream_t. */ |
| bit->bitContainer = MEM_readLE64(args->ip[stream]); |
| bit->bitsConsumed = ZSTD_countTrailingZeros((size_t)args->bits[stream]); |
| bit->start = (const char*)args->iend[0]; |
| bit->limitPtr = bit->start + sizeof(size_t); |
| bit->ptr = (const char*)args->ip[stream]; |
| |
| return 0; |
| } |
| #endif |
| |
| #ifndef HUF_FORCE_DECOMPRESS_X2 |
| |
| /*-***************************/ |
| /* single-symbol decoding */ |
| /*-***************************/ |
| typedef struct { BYTE nbBits; BYTE byte; } HUF_DEltX1; /* single-symbol decoding */ |
| |
| /* |
| * Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at |
| * a time. |
| */ |
| static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) { |
| U64 D4; |
| if (MEM_isLittleEndian()) { |
| D4 = (symbol << 8) + nbBits; |
| } else { |
| D4 = symbol + (nbBits << 8); |
| } |
| D4 *= 0x0001000100010001ULL; |
| return D4; |
| } |
| |
| /* |
| * Increase the tableLog to targetTableLog and rescales the stats. |
| * If tableLog > targetTableLog this is a no-op. |
| * @returns New tableLog |
| */ |
| static U32 HUF_rescaleStats(BYTE* huffWeight, U32* rankVal, U32 nbSymbols, U32 tableLog, U32 targetTableLog) |
| { |
| if (tableLog > targetTableLog) |
| return tableLog; |
| if (tableLog < targetTableLog) { |
| U32 const scale = targetTableLog - tableLog; |
| U32 s; |
| /* Increase the weight for all non-zero probability symbols by scale. */ |
| for (s = 0; s < nbSymbols; ++s) { |
| huffWeight[s] += (BYTE)((huffWeight[s] == 0) ? 0 : scale); |
| } |
| /* Update rankVal to reflect the new weights. |
| * All weights except 0 get moved to weight + scale. |
| * Weights [1, scale] are empty. |
| */ |
| for (s = targetTableLog; s > scale; --s) { |
| rankVal[s] = rankVal[s - scale]; |
| } |
| for (s = scale; s > 0; --s) { |
| rankVal[s] = 0; |
| } |
| } |
| return targetTableLog; |
| } |
| |
| typedef struct { |
| U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; |
| U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1]; |
| U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32]; |
| BYTE symbols[HUF_SYMBOLVALUE_MAX + 1]; |
| BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; |
| } HUF_ReadDTableX1_Workspace; |
| |
| size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize) |
| { |
| return HUF_readDTableX1_wksp_bmi2(DTable, src, srcSize, workSpace, wkspSize, /* bmi2 */ 0); |
| } |
| |
| size_t HUF_readDTableX1_wksp_bmi2(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int bmi2) |
| { |
| U32 tableLog = 0; |
| U32 nbSymbols = 0; |
| size_t iSize; |
| void* const dtPtr = DTable + 1; |
| HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr; |
| HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace; |
| |
| DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp)); |
| if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge); |
| |
| DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable)); |
| /* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */ |
| |
| iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), bmi2); |
| if (HUF_isError(iSize)) return iSize; |
| |
| /* Table header */ |
| { DTableDesc dtd = HUF_getDTableDesc(DTable); |
| U32 const maxTableLog = dtd.maxTableLog + 1; |
| U32 const targetTableLog = MIN(maxTableLog, HUF_DECODER_FAST_TABLELOG); |
| tableLog = HUF_rescaleStats(wksp->huffWeight, wksp->rankVal, nbSymbols, tableLog, targetTableLog); |
| if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */ |
| dtd.tableType = 0; |
| dtd.tableLog = (BYTE)tableLog; |
| ZSTD_memcpy(DTable, &dtd, sizeof(dtd)); |
| } |
| |
| /* Compute symbols and rankStart given rankVal: |
| * |
| * rankVal already contains the number of values of each weight. |
| * |
| * symbols contains the symbols ordered by weight. First are the rankVal[0] |
| * weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on. |
| * symbols[0] is filled (but unused) to avoid a branch. |
| * |
| * rankStart contains the offset where each rank belongs in the DTable. |
| * rankStart[0] is not filled because there are no entries in the table for |
| * weight 0. |
| */ |
| { |
| int n; |
| int nextRankStart = 0; |
| int const unroll = 4; |
| int const nLimit = (int)nbSymbols - unroll + 1; |
| for (n=0; n<(int)tableLog+1; n++) { |
| U32 const curr = nextRankStart; |
| nextRankStart += wksp->rankVal[n]; |
| wksp->rankStart[n] = curr; |
| } |
| for (n=0; n < nLimit; n += unroll) { |
| int u; |
| for (u=0; u < unroll; ++u) { |
| size_t const w = wksp->huffWeight[n+u]; |
| wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u); |
| } |
| } |
| for (; n < (int)nbSymbols; ++n) { |
| size_t const w = wksp->huffWeight[n]; |
| wksp->symbols[wksp->rankStart[w]++] = (BYTE)n; |
| } |
| } |
| |
| /* fill DTable |
| * We fill all entries of each weight in order. |
| * That way length is a constant for each iteration of the outer loop. |
| * We can switch based on the length to a different inner loop which is |
| * optimized for that particular case. |
| */ |
| { |
| U32 w; |
| int symbol=wksp->rankVal[0]; |
| int rankStart=0; |
| for (w=1; w<tableLog+1; ++w) { |
| int const symbolCount = wksp->rankVal[w]; |
| int const length = (1 << w) >> 1; |
| int uStart = rankStart; |
| BYTE const nbBits = (BYTE)(tableLog + 1 - w); |
| int s; |
| int u; |
| switch (length) { |
| case 1: |
| for (s=0; s<symbolCount; ++s) { |
| HUF_DEltX1 D; |
| D.byte = wksp->symbols[symbol + s]; |
| D.nbBits = nbBits; |
| dt[uStart] = D; |
| uStart += 1; |
| } |
| break; |
| case 2: |
| for (s=0; s<symbolCount; ++s) { |
| HUF_DEltX1 D; |
| D.byte = wksp->symbols[symbol + s]; |
| D.nbBits = nbBits; |
| dt[uStart+0] = D; |
| dt[uStart+1] = D; |
| uStart += 2; |
| } |
| break; |
| case 4: |
| for (s=0; s<symbolCount; ++s) { |
| U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits); |
| MEM_write64(dt + uStart, D4); |
| uStart += 4; |
| } |
| break; |
| case 8: |
| for (s=0; s<symbolCount; ++s) { |
| U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits); |
| MEM_write64(dt + uStart, D4); |
| MEM_write64(dt + uStart + 4, D4); |
| uStart += 8; |
| } |
| break; |
| default: |
| for (s=0; s<symbolCount; ++s) { |
| U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits); |
| for (u=0; u < length; u += 16) { |
| MEM_write64(dt + uStart + u + 0, D4); |
| MEM_write64(dt + uStart + u + 4, D4); |
| MEM_write64(dt + uStart + u + 8, D4); |
