| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * |
| * Clock initialization for OMAP4 |
| * |
| * (C) Copyright 2010 |
| * Texas Instruments, <www.ti.com> |
| * |
| * Aneesh V <aneesh@ti.com> |
| * |
| * Based on previous work by: |
| * Santosh Shilimkar <santosh.shilimkar@ti.com> |
| * Rajendra Nayak <rnayak@ti.com> |
| */ |
| #include <hang.h> |
| #include <i2c.h> |
| #include <init.h> |
| #include <log.h> |
| #include <asm/omap_common.h> |
| #include <asm/gpio.h> |
| #include <asm/arch/clock.h> |
| #include <asm/arch/sys_proto.h> |
| #include <asm/utils.h> |
| #include <asm/omap_gpio.h> |
| #include <asm/emif.h> |
| |
| #ifndef CONFIG_XPL_BUILD |
| /* |
| * printing to console doesn't work unless |
| * this code is executed from SPL |
| */ |
| #define printf(fmt, args...) |
| #define puts(s) |
| #endif |
| |
| const u32 sys_clk_array[8] = { |
| 12000000, /* 12 MHz */ |
| 20000000, /* 20 MHz */ |
| 16800000, /* 16.8 MHz */ |
| 19200000, /* 19.2 MHz */ |
| 26000000, /* 26 MHz */ |
| 27000000, /* 27 MHz */ |
| 38400000, /* 38.4 MHz */ |
| }; |
| |
| static inline u32 __get_sys_clk_index(void) |
| { |
| s8 ind; |
| /* |
| * For ES1 the ROM code calibration of sys clock is not reliable |
| * due to hw issue. So, use hard-coded value. If this value is not |
| * correct for any board over-ride this function in board file |
| * From ES2.0 onwards you will get this information from |
| * CM_SYS_CLKSEL |
| */ |
| if (omap_revision() == OMAP4430_ES1_0) |
| ind = OMAP_SYS_CLK_IND_38_4_MHZ; |
| else { |
| /* SYS_CLKSEL - 1 to match the dpll param array indices */ |
| ind = (readl((*prcm)->cm_sys_clksel) & |
| CM_SYS_CLKSEL_SYS_CLKSEL_MASK) - 1; |
| } |
| return ind; |
| } |
| |
| u32 get_sys_clk_index(void) |
| __attribute__ ((weak, alias("__get_sys_clk_index"))); |
| |
| u32 get_sys_clk_freq(void) |
| { |
| u8 index = get_sys_clk_index(); |
| return sys_clk_array[index]; |
| } |
| |
| void setup_post_dividers(u32 const base, const struct dpll_params *params) |
| { |
| struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; |
| |
| /* Setup post-dividers */ |
| if (params->m2 >= 0) |
| writel(params->m2, &dpll_regs->cm_div_m2_dpll); |
| if (params->m3 >= 0) |
| writel(params->m3, &dpll_regs->cm_div_m3_dpll); |
| if (params->m4_h11 >= 0) |
| writel(params->m4_h11, &dpll_regs->cm_div_m4_h11_dpll); |
| if (params->m5_h12 >= 0) |
| writel(params->m5_h12, &dpll_regs->cm_div_m5_h12_dpll); |
| if (params->m6_h13 >= 0) |
| writel(params->m6_h13, &dpll_regs->cm_div_m6_h13_dpll); |
| if (params->m7_h14 >= 0) |
| writel(params->m7_h14, &dpll_regs->cm_div_m7_h14_dpll); |
| if (params->h21 >= 0) |
| writel(params->h21, &dpll_regs->cm_div_h21_dpll); |
| if (params->h22 >= 0) |
| writel(params->h22, &dpll_regs->cm_div_h22_dpll); |
| if (params->h23 >= 0) |
| writel(params->h23, &dpll_regs->cm_div_h23_dpll); |
| if (params->h24 >= 0) |
| writel(params->h24, &dpll_regs->cm_div_h24_dpll); |
| } |
| |
| static inline void do_bypass_dpll(u32 const base) |
| { |
| struct dpll_regs *dpll_regs = (struct dpll_regs *)base; |
| |
| clrsetbits_le32(&dpll_regs->cm_clkmode_dpll, |
| CM_CLKMODE_DPLL_DPLL_EN_MASK, |
| DPLL_EN_FAST_RELOCK_BYPASS << |
| CM_CLKMODE_DPLL_EN_SHIFT); |
| } |
| |
| static inline void wait_for_bypass(u32 const base) |
| { |
| struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; |
| |
| if (!wait_on_value(ST_DPLL_CLK_MASK, 0, &dpll_regs->cm_idlest_dpll, |
| LDELAY)) { |
| printf("Bypassing DPLL failed %x\n", base); |
| } |
| } |
| |
| static inline void do_lock_dpll(u32 const base) |
| { |
| struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; |