| MEM_write64(dt + uStart + u + 12, D4); |
| } |
| assert(u == length); |
| uStart += length; |
| } |
| break; |
| } |
| symbol += symbolCount; |
| rankStart += symbolCount * length; |
| } |
| } |
| return iSize; |
| } |
| |
| FORCE_INLINE_TEMPLATE BYTE |
| HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog) |
| { |
| size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */ |
| BYTE const c = dt[val].byte; |
| BIT_skipBits(Dstream, dt[val].nbBits); |
| return c; |
| } |
| |
| #define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \ |
| *ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog) |
| |
| #define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \ |
| if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \ |
| HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) |
| |
| #define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \ |
| if (MEM_64bits()) \ |
| HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) |
| |
| HINT_INLINE size_t |
| HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog) |
| { |
| BYTE* const pStart = p; |
| |
| /* up to 4 symbols at a time */ |
| if ((pEnd - p) > 3) { |
| while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) { |
| HUF_DECODE_SYMBOLX1_2(p, bitDPtr); |
| HUF_DECODE_SYMBOLX1_1(p, bitDPtr); |
| HUF_DECODE_SYMBOLX1_2(p, bitDPtr); |
| HUF_DECODE_SYMBOLX1_0(p, bitDPtr); |
| } |
| } else { |
| BIT_reloadDStream(bitDPtr); |
| } |
| |
| /* [0-3] symbols remaining */ |
| if (MEM_32bits()) |
| while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd)) |
| HUF_DECODE_SYMBOLX1_0(p, bitDPtr); |
| |
| /* no more data to retrieve from bitstream, no need to reload */ |
| while (p < pEnd) |
| HUF_DECODE_SYMBOLX1_0(p, bitDPtr); |
| |
| return pEnd-pStart; |
| } |
| |
| FORCE_INLINE_TEMPLATE size_t |
| HUF_decompress1X1_usingDTable_internal_body( |
| void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| const HUF_DTable* DTable) |
| { |
| BYTE* op = (BYTE*)dst; |
| BYTE* const oend = op + dstSize; |
| const void* dtPtr = DTable + 1; |
| const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr; |
| BIT_DStream_t bitD; |
| DTableDesc const dtd = HUF_getDTableDesc(DTable); |
| U32 const dtLog = dtd.tableLog; |
| |
| CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) ); |
| |
| HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog); |
| |
| if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected); |
| |
| return dstSize; |
| } |
| |
| FORCE_INLINE_TEMPLATE size_t |
| HUF_decompress4X1_usingDTable_internal_body( |
| void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| const HUF_DTable* DTable) |
| { |
| /* Check */ |
| if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ |
| |
| { const BYTE* const istart = (const BYTE*) cSrc; |
| BYTE* const ostart = (BYTE*) dst; |
| BYTE* const oend = ostart + dstSize; |
| BYTE* const olimit = oend - 3; |
| const void* const dtPtr = DTable + 1; |
| const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr; |
| |
| /* Init */ |
| BIT_DStream_t bitD1; |
| BIT_DStream_t bitD2; |
| BIT_DStream_t bitD3; |
| BIT_DStream_t bitD4; |
| size_t const length1 = MEM_readLE16(istart); |
| size_t const length2 = MEM_readLE16(istart+2); |
| size_t const length3 = MEM_readLE16(istart+4); |
| size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6); |
| const BYTE* const istart1 = istart + 6; /* jumpTable */ |
| const BYTE* const istart2 = istart1 + length1; |
| const BYTE* const istart3 = istart2 + length2; |
| const BYTE* const istart4 = istart3 + length3; |
| const size_t segmentSize = (dstSize+3) / 4; |
| BYTE* const opStart2 = ostart + segmentSize; |
| BYTE* const opStart3 = opStart2 + segmentSize; |
| BYTE* const opStart4 = opStart3 + segmentSize; |
| BYTE* op1 = ostart; |
| BYTE* op2 = opStart2; |
| BYTE* op3 = opStart3; |
| BYTE* op4 = opStart4; |
| DTableDesc const dtd = HUF_getDTableDesc(DTable); |
| U32 const dtLog = dtd.tableLog; |
| U32 endSignal = 1; |
| |
| if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ |
| if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */ |
| CHECK_F( BIT_initDStream(&bitD1, istart1, length1) ); |
| CHECK_F( BIT_initDStream(&bitD2, istart2, length2) ); |
| CHECK_F( BIT_initDStream(&bitD3, istart3, length3) ); |
| CHECK_F( BIT_initDStream(&bitD4, istart4, length4) ); |
| |
| /* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */ |
| if ((size_t)(oend - op4) >= sizeof(size_t)) { |
| for ( ; (endSignal) & (op4 < olimit) ; ) { |
| HUF_DECODE_SYMBOLX1_2(op1, &bitD1); |
| HUF_DECODE_SYMBOLX1_2(op2, &bitD2); |
| HUF_DECODE_SYMBOLX1_2(op3, &bitD3); |
| HUF_DECODE_SYMBOLX1_2(op4, &bitD4); |
| HUF_DECODE_SYMBOLX1_1(op1, &bitD1); |
| HUF_DECODE_SYMBOLX1_1(op2, &bitD2); |
| HUF_DECODE_SYMBOLX1_1(op3, &bitD3); |
| HUF_DECODE_SYMBOLX1_1(op4, &bitD4); |
| HUF_DECODE_SYMBOLX1_2(op1, &bitD1); |
| HUF_DECODE_SYMBOLX1_2(op2, &bitD2); |
| HUF_DECODE_SYMBOLX1_2(op3, &bitD3); |
| HUF_DECODE_SYMBOLX1_2(op4, &bitD4); |
| HUF_DECODE_SYMBOLX1_0(op1, &bitD1); |
| HUF_DECODE_SYMBOLX1_0(op2, &bitD2); |
| HUF_DECODE_SYMBOLX1_0(op3, &bitD3); |
| HUF_DECODE_SYMBOLX1_0(op4, &bitD4); |
| endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished; |
| endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished; |
| endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished; |
| endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished; |
| } |
| } |
| |
| /* check corruption */ |
| /* note : should not be necessary : op# advance in lock step, and we control op4. |
| * but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */ |
| if (op1 > opStart2) return ERROR(corruption_detected); |
| if (op2 > opStart3) return ERROR(corruption_detected); |
| if (op3 > opStart4) return ERROR(corruption_detected); |
| /* note : op4 supposed already verified within main loop */ |
| |
| /* finish bitStreams one by one */ |
| HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog); |
| HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog); |
| HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog); |
| HUF_decodeStreamX1(op4, &bitD4, oend, dt, dtLog); |
| |
| /* check */ |
| { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); |
| if (!endCheck) return ERROR(corruption_detected); } |
| |
| /* decoded size */ |
| return dstSize; |
| } |
| } |
| |
| #if HUF_NEED_BMI2_FUNCTION |
| static BMI2_TARGET_ATTRIBUTE |
| size_t HUF_decompress4X1_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc, |
| size_t cSrcSize, HUF_DTable const* DTable) { |
| return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); |
| } |
| #endif |
| |
| #if HUF_NEED_DEFAULT_FUNCTION |
| static |
| size_t HUF_decompress4X1_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc, |
| size_t cSrcSize, HUF_DTable const* DTable) { |
| return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); |
| } |
| #endif |
| |
| #if ZSTD_ENABLE_ASM_X86_64_BMI2 |
| |
| HUF_ASM_DECL void HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop(HUF_DecompressAsmArgs* args) ZSTDLIB_HIDDEN; |
| |
| static HUF_ASM_X86_64_BMI2_ATTRS |
| size_t |
| HUF_decompress4X1_usingDTable_internal_bmi2_asm( |
| void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| const HUF_DTable* DTable) |
| { |
| void const* dt = DTable + 1; |
| const BYTE* const iend = (const BYTE*)cSrc + 6; |
| BYTE* const oend = (BYTE*)dst + dstSize; |
| HUF_DecompressAsmArgs args; |
| { |
| size_t const ret = HUF_DecompressAsmArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable); |
| FORWARD_IF_ERROR(ret, "Failed to init asm args"); |
| if (ret != 0) |
| return HUF_decompress4X1_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); |
| } |
| |
| assert(args.ip[0] >= args.ilimit); |
| HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop(&args); |
| |
| /* Our loop guarantees that ip[] >= ilimit and that we haven't |
| * overwritten any op[]. |
| */ |
| assert(args.ip[0] >= iend); |
| assert(args.ip[1] >= iend); |
| assert(args.ip[2] >= iend); |
| assert(args.ip[3] >= iend); |
| assert(args.op[3] <= oend); |
| (void)iend; |
| |
| /* finish bit streams one by one. */ |
| { |
| size_t const segmentSize = (dstSize+3) / 4; |
| BYTE* segmentEnd = (BYTE*)dst; |
| int i; |
| for (i = 0; i < 4; ++i) { |
| BIT_DStream_t bit; |
| if (segmentSize <= (size_t)(oend - segmentEnd)) |
| segmentEnd += segmentSize; |
| else |
| segmentEnd = oend; |
| FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption"); |
| /* Decompress and validate that we've produced exactly the expected length. */ |
| args.op[i] += HUF_decodeStreamX1(args.op[i], &bit, segmentEnd, (HUF_DEltX1 const*)dt, HUF_DECODER_FAST_TABLELOG); |
| if (args.op[i] != segmentEnd) return ERROR(corruption_detected); |
| } |
| } |
| |
| /* decoded size */ |
| return dstSize; |
| } |
| #endif /* ZSTD_ENABLE_ASM_X86_64_BMI2 */ |
| |
| typedef size_t (*HUF_decompress_usingDTable_t)(void *dst, size_t dstSize, |
| const void *cSrc, |
| size_t cSrcSize, |
| const HUF_DTable *DTable); |
| |
| HUF_DGEN(HUF_decompress1X1_usingDTable_internal) |
| |
| static size_t HUF_decompress4X1_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc, |
| size_t cSrcSize, HUF_DTable const* DTable, int bmi2) |
| { |
| #if DYNAMIC_BMI2 |
| if (bmi2) { |
| # if ZSTD_ENABLE_ASM_X86_64_BMI2 |
| return HUF_decompress4X1_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable); |
| # else |
| return HUF_decompress4X1_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); |
| # endif |
| } |
| #else |
| (void)bmi2; |
| #endif |
| |
| #if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__) |
| return HUF_decompress4X1_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable); |
| #else |
| return HUF_decompress4X1_usingDTable_internal_default(dst, dstSize, cSrc, cSrcSize, DTable); |
| #endif |
| } |
| |
| size_t HUF_decompress1X1_usingDTable( |
| void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| const HUF_DTable* DTable) |
| { |
| DTableDesc dtd = HUF_getDTableDesc(DTable); |
| if (dtd.tableType != 0) return ERROR(GENERIC); |
| return HUF_decompress1X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| } |
| |
| size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| void* workSpace, size_t wkspSize) |
| { |
| const BYTE* ip = (const BYTE*) cSrc; |
| |
| size_t const hSize = HUF_readDTableX1_wksp(DCtx, cSrc, cSrcSize, workSpace, wkspSize); |
| if (HUF_isError(hSize)) return hSize; |
| if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
| ip += hSize; cSrcSize -= hSize; |
| |
| return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0); |
| } |
| |
| size_t HUF_decompress4X1_usingDTable( |
| void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| const HUF_DTable* DTable) |
| { |
| DTableDesc dtd = HUF_getDTableDesc(DTable); |
| if (dtd.tableType != 0) return ERROR(GENERIC); |
| return HUF_decompress4X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| } |
| |
| static size_t HUF_decompress4X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| void* workSpace, size_t wkspSize, int bmi2) |
| { |
| const BYTE* ip = (const BYTE*) cSrc; |
| |
| size_t const hSize = HUF_readDTableX1_wksp_bmi2(dctx, cSrc, cSrcSize, workSpace, wkspSize, bmi2); |
| if (HUF_isError(hSize)) return hSize; |
| if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
| ip += hSize; cSrcSize -= hSize; |
| |
| return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2); |
| } |
| |
| size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| void* workSpace, size_t wkspSize) |
| { |
| return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, 0); |
| } |
| |
| #endif /* HUF_FORCE_DECOMPRESS_X2 */ |
| |
| #ifndef HUF_FORCE_DECOMPRESS_X1 |
| |
| /* *************************/ |
| /* double-symbols decoding */ |
| /* *************************/ |
| |
| typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2; /* double-symbols decoding */ |
| typedef struct { BYTE symbol; } sortedSymbol_t; |
| typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1]; |
| typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX]; |
| |
| /* |
| * Constructs a HUF_DEltX2 in a U32. |
| */ |
| static U32 HUF_buildDEltX2U32(U32 symbol, U32 nbBits, U32 baseSeq, int level) |
| { |
| U32 seq; |
| DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, sequence) == 0); |
| DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, nbBits) == 2); |
| DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, length) == 3); |
| DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U32)); |
| if (MEM_isLittleEndian()) { |
| seq = level == 1 ? symbol : (baseSeq + (symbol << 8)); |
| return seq + (nbBits << 16) + ((U32)level << 24); |
| } else { |
| seq = level == 1 ? (symbol << 8) : ((baseSeq << 8) + symbol); |