| |
| clrsetbits_le32(&dpll_regs->cm_clkmode_dpll, |
| CM_CLKMODE_DPLL_DPLL_EN_MASK, |
| DPLL_EN_LOCK << CM_CLKMODE_DPLL_EN_SHIFT); |
| } |
| |
| static inline void wait_for_lock(u32 const base) |
| { |
| struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; |
| |
| if (!wait_on_value(ST_DPLL_CLK_MASK, ST_DPLL_CLK_MASK, |
| &dpll_regs->cm_idlest_dpll, LDELAY)) { |
| printf("DPLL locking failed for %x\n", base); |
| hang(); |
| } |
| } |
| |
| inline u32 check_for_lock(u32 const base) |
| { |
| struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; |
| u32 lock = readl(&dpll_regs->cm_idlest_dpll) & ST_DPLL_CLK_MASK; |
| |
| return lock; |
| } |
| |
| const struct dpll_params *get_mpu_dpll_params(struct dplls const *dpll_data) |
| { |
| u32 sysclk_ind = get_sys_clk_index(); |
| return &dpll_data->mpu[sysclk_ind]; |
| } |
| |
| const struct dpll_params *get_core_dpll_params(struct dplls const *dpll_data) |
| { |
| u32 sysclk_ind = get_sys_clk_index(); |
| return &dpll_data->core[sysclk_ind]; |
| } |
| |
| const struct dpll_params *get_per_dpll_params(struct dplls const *dpll_data) |
| { |
| u32 sysclk_ind = get_sys_clk_index(); |
| return &dpll_data->per[sysclk_ind]; |
| } |
| |
| const struct dpll_params *get_iva_dpll_params(struct dplls const *dpll_data) |
| { |
| u32 sysclk_ind = get_sys_clk_index(); |
| return &dpll_data->iva[sysclk_ind]; |
| } |
| |
| const struct dpll_params *get_usb_dpll_params(struct dplls const *dpll_data) |
| { |
| u32 sysclk_ind = get_sys_clk_index(); |
| return &dpll_data->usb[sysclk_ind]; |
| } |
| |
| const struct dpll_params *get_abe_dpll_params(struct dplls const *dpll_data) |
| { |
| #ifdef CONFIG_SYS_OMAP_ABE_SYSCK |
| u32 sysclk_ind = get_sys_clk_index(); |
| return &dpll_data->abe[sysclk_ind]; |
| #else |
| return dpll_data->abe; |
| #endif |
| } |
| |
| static const struct dpll_params *get_ddr_dpll_params |
| (struct dplls const *dpll_data) |
| { |
| u32 sysclk_ind = get_sys_clk_index(); |
| |
| if (!dpll_data->ddr) |
| return NULL; |
| return &dpll_data->ddr[sysclk_ind]; |
| } |
| |
| #ifdef CONFIG_DRIVER_TI_CPSW |
| static const struct dpll_params *get_gmac_dpll_params |
| (struct dplls const *dpll_data) |
| { |
| u32 sysclk_ind = get_sys_clk_index(); |
| |
| if (!dpll_data->gmac) |
| return NULL; |
| return &dpll_data->gmac[sysclk_ind]; |
| } |
| #endif |
| |
| static void do_setup_dpll(u32 const base, const struct dpll_params *params, |
| u8 lock, char *dpll) |
| { |
| u32 temp, M, N; |
| struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; |
| |
| if (!params) |
| return; |
| |
| temp = readl(&dpll_regs->cm_clksel_dpll); |
| |
| if (check_for_lock(base)) { |
| /* |
| * The Dpll has already been locked by rom code using CH. |
| * Check if M,N are matching with Ideal nominal opp values. |
| * If matches, skip the rest otherwise relock. |
| */ |
| M = (temp & CM_CLKSEL_DPLL_M_MASK) >> CM_CLKSEL_DPLL_M_SHIFT; |
| N = (temp & CM_CLKSEL_DPLL_N_MASK) >> CM_CLKSEL_DPLL_N_SHIFT; |
| if ((M != (params->m)) || (N != (params->n))) { |
| debug("\n %s Dpll locked, but not for ideal M = %d," |
| "N = %d values, current values are M = %d," |
| "N= %d" , dpll, params->m, params->n, |
| M, N); |
| } else { |
| /* Dpll locked with ideal values for nominal opps. */ |
| debug("\n %s Dpll already locked with ideal" |
| "nominal opp values", dpll); |
| |
| bypass_dpll(base); |
| goto setup_post_dividers; |
| } |
| } |
| |
| bypass_dpll(base); |
| |
| /* Set M & N */ |
| temp &= ~CM_CLKSEL_DPLL_M_MASK; |
| temp |= (params->m << CM_CLKSEL_DPLL_M_SHIFT) & CM_CLKSEL_DPLL_M_MASK; |
| |
| temp &= ~CM_CLKSEL_DPLL_N_MASK; |
| temp |= (params->n << CM_CLKSEL_DPLL_N_SHIFT) & CM_CLKSEL_DPLL_N_MASK; |
| |
| writel(temp, &dpll_regs->cm_clksel_dpll); |
| |
| setup_post_dividers: |
| setup_post_dividers(base, params); |
| |
| /* Lock */ |
| if (lock) |
| do_lock_dpll(base); |
| |
| /* Wait till the DPLL locks */ |
| if (lock) |
| wait_for_lock(base); |
| } |
| |
| u32 omap_ddr_clk(void) |
| { |
| u32 ddr_clk, sys_clk_khz, omap_rev, divider; |
| const struct dpll_params *core_dpll_params; |
| |
| omap_rev = omap_revision(); |
| sys_clk_khz = get_sys_clk_freq() / 1000; |
| |
| core_dpll_params = get_core_dpll_params(*dplls_data); |
| |
| debug("sys_clk %d\n ", sys_clk_khz * 1000); |
| |
| /* Find Core DPLL locked frequency first */ |
| ddr_clk = sys_clk_khz * 2 * core_dpll_params->m / |
| (core_dpll_params->n + 1); |
| |
| if (omap_rev < OMAP5430_ES1_0) { |
| /* |
| * DDR frequency is PHY_ROOT_CLK/2 |
| * PHY_ROOT_CLK = Fdpll/2/M2 |
| */ |
| divider = 4; |
| } else { |
| /* |
| * DDR frequency is PHY_ROOT_CLK |
| * PHY_ROOT_CLK = Fdpll/2/M2 |
| */ |
| divider = 2; |
| } |
| |
| ddr_clk = ddr_clk / divider / core_dpll_params->m2; |
| ddr_clk *= 1000; /* convert to Hz */ |
| debug("ddr_clk %d\n ", ddr_clk); |
| |
| return ddr_clk; |
| } |
| |
| /* |
| * Lock MPU dpll |
| * |
| * Resulting MPU frequencies: |
| * 4430 ES1.0 : 600 MHz |
| * 4430 ES2.x : 792 MHz (OPP Turbo) |
| * 4460 : 920 MHz (OPP Turbo) - DCC disabled |
| */ |
| void configure_mpu_dpll(void) |
| { |
| const struct dpll_params *params; |
| struct dpll_regs *mpu_dpll_regs; |
| u32 omap_rev; |
| omap_rev = omap_revision(); |
| |
| /* |
| * DCC and clock divider settings for 4460. |
| * DCC is required, if more than a certain frequency is required. |
| * For, 4460 > 1GHZ. |
| * 5430 > 1.4GHZ. |
| */ |
| if ((omap_rev >= OMAP4460_ES1_0) && (omap_rev < OMAP5430_ES1_0)) { |
| mpu_dpll_regs = |
| (struct dpll_regs *)((*prcm)->cm_clkmode_dpll_mpu); |
| bypass_dpll((*prcm)->cm_clkmode_dpll_mpu); |
| clrbits_le32((*prcm)->cm_mpu_mpu_clkctrl, |
| MPU_CLKCTRL_CLKSEL_EMIF_DIV_MODE_MASK); |
| setbits_le32((*prcm)->cm_mpu_mpu_clkctrl, |
| MPU_CLKCTRL_CLKSEL_ABE_DIV_MODE_MASK); |
| clrbits_le32(&mpu_dpll_regs->cm_clksel_dpll, |
| CM_CLKSEL_DCC_EN_MASK); |
| } |
| |
| params = get_mpu_dpll_params(*dplls_data); |
| |
| do_setup_dpll((*prcm)->cm_clkmode_dpll_mpu, params, DPLL_LOCK, "mpu"); |
| debug("MPU DPLL locked\n"); |
| } |
| |
| #if defined(CONFIG_USB_EHCI_OMAP) || defined(CONFIG_USB_XHCI_OMAP) || \ |
| defined(CONFIG_USB_MUSB_OMAP2PLUS) |
| static void setup_usb_dpll(void) |
| { |
| const struct dpll_params *params; |
| u32 sys_clk_khz, sd_div, num, den; |
| |
| sys_clk_khz = get_sys_clk_freq() / 1000; |
| /* |
| * USB: |
| * USB dpll is J-type. Need to set DPLL_SD_DIV for jitter correction |
| * DPLL_SD_DIV = CEILING ([DPLL_MULT/(DPLL_DIV+1)]* CLKINP / 250) |
| * - where CLKINP is sys_clk in MHz |
| * Use CLKINP in KHz and adjust the denominator accordingly so |
| * that we have enough accuracy and at the same time no overflow |
| */ |
| params = get_usb_dpll_params(*dplls_data); |
| num = params->m * sys_clk_khz; |
| den = (params->n + 1) * 250 * 1000; |
| num += den - 1; |
| sd_div = num / den; |
| clrsetbits_le32((*prcm)->cm_clksel_dpll_usb, |
| CM_CLKSEL_DPLL_DPLL_SD_DIV_MASK, |
| sd_div << CM_CLKSEL_DPLL_DPLL_SD_DIV_SHIFT); |
| |
| /* Now setup the dpll with the regular function */ |
| do_setup_dpll((*prcm)->cm_clkmode_dpll_usb, params, DPLL_LOCK, "usb"); |
| } |
| #endif |
| |
| static void setup_dplls(void) |
| { |
| u32 temp; |