| return (seq << 16) + (nbBits << 8) + (U32)level; |
| } |
| } |
| |
| /* |
| * Constructs a HUF_DEltX2. |
| */ |
| static HUF_DEltX2 HUF_buildDEltX2(U32 symbol, U32 nbBits, U32 baseSeq, int level) |
| { |
| HUF_DEltX2 DElt; |
| U32 const val = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level); |
| DEBUG_STATIC_ASSERT(sizeof(DElt) == sizeof(val)); |
| ZSTD_memcpy(&DElt, &val, sizeof(val)); |
| return DElt; |
| } |
| |
| /* |
| * Constructs 2 HUF_DEltX2s and packs them into a U64. |
| */ |
| static U64 HUF_buildDEltX2U64(U32 symbol, U32 nbBits, U16 baseSeq, int level) |
| { |
| U32 DElt = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level); |
| return (U64)DElt + ((U64)DElt << 32); |
| } |
| |
| /* |
| * Fills the DTable rank with all the symbols from [begin, end) that are each |
| * nbBits long. |
| * |
| * @param DTableRank The start of the rank in the DTable. |
| * @param begin The first symbol to fill (inclusive). |
| * @param end The last symbol to fill (exclusive). |
| * @param nbBits Each symbol is nbBits long. |
| * @param tableLog The table log. |
| * @param baseSeq If level == 1 { 0 } else { the first level symbol } |
| * @param level The level in the table. Must be 1 or 2. |
| */ |
| static void HUF_fillDTableX2ForWeight( |
| HUF_DEltX2* DTableRank, |
| sortedSymbol_t const* begin, sortedSymbol_t const* end, |
| U32 nbBits, U32 tableLog, |
| U16 baseSeq, int const level) |
| { |
| U32 const length = 1U << ((tableLog - nbBits) & 0x1F /* quiet static-analyzer */); |
| const sortedSymbol_t* ptr; |
| assert(level >= 1 && level <= 2); |
| switch (length) { |
| case 1: |
| for (ptr = begin; ptr != end; ++ptr) { |
| HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level); |
| *DTableRank++ = DElt; |
| } |
| break; |
| case 2: |
| for (ptr = begin; ptr != end; ++ptr) { |
| HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level); |
| DTableRank[0] = DElt; |
| DTableRank[1] = DElt; |
| DTableRank += 2; |
| } |
| break; |
| case 4: |
| for (ptr = begin; ptr != end; ++ptr) { |
| U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level); |
| ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2)); |
| ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2)); |
| DTableRank += 4; |
| } |
| break; |
| case 8: |
| for (ptr = begin; ptr != end; ++ptr) { |
| U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level); |
| ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2)); |
| ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2)); |
| ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2)); |
| ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2)); |
| DTableRank += 8; |
| } |
| break; |
| default: |
| for (ptr = begin; ptr != end; ++ptr) { |
| U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level); |
| HUF_DEltX2* const DTableRankEnd = DTableRank + length; |
| for (; DTableRank != DTableRankEnd; DTableRank += 8) { |
| ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2)); |
| ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2)); |
| ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2)); |
| ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2)); |
| } |
| } |
| break; |
| } |
| } |
| |
| /* HUF_fillDTableX2Level2() : |
| * `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */ |
| static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 targetLog, const U32 consumedBits, |
| const U32* rankVal, const int minWeight, const int maxWeight1, |
| const sortedSymbol_t* sortedSymbols, U32 const* rankStart, |
| U32 nbBitsBaseline, U16 baseSeq) |
| { |
| /* Fill skipped values (all positions up to rankVal[minWeight]). |
| * These are positions only get a single symbol because the combined weight |
| * is too large. |
| */ |
| if (minWeight>1) { |
| U32 const length = 1U << ((targetLog - consumedBits) & 0x1F /* quiet static-analyzer */); |
| U64 const DEltX2 = HUF_buildDEltX2U64(baseSeq, consumedBits, /* baseSeq */ 0, /* level */ 1); |
| int const skipSize = rankVal[minWeight]; |
| assert(length > 1); |
| assert((U32)skipSize < length); |
| switch (length) { |
| case 2: |
| assert(skipSize == 1); |
| ZSTD_memcpy(DTable, &DEltX2, sizeof(DEltX2)); |
| break; |
| case 4: |
| assert(skipSize <= 4); |
| ZSTD_memcpy(DTable + 0, &DEltX2, sizeof(DEltX2)); |
| ZSTD_memcpy(DTable + 2, &DEltX2, sizeof(DEltX2)); |
| break; |
| default: |
| { |
| int i; |
| for (i = 0; i < skipSize; i += 8) { |
| ZSTD_memcpy(DTable + i + 0, &DEltX2, sizeof(DEltX2)); |
| ZSTD_memcpy(DTable + i + 2, &DEltX2, sizeof(DEltX2)); |
| ZSTD_memcpy(DTable + i + 4, &DEltX2, sizeof(DEltX2)); |
| ZSTD_memcpy(DTable + i + 6, &DEltX2, sizeof(DEltX2)); |
| } |
| } |
| } |
| } |
| |
| /* Fill each of the second level symbols by weight. */ |
| { |
| int w; |
| for (w = minWeight; w < maxWeight1; ++w) { |
| int const begin = rankStart[w]; |
| int const end = rankStart[w+1]; |
| U32 const nbBits = nbBitsBaseline - w; |
| U32 const totalBits = nbBits + consumedBits; |
| HUF_fillDTableX2ForWeight( |
| DTable + rankVal[w], |
| sortedSymbols + begin, sortedSymbols + end, |
| totalBits, targetLog, |
| baseSeq, /* level */ 2); |
| } |
| } |
| } |
| |
| static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog, |
| const sortedSymbol_t* sortedList, |
| const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight, |
| const U32 nbBitsBaseline) |
| { |
| U32* const rankVal = rankValOrigin[0]; |
| const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */ |
| const U32 minBits = nbBitsBaseline - maxWeight; |
| int w; |
| int const wEnd = (int)maxWeight + 1; |
| |
| /* Fill DTable in order of weight. */ |
| for (w = 1; w < wEnd; ++w) { |
| int const begin = (int)rankStart[w]; |
| int const end = (int)rankStart[w+1]; |
| U32 const nbBits = nbBitsBaseline - w; |
| |
| if (targetLog-nbBits >= minBits) { |
| /* Enough room for a second symbol. */ |
| int start = rankVal[w]; |
| U32 const length = 1U << ((targetLog - nbBits) & 0x1F /* quiet static-analyzer */); |
| int minWeight = nbBits + scaleLog; |
| int s; |
| if (minWeight < 1) minWeight = 1; |
| /* Fill the DTable for every symbol of weight w. |
| * These symbols get at least 1 second symbol. |
| */ |
| for (s = begin; s != end; ++s) { |
| HUF_fillDTableX2Level2( |
| DTable + start, targetLog, nbBits, |
| rankValOrigin[nbBits], minWeight, wEnd, |
| sortedList, rankStart, |
| nbBitsBaseline, sortedList[s].symbol); |