| const struct dpll_params *params; |
| struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE; |
| |
| debug("setup_dplls\n"); |
| |
| /* CORE dpll */ |
| params = get_core_dpll_params(*dplls_data); /* default - safest */ |
| /* |
| * Do not lock the core DPLL now. Just set it up. |
| * Core DPLL will be locked after setting up EMIF |
| * using the FREQ_UPDATE method(freq_update_core()) |
| */ |
| if (emif_sdram_type(readl(&emif->emif_sdram_config)) == |
| EMIF_SDRAM_TYPE_LPDDR2) |
| do_setup_dpll((*prcm)->cm_clkmode_dpll_core, params, |
| DPLL_NO_LOCK, "core"); |
| else |
| do_setup_dpll((*prcm)->cm_clkmode_dpll_core, params, |
| DPLL_LOCK, "core"); |
| /* Set the ratios for CORE_CLK, L3_CLK, L4_CLK */ |
| temp = (CLKSEL_CORE_X2_DIV_1 << CLKSEL_CORE_SHIFT) | |
| (CLKSEL_L3_CORE_DIV_2 << CLKSEL_L3_SHIFT) | |
| (CLKSEL_L4_L3_DIV_2 << CLKSEL_L4_SHIFT); |
| writel(temp, (*prcm)->cm_clksel_core); |
| debug("Core DPLL configured\n"); |
| |
| /* lock PER dpll */ |
| params = get_per_dpll_params(*dplls_data); |
| do_setup_dpll((*prcm)->cm_clkmode_dpll_per, |
| params, DPLL_LOCK, "per"); |
| debug("PER DPLL locked\n"); |
| |
| /* MPU dpll */ |
| configure_mpu_dpll(); |
| |
| #if defined(CONFIG_USB_EHCI_OMAP) || defined(CONFIG_USB_XHCI_OMAP) || \ |
| defined(CONFIG_USB_MUSB_OMAP2PLUS) |
| setup_usb_dpll(); |
| #endif |
| params = get_ddr_dpll_params(*dplls_data); |
| do_setup_dpll((*prcm)->cm_clkmode_dpll_ddrphy, |
| params, DPLL_LOCK, "ddr"); |
| |
| #ifdef CONFIG_DRIVER_TI_CPSW |
| params = get_gmac_dpll_params(*dplls_data); |
| do_setup_dpll((*prcm)->cm_clkmode_dpll_gmac, params, |
| DPLL_LOCK, "gmac"); |
| #endif |
| } |
| |
| u32 get_offset_code(u32 volt_offset, struct pmic_data *pmic) |
| { |
| u32 offset_code; |
| |
| volt_offset -= pmic->base_offset; |
| |
| offset_code = (volt_offset + pmic->step - 1) / pmic->step; |
| |
| /* |
| * Offset codes 1-6 all give the base voltage in Palmas |
| * Offset code 0 switches OFF the SMPS |
| */ |
| return offset_code + pmic->start_code; |
| } |
| |
| void do_scale_vcore(u32 vcore_reg, u32 volt_mv, struct pmic_data *pmic) |
| { |
| u32 offset_code; |
| u32 offset = volt_mv; |
| int ret = 0; |
| |
| if (!volt_mv) |
| return; |
| |
| pmic->pmic_bus_init(); |
| /* See if we can first get the GPIO if needed */ |
| if (pmic->gpio_en) |
| ret = gpio_request(pmic->gpio, "PMIC_GPIO"); |
| |
| if (ret < 0) { |
| printf("%s: gpio %d request failed %d\n", __func__, |
| pmic->gpio, ret); |
| return; |
| } |
| |
| /* Pull the GPIO low to select SET0 register, while we program SET1 */ |
| if (pmic->gpio_en) |
| gpio_direction_output(pmic->gpio, 0); |
| |
| /* convert to uV for better accuracy in the calculations */ |
| offset *= 1000; |
| |
| offset_code = get_offset_code(offset, pmic); |
| |
| debug("do_scale_vcore: volt - %d offset_code - 0x%x\n", volt_mv, |
| offset_code); |
| |
| if (pmic->pmic_write(pmic->i2c_slave_addr, vcore_reg, offset_code)) |
| printf("Scaling voltage failed for 0x%x\n", vcore_reg); |
| if (pmic->gpio_en) |
| gpio_direction_output(pmic->gpio, 1); |
| } |
| |
| int __weak get_voltrail_opp(int rail_offset) |
| { |
| /* |
| * By default return OPP_NOM for all voltage rails. |
| */ |
| return OPP_NOM; |
| } |
| |
| static u32 optimize_vcore_voltage(struct volts const *v, int opp) |
| { |
| u32 val; |
| |
| if (!v->value[opp]) |
| return 0; |
| if (!v->efuse.reg[opp]) |
| return v->value[opp]; |
| |
| switch (v->efuse.reg_bits) { |
| case 16: |
| val = readw(v->efuse.reg[opp]); |
| break; |
| case 32: |
| val = readl(v->efuse.reg[opp]); |
| break; |
| default: |
| printf("Error: efuse 0x%08x bits=%d unknown\n", |