| start += length; |
| } |
| } else { |
| /* Only a single symbol. */ |
| HUF_fillDTableX2ForWeight( |
| DTable + rankVal[w], |
| sortedList + begin, sortedList + end, |
| nbBits, targetLog, |
| /* baseSeq */ 0, /* level */ 1); |
| } |
| } |
| } |
| |
| typedef struct { |
| rankValCol_t rankVal[HUF_TABLELOG_MAX]; |
| U32 rankStats[HUF_TABLELOG_MAX + 1]; |
| U32 rankStart0[HUF_TABLELOG_MAX + 3]; |
| sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1]; |
| BYTE weightList[HUF_SYMBOLVALUE_MAX + 1]; |
| U32 calleeWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32]; |
| } HUF_ReadDTableX2_Workspace; |
| |
| size_t HUF_readDTableX2_wksp(HUF_DTable* DTable, |
| const void* src, size_t srcSize, |
| void* workSpace, size_t wkspSize) |
| { |
| return HUF_readDTableX2_wksp_bmi2(DTable, src, srcSize, workSpace, wkspSize, /* bmi2 */ 0); |
| } |
| |
| size_t HUF_readDTableX2_wksp_bmi2(HUF_DTable* DTable, |
| const void* src, size_t srcSize, |
| void* workSpace, size_t wkspSize, int bmi2) |
| { |
| U32 tableLog, maxW, nbSymbols; |
| DTableDesc dtd = HUF_getDTableDesc(DTable); |
| U32 maxTableLog = dtd.maxTableLog; |
| size_t iSize; |
| void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */ |
| HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr; |
| U32 *rankStart; |
| |
| HUF_ReadDTableX2_Workspace* const wksp = (HUF_ReadDTableX2_Workspace*)workSpace; |
| |
| if (sizeof(*wksp) > wkspSize) return ERROR(GENERIC); |
| |
| rankStart = wksp->rankStart0 + 1; |
| ZSTD_memset(wksp->rankStats, 0, sizeof(wksp->rankStats)); |
| ZSTD_memset(wksp->rankStart0, 0, sizeof(wksp->rankStart0)); |
| |
| DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */ |
| if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); |
| /* ZSTD_memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */ |
| |
| iSize = HUF_readStats_wksp(wksp->weightList, HUF_SYMBOLVALUE_MAX + 1, wksp->rankStats, &nbSymbols, &tableLog, src, srcSize, wksp->calleeWksp, sizeof(wksp->calleeWksp), bmi2); |
| if (HUF_isError(iSize)) return iSize; |
| |
| /* check result */ |
| if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */ |
| if (tableLog <= HUF_DECODER_FAST_TABLELOG && maxTableLog > HUF_DECODER_FAST_TABLELOG) maxTableLog = HUF_DECODER_FAST_TABLELOG; |
| |
| /* find maxWeight */ |
| for (maxW = tableLog; wksp->rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */ |
| |
| /* Get start index of each weight */ |
| { U32 w, nextRankStart = 0; |
| for (w=1; w<maxW+1; w++) { |
| U32 curr = nextRankStart; |
| nextRankStart += wksp->rankStats[w]; |
| rankStart[w] = curr; |
| } |
| rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/ |
| rankStart[maxW+1] = nextRankStart; |
| } |
| |
| /* sort symbols by weight */ |
| { U32 s; |
| for (s=0; s<nbSymbols; s++) { |
| U32 const w = wksp->weightList[s]; |
| U32 const r = rankStart[w]++; |
| wksp->sortedSymbol[r].symbol = (BYTE)s; |
| } |
| rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */ |
| } |
| |
| /* Build rankVal */ |
| { U32* const rankVal0 = wksp->rankVal[0]; |
| { int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */ |
| U32 nextRankVal = 0; |
| U32 w; |
| for (w=1; w<maxW+1; w++) { |
| U32 curr = nextRankVal; |
| nextRankVal += wksp->rankStats[w] << (w+rescale); |
| rankVal0[w] = curr; |
| } } |
| { U32 const minBits = tableLog+1 - maxW; |
| U32 consumed; |
| for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) { |
| U32* const rankValPtr = wksp->rankVal[consumed]; |
| U32 w; |
| for (w = 1; w < maxW+1; w++) { |
| rankValPtr[w] = rankVal0[w] >> consumed; |
| } } } } |
| |
| HUF_fillDTableX2(dt, maxTableLog, |
| wksp->sortedSymbol, |
| wksp->rankStart0, wksp->rankVal, maxW, |
| tableLog+1); |
| |
| dtd.tableLog = (BYTE)maxTableLog; |
| dtd.tableType = 1; |
| ZSTD_memcpy(DTable, &dtd, sizeof(dtd)); |
| return iSize; |
| } |
| |
| FORCE_INLINE_TEMPLATE U32 |
| HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog) |
| { |
| size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ |
| ZSTD_memcpy(op, &dt[val].sequence, 2); |
| BIT_skipBits(DStream, dt[val].nbBits); |
| return dt[val].length; |
| } |
| |
| FORCE_INLINE_TEMPLATE U32 |
| HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog) |
| { |
| size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ |
| ZSTD_memcpy(op, &dt[val].sequence, 1); |
| if (dt[val].length==1) { |
| BIT_skipBits(DStream, dt[val].nbBits); |
| } else { |
| if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) { |
| BIT_skipBits(DStream, dt[val].nbBits); |
| if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8)) |
| /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */ |
| DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); |
| } |
| } |
| return 1; |
| } |
| |
| #define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \ |
| ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog) |
| |
| #define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \ |
| if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \ |
| ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog) |
| |
| #define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \ |
| if (MEM_64bits()) \ |
| ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog) |
| |
| HINT_INLINE size_t |
| HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, |
| const HUF_DEltX2* const dt, const U32 dtLog) |
| { |
| BYTE* const pStart = p; |
| |
| /* up to 8 symbols at a time */ |
| if ((size_t)(pEnd - p) >= sizeof(bitDPtr->bitContainer)) { |
| if (dtLog <= 11 && MEM_64bits()) { |
| /* up to 10 symbols at a time */ |
| while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-9)) { |
| HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
| HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
| HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
| HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
| HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
| } |
| } else { |
| /* up to 8 symbols at a time */ |
| while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) { |
| HUF_DECODE_SYMBOLX2_2(p, bitDPtr); |
| HUF_DECODE_SYMBOLX2_1(p, bitDPtr); |
| HUF_DECODE_SYMBOLX2_2(p, bitDPtr); |
| HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
| } |
| } |
| } else { |
| BIT_reloadDStream(bitDPtr); |
| } |
| |
| /* closer to end : up to 2 symbols at a time */ |
| if ((size_t)(pEnd - p) >= 2) { |