| v->efuse.reg[opp], v->efuse.reg_bits); |
| return v->value[opp]; |
| } |
| |
| if (!val) { |
| printf("Error: efuse 0x%08x bits=%d val=0, using %d\n", |
| v->efuse.reg[opp], v->efuse.reg_bits, v->value[opp]); |
| return v->value[opp]; |
| } |
| |
| debug("%s:efuse 0x%08x bits=%d Vnom=%d, using efuse value %d\n", |
| __func__, v->efuse.reg[opp], v->efuse.reg_bits, v->value[opp], |
| val); |
| return val; |
| } |
| |
| #ifdef CONFIG_IODELAY_RECALIBRATION |
| void __weak recalibrate_iodelay(void) |
| { |
| } |
| #endif |
| |
| /* |
| * Setup the voltages for the main SoC core power domains. |
| * We start with the maximum voltages allowed here, as set in the corresponding |
| * vcores_data struct, and then scale (usually down) to the fused values that |
| * are retrieved from the SoC. The scaling happens only if the efuse.reg fields |
| * are initialised. |
| * Rail grouping is supported for the DRA7xx SoCs only, therefore the code is |
| * compiled conditionally. Note that the new code writes the scaled (or zeroed) |
| * values back to the vcores_data struct for eventual reuse. Zero values mean |
| * that the corresponding rails are not controlled separately, and are not sent |
| * to the PMIC. |
| */ |
| void scale_vcores(struct vcores_data const *vcores) |
| { |
| int i, opp, j, ol; |
| struct volts *pv = (struct volts *)vcores; |
| struct volts *px; |
| |
| for (i=0; i<(sizeof(struct vcores_data)/sizeof(struct volts)); i++) { |
| opp = get_voltrail_opp(i); |
| debug("%d -> ", pv->value[opp]); |
| |
| if (pv->value[opp]) { |
| /* Handle non-empty members only */ |
| pv->value[opp] = optimize_vcore_voltage(pv, opp); |
| px = (struct volts *)vcores; |
| j = 0; |
| while (px < pv) { |
| /* |
| * Scan already handled non-empty members to see |
| * if we have a group and find the max voltage, |
| * which is set to the first occurance of the |
| * particular SMPS; the other group voltages are |
| * zeroed. |
| */ |
| ol = get_voltrail_opp(j); |
| if (px->value[ol] && |
| (pv->pmic->i2c_slave_addr == |
| px->pmic->i2c_slave_addr) && |
| (pv->addr == px->addr)) { |
| /* Same PMIC, same SMPS */ |
| if (pv->value[opp] > px->value[ol]) |
| px->value[ol] = pv->value[opp]; |
| |
| pv->value[opp] = 0; |
| } |
| px++; |
| j++; |
| } |
| } |
| debug("%d\n", pv->value[opp]); |
| pv++; |
| } |
| |
| opp = get_voltrail_opp(VOLT_CORE); |
| debug("cor: %d\n", vcores->core.value[opp]); |
| do_scale_vcore(vcores->core.addr, vcores->core.value[opp], |
| vcores->core.pmic); |
| /* |
| * IO delay recalibration should be done immediately after |
| * adjusting AVS voltages for VDD_CORE_L. |
| * Respective boards should call __recalibrate_iodelay() |
| * with proper mux, virtual and manual mode configurations. |
| */ |
| #ifdef CONFIG_IODELAY_RECALIBRATION |
| recalibrate_iodelay(); |
| #endif |
| |
| opp = get_voltrail_opp(VOLT_MPU); |
| debug("mpu: %d\n", vcores->mpu.value[opp]); |
| do_scale_vcore(vcores->mpu.addr, vcores->mpu.value[opp], |
| vcores->mpu.pmic); |
| /* Configure MPU ABB LDO after scale */ |
| abb_setup(vcores->mpu.efuse.reg[opp], |
| (*ctrl)->control_wkup_ldovbb_mpu_voltage_ctrl, |
| (*prcm)->prm_abbldo_mpu_setup, |
| (*prcm)->prm_abbldo_mpu_ctrl, |
| (*prcm)->prm_irqstatus_mpu_2, |
| vcores->mpu.abb_tx_done_mask, |
| OMAP_ABB_FAST_OPP); |
| |
| opp = get_voltrail_opp(VOLT_MM); |
| debug("mm: %d\n", vcores->mm.value[opp]); |
| do_scale_vcore(vcores->mm.addr, vcores->mm.value[opp], |
| vcores->mm.pmic); |
| /* Configure MM ABB LDO after scale */ |
| abb_setup(vcores->mm.efuse.reg[opp], |