| while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2)) |
| HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
| |
| while (p <= pEnd-2) |
| HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no need to reload : reached the end of DStream */ |
| } |
| |
| if (p < pEnd) |
| p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog); |
| |
| return p-pStart; |
| } |
| |
| FORCE_INLINE_TEMPLATE size_t |
| HUF_decompress1X2_usingDTable_internal_body( |
| void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| const HUF_DTable* DTable) |
| { |
| BIT_DStream_t bitD; |
| |
| /* Init */ |
| CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) ); |
| |
| /* decode */ |
| { BYTE* const ostart = (BYTE*) dst; |
| BYTE* const oend = ostart + dstSize; |
| const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */ |
| const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr; |
| DTableDesc const dtd = HUF_getDTableDesc(DTable); |
| HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog); |
| } |
| |
| /* check */ |
| if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected); |
| |
| /* decoded size */ |
| return dstSize; |
| } |
| FORCE_INLINE_TEMPLATE size_t |
| HUF_decompress4X2_usingDTable_internal_body( |
| void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| const HUF_DTable* DTable) |
| { |
| if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ |
| |
| { const BYTE* const istart = (const BYTE*) cSrc; |
| BYTE* const ostart = (BYTE*) dst; |
| BYTE* const oend = ostart + dstSize; |
| BYTE* const olimit = oend - (sizeof(size_t)-1); |
| const void* const dtPtr = DTable+1; |
| const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr; |
| |
| /* Init */ |
| BIT_DStream_t bitD1; |
| BIT_DStream_t bitD2; |
| BIT_DStream_t bitD3; |
| BIT_DStream_t bitD4; |
| size_t const length1 = MEM_readLE16(istart); |
| size_t const length2 = MEM_readLE16(istart+2); |
| size_t const length3 = MEM_readLE16(istart+4); |
| size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6); |
| const BYTE* const istart1 = istart + 6; /* jumpTable */ |
| const BYTE* const istart2 = istart1 + length1; |
| const BYTE* const istart3 = istart2 + length2; |
| const BYTE* const istart4 = istart3 + length3; |
| size_t const segmentSize = (dstSize+3) / 4; |
| BYTE* const opStart2 = ostart + segmentSize; |
| BYTE* const opStart3 = opStart2 + segmentSize; |
| BYTE* const opStart4 = opStart3 + segmentSize; |
| BYTE* op1 = ostart; |
| BYTE* op2 = opStart2; |
| BYTE* op3 = opStart3; |
| BYTE* op4 = opStart4; |
| U32 endSignal = 1; |
| DTableDesc const dtd = HUF_getDTableDesc(DTable); |
| U32 const dtLog = dtd.tableLog; |
| |
| if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ |
| if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */ |
| CHECK_F( BIT_initDStream(&bitD1, istart1, length1) ); |
| CHECK_F( BIT_initDStream(&bitD2, istart2, length2) ); |
| CHECK_F( BIT_initDStream(&bitD3, istart3, length3) ); |
| CHECK_F( BIT_initDStream(&bitD4, istart4, length4) ); |
| |
| /* 16-32 symbols per loop (4-8 symbols per stream) */ |
| if ((size_t)(oend - op4) >= sizeof(size_t)) { |
| for ( ; (endSignal) & (op4 < olimit); ) { |
| #if defined(__clang__) && (defined(__x86_64__) || defined(__i386__)) |
| HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
| HUF_DECODE_SYMBOLX2_1(op1, &bitD1); |
| HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
| HUF_DECODE_SYMBOLX2_0(op1, &bitD1); |
| HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
| HUF_DECODE_SYMBOLX2_1(op2, &bitD2); |
| HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
| HUF_DECODE_SYMBOLX2_0(op2, &bitD2); |
| endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished; |
| endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished; |
| HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
| HUF_DECODE_SYMBOLX2_1(op3, &bitD3); |
| HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
| HUF_DECODE_SYMBOLX2_0(op3, &bitD3); |
| HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
| HUF_DECODE_SYMBOLX2_1(op4, &bitD4); |
| HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
| HUF_DECODE_SYMBOLX2_0(op4, &bitD4); |
| endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished; |
| endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished; |
| #else |
| HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
| HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
| HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
| HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
| HUF_DECODE_SYMBOLX2_1(op1, &bitD1); |
| HUF_DECODE_SYMBOLX2_1(op2, &bitD2); |
| HUF_DECODE_SYMBOLX2_1(op3, &bitD3); |
| HUF_DECODE_SYMBOLX2_1(op4, &bitD4); |
| HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
| HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
| HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
| HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
| HUF_DECODE_SYMBOLX2_0(op1, &bitD1); |
| HUF_DECODE_SYMBOLX2_0(op2, &bitD2); |
| HUF_DECODE_SYMBOLX2_0(op3, &bitD3); |
| HUF_DECODE_SYMBOLX2_0(op4, &bitD4); |
| endSignal = (U32)LIKELY((U32) |
| (BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished) |
| & (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished) |
| & (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished) |
| & (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished)); |
| #endif |
| } |
| } |
| |
| /* check corruption */ |
| if (op1 > opStart2) return ERROR(corruption_detected); |
| if (op2 > opStart3) return ERROR(corruption_detected); |
| if (op3 > opStart4) return ERROR(corruption_detected); |
| /* note : op4 already verified within main loop */ |
| |
| /* finish bitStreams one by one */ |
| HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog); |
| HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog); |
| HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog); |
| HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog); |
| |
| /* check */ |
| { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); |
| if (!endCheck) return ERROR(corruption_detected); } |
| |
| /* decoded size */ |
| return dstSize; |
| } |
| } |
| |
| #if HUF_NEED_BMI2_FUNCTION |
| static BMI2_TARGET_ATTRIBUTE |
| size_t HUF_decompress4X2_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc, |
| size_t cSrcSize, HUF_DTable const* DTable) { |