| (*ctrl)->control_wkup_ldovbb_mm_voltage_ctrl, |
| (*prcm)->prm_abbldo_mm_setup, |
| (*prcm)->prm_abbldo_mm_ctrl, |
| (*prcm)->prm_irqstatus_mpu, |
| vcores->mm.abb_tx_done_mask, |
| OMAP_ABB_FAST_OPP); |
| |
| opp = get_voltrail_opp(VOLT_GPU); |
| debug("gpu: %d\n", vcores->gpu.value[opp]); |
| do_scale_vcore(vcores->gpu.addr, vcores->gpu.value[opp], |
| vcores->gpu.pmic); |
| /* Configure GPU ABB LDO after scale */ |
| abb_setup(vcores->gpu.efuse.reg[opp], |
| (*ctrl)->control_wkup_ldovbb_gpu_voltage_ctrl, |
| (*prcm)->prm_abbldo_gpu_setup, |
| (*prcm)->prm_abbldo_gpu_ctrl, |
| (*prcm)->prm_irqstatus_mpu, |
| vcores->gpu.abb_tx_done_mask, |
| OMAP_ABB_FAST_OPP); |
| |
| opp = get_voltrail_opp(VOLT_EVE); |
| debug("eve: %d\n", vcores->eve.value[opp]); |
| do_scale_vcore(vcores->eve.addr, vcores->eve.value[opp], |
| vcores->eve.pmic); |
| /* Configure EVE ABB LDO after scale */ |
| abb_setup(vcores->eve.efuse.reg[opp], |
| (*ctrl)->control_wkup_ldovbb_eve_voltage_ctrl, |
| (*prcm)->prm_abbldo_eve_setup, |
| (*prcm)->prm_abbldo_eve_ctrl, |
| (*prcm)->prm_irqstatus_mpu, |
| vcores->eve.abb_tx_done_mask, |
| OMAP_ABB_FAST_OPP); |
| |
| opp = get_voltrail_opp(VOLT_IVA); |
| debug("iva: %d\n", vcores->iva.value[opp]); |
| do_scale_vcore(vcores->iva.addr, vcores->iva.value[opp], |
| vcores->iva.pmic); |
| /* Configure IVA ABB LDO after scale */ |
| abb_setup(vcores->iva.efuse.reg[opp], |
| (*ctrl)->control_wkup_ldovbb_iva_voltage_ctrl, |
| (*prcm)->prm_abbldo_iva_setup, |
| (*prcm)->prm_abbldo_iva_ctrl, |
| (*prcm)->prm_irqstatus_mpu, |
| vcores->iva.abb_tx_done_mask, |
| OMAP_ABB_FAST_OPP); |
| } |
| |
| static inline void enable_clock_domain(u32 const clkctrl_reg, u32 enable_mode) |
| { |
| clrsetbits_le32(clkctrl_reg, CD_CLKCTRL_CLKTRCTRL_MASK, |
| enable_mode << CD_CLKCTRL_CLKTRCTRL_SHIFT); |
| debug("Enable clock domain - %x\n", clkctrl_reg); |
| } |
| |
| static inline void disable_clock_domain(u32 const clkctrl_reg) |
| { |
| clrsetbits_le32(clkctrl_reg, CD_CLKCTRL_CLKTRCTRL_MASK, |
| CD_CLKCTRL_CLKTRCTRL_SW_SLEEP << |
| CD_CLKCTRL_CLKTRCTRL_SHIFT); |
| debug("Disable clock domain - %x\n", clkctrl_reg); |
| } |
| |
| static inline void wait_for_clk_enable(u32 clkctrl_addr) |
| { |
| u32 clkctrl, idlest = MODULE_CLKCTRL_IDLEST_DISABLED; |
| u32 bound = LDELAY; |
| |
| while ((idlest == MODULE_CLKCTRL_IDLEST_DISABLED) || |
| (idlest == MODULE_CLKCTRL_IDLEST_TRANSITIONING)) { |
| |
| clkctrl = readl(clkctrl_addr); |
| idlest = (clkctrl & MODULE_CLKCTRL_IDLEST_MASK) >> |
| MODULE_CLKCTRL_IDLEST_SHIFT; |
| if (--bound == 0) { |
| printf("Clock enable failed for 0x%x idlest 0x%x\n", |
| clkctrl_addr, clkctrl); |
| return; |
| } |
| } |
| } |
| |
| static inline void enable_clock_module(u32 const clkctrl_addr, u32 enable_mode, |
| u32 wait_for_enable) |
| { |
| clrsetbits_le32(clkctrl_addr, MODULE_CLKCTRL_MODULEMODE_MASK, |
| enable_mode << MODULE_CLKCTRL_MODULEMODE_SHIFT); |
| debug("Enable clock module - %x\n", clkctrl_addr); |
| if (wait_for_enable) |
| wait_for_clk_enable(clkctrl_addr); |
| } |
| |
| static inline void wait_for_clk_disable(u32 clkctrl_addr) |
| { |
| u32 clkctrl, idlest = MODULE_CLKCTRL_IDLEST_FULLY_FUNCTIONAL; |
| u32 bound = LDELAY; |
| |
| while ((idlest != MODULE_CLKCTRL_IDLEST_DISABLED)) { |
| clkctrl = readl(clkctrl_addr); |
| idlest = (clkctrl & MODULE_CLKCTRL_IDLEST_MASK) >> |
| MODULE_CLKCTRL_IDLEST_SHIFT; |
| if (--bound == 0) { |
| printf("Clock disable failed for 0x%x idlest 0x%x\n", |
| clkctrl_addr, clkctrl); |
| return; |
| } |
| } |
| } |
| |
| static inline void disable_clock_module(u32 const clkctrl_addr, |