| return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); |
| } |
| #endif |
| |
| #if HUF_NEED_DEFAULT_FUNCTION |
| static |
| size_t HUF_decompress4X2_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc, |
| size_t cSrcSize, HUF_DTable const* DTable) { |
| return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); |
| } |
| #endif |
| |
| #if ZSTD_ENABLE_ASM_X86_64_BMI2 |
| |
| HUF_ASM_DECL void HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop(HUF_DecompressAsmArgs* args) ZSTDLIB_HIDDEN; |
| |
| static HUF_ASM_X86_64_BMI2_ATTRS size_t |
| HUF_decompress4X2_usingDTable_internal_bmi2_asm( |
| void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| const HUF_DTable* DTable) { |
| void const* dt = DTable + 1; |
| const BYTE* const iend = (const BYTE*)cSrc + 6; |
| BYTE* const oend = (BYTE*)dst + dstSize; |
| HUF_DecompressAsmArgs args; |
| { |
| size_t const ret = HUF_DecompressAsmArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable); |
| FORWARD_IF_ERROR(ret, "Failed to init asm args"); |
| if (ret != 0) |
| return HUF_decompress4X2_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); |
| } |
| |
| assert(args.ip[0] >= args.ilimit); |
| HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop(&args); |
| |
| /* note : op4 already verified within main loop */ |
| assert(args.ip[0] >= iend); |
| assert(args.ip[1] >= iend); |
| assert(args.ip[2] >= iend); |
| assert(args.ip[3] >= iend); |
| assert(args.op[3] <= oend); |
| (void)iend; |
| |
| /* finish bitStreams one by one */ |
| { |
| size_t const segmentSize = (dstSize+3) / 4; |
| BYTE* segmentEnd = (BYTE*)dst; |
| int i; |
| for (i = 0; i < 4; ++i) { |
| BIT_DStream_t bit; |
| if (segmentSize <= (size_t)(oend - segmentEnd)) |
| segmentEnd += segmentSize; |
| else |
| segmentEnd = oend; |
| FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption"); |
| args.op[i] += HUF_decodeStreamX2(args.op[i], &bit, segmentEnd, (HUF_DEltX2 const*)dt, HUF_DECODER_FAST_TABLELOG); |
| if (args.op[i] != segmentEnd) |
| return ERROR(corruption_detected); |
| } |
| } |
| |
| /* decoded size */ |
| return dstSize; |
| } |
| #endif /* ZSTD_ENABLE_ASM_X86_64_BMI2 */ |
| |
| static size_t HUF_decompress4X2_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc, |
| size_t cSrcSize, HUF_DTable const* DTable, int bmi2) |
| { |
| #if DYNAMIC_BMI2 |
| if (bmi2) { |
| # if ZSTD_ENABLE_ASM_X86_64_BMI2 |
| return HUF_decompress4X2_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable); |
| # else |
| return HUF_decompress4X2_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); |
| # endif |
| } |
| #else |
| (void)bmi2; |
| #endif |
| |
| #if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__) |
| return HUF_decompress4X2_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable); |
| #else |
| return HUF_decompress4X2_usingDTable_internal_default(dst, dstSize, cSrc, cSrcSize, DTable); |
| #endif |
| } |
| |
| HUF_DGEN(HUF_decompress1X2_usingDTable_internal) |
| |
| size_t HUF_decompress1X2_usingDTable( |
| void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| const HUF_DTable* DTable) |
| { |
| DTableDesc dtd = HUF_getDTableDesc(DTable); |
| if (dtd.tableType != 1) return ERROR(GENERIC); |
| return HUF_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| } |
| |
| size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| void* workSpace, size_t wkspSize) |
| { |
| const BYTE* ip = (const BYTE*) cSrc; |
| |
| size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize, |
| workSpace, wkspSize); |
| if (HUF_isError(hSize)) return hSize; |
| if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
| ip += hSize; cSrcSize -= hSize; |
| |
| return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0); |
| } |
| |
| size_t HUF_decompress4X2_usingDTable( |
| void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| const HUF_DTable* DTable) |
| { |
| DTableDesc dtd = HUF_getDTableDesc(DTable); |
| if (dtd.tableType != 1) return ERROR(GENERIC); |
| return HUF_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| } |
| |
| static size_t HUF_decompress4X2_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| void* workSpace, size_t wkspSize, int bmi2) |
| { |
| const BYTE* ip = (const BYTE*) cSrc; |
| |
| size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize, |
| workSpace, wkspSize); |
| if (HUF_isError(hSize)) return hSize; |
| if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
| ip += hSize; cSrcSize -= hSize; |
| |
| return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2); |
| } |
| |
| size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| void* workSpace, size_t wkspSize) |
| { |
| return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, /* bmi2 */ 0); |
| } |
| |
| #endif /* HUF_FORCE_DECOMPRESS_X1 */ |
| |
| /* ***********************************/ |
| /* Universal decompression selectors */ |
| /* ***********************************/ |
| |
| size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, |
| const void* cSrc, size_t cSrcSize, |
| const HUF_DTable* DTable) |
| { |
| DTableDesc const dtd = HUF_getDTableDesc(DTable); |
| #if defined(HUF_FORCE_DECOMPRESS_X1) |
| (void)dtd; |
| assert(dtd.tableType == 0); |
| return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| (void)dtd; |
| assert(dtd.tableType == 1); |
| return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| #else |
| return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) : |
| HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| #endif |
| } |
| |
| size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, |
| const void* cSrc, size_t cSrcSize, |
| const HUF_DTable* DTable) |
| { |
| DTableDesc const dtd = HUF_getDTableDesc(DTable); |
| #if defined(HUF_FORCE_DECOMPRESS_X1) |
| (void)dtd; |
| assert(dtd.tableType == 0); |
| return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| (void)dtd; |
| assert(dtd.tableType == 1); |
| return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| #else |
| return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) : |
| HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| #endif |
| } |
| |
| #if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2) |
| typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t; |
| static const algo_time_t algoTime[16 /* Quantization */][2 /* single, double */] = |
| { |
| /* single, double, quad */ |
| {{0,0}, {1,1}}, /* Q==0 : impossible */ |
| {{0,0}, {1,1}}, /* Q==1 : impossible */ |
| {{ 150,216}, { 381,119}}, /* Q == 2 : 12-18% */ |
| {{ 170,205}, { 514,112}}, /* Q == 3 : 18-25% */ |
| {{ 177,199}, { 539,110}}, /* Q == 4 : 25-32% */ |
| {{ 197,194}, { 644,107}}, /* Q == 5 : 32-38% */ |
| {{ 221,192}, { 735,107}}, /* Q == 6 : 38-44% */ |
| {{ 256,189}, { 881,106}}, /* Q == 7 : 44-50% */ |
| {{ 359,188}, {1167,109}}, /* Q == 8 : 50-56% */ |
| {{ 582,187}, {1570,114}}, /* Q == 9 : 56-62% */ |
| {{ 688,187}, {1712,122}}, /* Q ==10 : 62-69% */ |
| {{ 825,186}, {1965,136}}, /* Q ==11 : 69-75% */ |
| {{ 976,185}, {2131,150}}, /* Q ==12 : 75-81% */ |
| {{1180,186}, {2070,175}}, /* Q ==13 : 81-87% */ |
| {{1377,185}, {1731,202}}, /* Q ==14 : 87-93% */ |
| {{1412,185}, {1695,202}}, /* Q ==15 : 93-99% */ |
| }; |
| #endif |
| |
| /* HUF_selectDecoder() : |
| * Tells which decoder is likely to decode faster, |
| * based on a set of pre-computed metrics. |
| * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 . |
| * Assumption : 0 < dstSize <= 128 KB */ |
| U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize) |
| { |
| assert(dstSize > 0); |
| assert(dstSize <= 128*1024); |
| #if defined(HUF_FORCE_DECOMPRESS_X1) |
| (void)dstSize; |
| (void)cSrcSize; |
| return 0; |
| #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| (void)dstSize; |
| (void)cSrcSize; |
| return 1; |
| #else |
| /* decoder timing evaluation */ |
| { U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */ |
| U32 const D256 = (U32)(dstSize >> 8); |
| U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256); |
| U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256); |
| DTime1 += DTime1 >> 5; /* small advantage to algorithm using less memory, to reduce cache eviction */ |
| return DTime1 < DTime0; |
| } |
| #endif |
| } |
| |
| size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, |
| size_t dstSize, const void* cSrc, |
| size_t cSrcSize, void* workSpace, |
| size_t wkspSize) |
| { |
| /* validation checks */ |
| if (dstSize == 0) return ERROR(dstSize_tooSmall); |
| if (cSrcSize == 0) return ERROR(corruption_detected); |
| |
| { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); |
| #if defined(HUF_FORCE_DECOMPRESS_X1) |
| (void)algoNb; |
| assert(algoNb == 0); |
| return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize); |
| #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| (void)algoNb; |
| assert(algoNb == 1); |
| return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize); |
| #else |
| return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, |
| cSrcSize, workSpace, wkspSize): |
| HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize); |
| #endif |
| } |
| } |
| |
| size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| void* workSpace, size_t wkspSize) |
| { |
| /* validation checks */ |
| if (dstSize == 0) return ERROR(dstSize_tooSmall); |
| if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */ |
| if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */ |
| if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */ |
| |
| { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); |
| #if defined(HUF_FORCE_DECOMPRESS_X1) |
| (void)algoNb; |
| assert(algoNb == 0); |
| return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc, |
| cSrcSize, workSpace, wkspSize); |
| #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| (void)algoNb; |
| assert(algoNb == 1); |
| return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc, |
| cSrcSize, workSpace, wkspSize); |
| #else |
| return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc, |
| cSrcSize, workSpace, wkspSize): |
| HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc, |
| cSrcSize, workSpace, wkspSize); |
| #endif |
| } |
| } |
| |
| size_t HUF_decompress1X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2) |
| { |
| DTableDesc const dtd = HUF_getDTableDesc(DTable); |
| #if defined(HUF_FORCE_DECOMPRESS_X1) |
| (void)dtd; |
| assert(dtd.tableType == 0); |
| return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); |
| #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| (void)dtd; |
| assert(dtd.tableType == 1); |
| return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); |
| #else |
| return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) : |
| HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); |
| #endif |
| } |
| |
| #ifndef HUF_FORCE_DECOMPRESS_X2 |
| size_t HUF_decompress1X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2) |
| { |
| const BYTE* ip = (const BYTE*) cSrc; |
| |
| size_t const hSize = HUF_readDTableX1_wksp_bmi2(dctx, cSrc, cSrcSize, workSpace, wkspSize, bmi2); |
| if (HUF_isError(hSize)) return hSize; |
| if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
| ip += hSize; cSrcSize -= hSize; |
| |
| return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2); |
| } |
| #endif |
| |
| size_t HUF_decompress4X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2) |
| { |
| DTableDesc const dtd = HUF_getDTableDesc(DTable); |
| #if defined(HUF_FORCE_DECOMPRESS_X1) |
| (void)dtd; |
| assert(dtd.tableType == 0); |
| return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); |
| #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| (void)dtd; |
| assert(dtd.tableType == 1); |
| return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); |
| #else |
| return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) : |
| HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); |
| #endif |
| } |
| |
| size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2) |
| { |
| /* validation checks */ |
| if (dstSize == 0) return ERROR(dstSize_tooSmall); |
| if (cSrcSize == 0) return ERROR(corruption_detected); |
| |
| { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); |
| #if defined(HUF_FORCE_DECOMPRESS_X1) |
| (void)algoNb; |
| assert(algoNb == 0); |
| return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2); |
| #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| (void)algoNb; |
| assert(algoNb == 1); |
| return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2); |
| #else |
| return algoNb ? HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2) : |
| HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2); |
| #endif |
| } |
| } |
| |