| u32 wait_for_disable) |
| { |
| clrsetbits_le32(clkctrl_addr, MODULE_CLKCTRL_MODULEMODE_MASK, |
| MODULE_CLKCTRL_MODULEMODE_SW_DISABLE << |
| MODULE_CLKCTRL_MODULEMODE_SHIFT); |
| debug("Disable clock module - %x\n", clkctrl_addr); |
| if (wait_for_disable) |
| wait_for_clk_disable(clkctrl_addr); |
| } |
| |
| void freq_update_core(void) |
| { |
| u32 freq_config1 = 0; |
| const struct dpll_params *core_dpll_params; |
| u32 omap_rev = omap_revision(); |
| |
| core_dpll_params = get_core_dpll_params(*dplls_data); |
| /* Put EMIF clock domain in sw wakeup mode */ |
| enable_clock_domain((*prcm)->cm_memif_clkstctrl, |
| CD_CLKCTRL_CLKTRCTRL_SW_WKUP); |
| wait_for_clk_enable((*prcm)->cm_memif_emif_1_clkctrl); |
| wait_for_clk_enable((*prcm)->cm_memif_emif_2_clkctrl); |
| |
| freq_config1 = SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK | |
| SHADOW_FREQ_CONFIG1_DLL_RESET_MASK; |
| |
| freq_config1 |= (DPLL_EN_LOCK << SHADOW_FREQ_CONFIG1_DPLL_EN_SHIFT) & |
| SHADOW_FREQ_CONFIG1_DPLL_EN_MASK; |
| |
| freq_config1 |= (core_dpll_params->m2 << |
| SHADOW_FREQ_CONFIG1_M2_DIV_SHIFT) & |
| SHADOW_FREQ_CONFIG1_M2_DIV_MASK; |
| |
| writel(freq_config1, (*prcm)->cm_shadow_freq_config1); |
| if (!wait_on_value(SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK, 0, |
| (u32 *) (*prcm)->cm_shadow_freq_config1, LDELAY)) { |
| puts("FREQ UPDATE procedure failed!!"); |
| hang(); |
| } |
| |
| /* |
| * Putting EMIF in HW_AUTO is seen to be causing issues with |
| * EMIF clocks and the master DLL. Keep EMIF in SW_WKUP |
| * in OMAP5430 ES1.0 silicon |
| */ |
| if (omap_rev != OMAP5430_ES1_0) { |
| /* Put EMIF clock domain back in hw auto mode */ |
| enable_clock_domain((*prcm)->cm_memif_clkstctrl, |
| CD_CLKCTRL_CLKTRCTRL_HW_AUTO); |
| wait_for_clk_enable((*prcm)->cm_memif_emif_1_clkctrl); |
| wait_for_clk_enable((*prcm)->cm_memif_emif_2_clkctrl); |
| } |
| } |
| |
| void bypass_dpll(u32 const base) |
| { |
| do_bypass_dpll(base); |
| wait_for_bypass(base); |
| } |
| |
| void lock_dpll(u32 const base) |
| { |
| do_lock_dpll(base); |
| wait_for_lock(base); |
| } |
| |
| static void setup_clocks_for_console(void) |
| { |
| /* Do not add any spl_debug prints in this function */ |
| clrsetbits_le32((*prcm)->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK, |
| CD_CLKCTRL_CLKTRCTRL_SW_WKUP << |
| CD_CLKCTRL_CLKTRCTRL_SHIFT); |
| |
| /* Enable all UARTs - console will be on one of them */ |
| clrsetbits_le32((*prcm)->cm_l4per_uart1_clkctrl, |
| MODULE_CLKCTRL_MODULEMODE_MASK, |
| MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN << |
| MODULE_CLKCTRL_MODULEMODE_SHIFT); |
| |
| clrsetbits_le32((*prcm)->cm_l4per_uart2_clkctrl, |
| MODULE_CLKCTRL_MODULEMODE_MASK, |
| MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN << |
| MODULE_CLKCTRL_MODULEMODE_SHIFT); |
| |
| clrsetbits_le32((*prcm)->cm_l4per_uart3_clkctrl, |
| MODULE_CLKCTRL_MODULEMODE_MASK, |
| MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN << |
| MODULE_CLKCTRL_MODULEMODE_SHIFT); |
| |
| clrsetbits_le32((*prcm)->cm_l4per_uart4_clkctrl, |
| MODULE_CLKCTRL_MODULEMODE_MASK, |
| MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN << |
| MODULE_CLKCTRL_MODULEMODE_SHIFT); |
| |
| clrsetbits_le32((*prcm)->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK, |
| CD_CLKCTRL_CLKTRCTRL_HW_AUTO << |
| CD_CLKCTRL_CLKTRCTRL_SHIFT); |
| } |
| |
| void do_enable_clocks(u32 const *clk_domains, |
| u32 const *clk_modules_hw_auto, |
| u32 const *clk_modules_explicit_en, |
| u8 wait_for_enable) |
| { |
| u32 i, max = 100; |
| |
| /* Put the clock domains in SW_WKUP mode */ |
| for (i = 0; (i < max) && clk_domains && clk_domains[i]; i++) { |
| enable_clock_domain(clk_domains[i], |
| CD_CLKCTRL_CLKTRCTRL_SW_WKUP); |
| } |
| |
| /* Clock modules that need to be put in HW_AUTO */ |
| for (i = 0; (i < max) && clk_modules_hw_auto && |
| clk_modules_hw_auto[i]; i++) { |
| enable_clock_module(clk_modules_hw_auto[i], |
| MODULE_CLKCTRL_MODULEMODE_HW_AUTO, |
| wait_for_enable); |
| }; |
| |
| /* Clock modules that need to be put in SW_EXPLICIT_EN mode */ |
| for (i = 0; (i < max) && clk_modules_explicit_en && |
| clk_modules_explicit_en[i]; i++) { |
| enable_clock_module(clk_modules_explicit_en[i], |
| MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN, |
| wait_for_enable); |
| }; |
| |
| /* Put the clock domains in HW_AUTO mode now */ |
| for (i = 0; (i < max) && clk_domains && clk_domains[i]; i++) { |
| enable_clock_domain(clk_domains[i], |
| CD_CLKCTRL_CLKTRCTRL_HW_AUTO); |
| } |
| } |
| |
| void do_enable_ipu_clocks(u32 const *clk_domains, |
| u32 const *clk_modules_hw_auto, |
| u32 const *clk_modules_explicit_en, |
| u8 wait_for_enable) |
| { |
| u32 i, max = 10; |
| |
| if (!IS_ENABLED(CONFIG_REMOTEPROC_TI_IPU)) |
| return; |
| |
| /* Put the clock domains in SW_WKUP mode */ |
| for (i = 0; (i < max) && clk_domains && clk_domains[i]; i++) { |
| enable_clock_domain(clk_domains[i], |
| CD_CLKCTRL_CLKTRCTRL_SW_WKUP); |
| } |
| |
| /* Clock modules that need to be put in HW_AUTO */ |
| for (i = 0; (i < max) && clk_modules_hw_auto && |
| clk_modules_hw_auto[i]; i++) { |
| enable_clock_module(clk_modules_hw_auto[i], |
| MODULE_CLKCTRL_MODULEMODE_HW_AUTO, |
| wait_for_enable); |
| }; |
| |
| /* Clock modules that need to be put in SW_EXPLICIT_EN mode */ |
| for (i = 0; (i < max) && clk_modules_explicit_en && |
| clk_modules_explicit_en[i]; i++) { |
| enable_clock_module(clk_modules_explicit_en[i], |
| MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN, |
| wait_for_enable); |
| }; |
| } |
| |
| void do_disable_clocks(u32 const *clk_domains, |
| u32 const *clk_modules_disable, |
| u8 wait_for_disable) |
| { |
| u32 i, max = 100; |
| |
| /* Clock modules that need to be put in SW_DISABLE */ |
| for (i = 0; (i < max) && clk_modules_disable[i]; i++) |
| disable_clock_module(clk_modules_disable[i], |
| wait_for_disable); |
| |
| /* Put the clock domains in SW_SLEEP mode */ |
| for (i = 0; (i < max) && clk_domains[i]; i++) |
| disable_clock_domain(clk_domains[i]); |
| } |
| |
| /** |
| * setup_early_clocks() - Setup early clocks needed for SoC |
| * |
| * Setup clocks for console, SPL basic initialization clocks and initialize |
| * the timer. This is invoked prior prcm_init. |
| */ |
| void setup_early_clocks(void) |
| { |
| switch (omap_hw_init_context()) { |
| case OMAP_INIT_CONTEXT_SPL: |
| case OMAP_INIT_CONTEXT_UBOOT_FROM_NOR: |
| case OMAP_INIT_CONTEXT_UBOOT_AFTER_CH: |
| setup_clocks_for_console(); |
| enable_basic_clocks(); |
| timer_init(); |
| /* Fall through */ |
| } |
| } |
| |
| void prcm_init(void) |
| { |
| switch (omap_hw_init_context()) { |
| case OMAP_INIT_CONTEXT_SPL: |
| case OMAP_INIT_CONTEXT_UBOOT_FROM_NOR: |
| case OMAP_INIT_CONTEXT_UBOOT_AFTER_CH: |
| scale_vcores(*omap_vcores); |
| setup_dplls(); |
| setup_warmreset_time(); |
| break; |
| default: |
| break; |
| } |
| |
| if (OMAP_INIT_CONTEXT_SPL != omap_hw_init_context()) |
| enable_basic_uboot_clocks(); |
| } |
| |
| #if !CONFIG_IS_ENABLED(DM_I2C) |
| void gpi2c_init(void) |
| { |
| static int gpi2c = 1; |
| |
| if (gpi2c) { |
| i2c_init(CONFIG_SYS_I2C_SPEED, |
| CONFIG_SYS_I2C_SLAVE); |
| gpi2c = 0; |
| } |
| } |
| #endif |