blob: 2a1646cb2c0023dd31a99500149ae5d376301cb1 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2015-2016 Marvell International Ltd.
*/
#include <fdt_support.h>
#include <log.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <asm/arch/cpu.h>
#include <asm/arch/soc.h>
#include <linux/delay.h>
#include <phy.h>
#include "comphy_a3700.h"
DECLARE_GLOBAL_DATA_PTR;
struct comphy_mux_data a3700_comphy_mux_data[] = {
/* Lane 0 */
{
4,
{
{ COMPHY_TYPE_UNCONNECTED, 0x0 },
{ COMPHY_TYPE_SGMII1, 0x0 },
{ COMPHY_TYPE_USB3_HOST0, 0x1 },
{ COMPHY_TYPE_USB3_DEVICE, 0x1 }
}
},
/* Lane 1 */
{
3,
{
{ COMPHY_TYPE_UNCONNECTED, 0x0},
{ COMPHY_TYPE_SGMII0, 0x0},
{ COMPHY_TYPE_PEX0, 0x1}
}
},
/* Lane 2 */
{
4,
{
{ COMPHY_TYPE_UNCONNECTED, 0x0},
{ COMPHY_TYPE_SATA0, 0x0},
{ COMPHY_TYPE_USB3_HOST0, 0x1},
{ COMPHY_TYPE_USB3_DEVICE, 0x1}
}
},
};
struct sgmii_phy_init_data_fix {
u16 addr;
u16 value;
};
/* Changes to 40M1G25 mode data required for running 40M3G125 init mode */
static struct sgmii_phy_init_data_fix sgmii_phy_init_fix[] = {
{0x005, 0x07CC}, {0x015, 0x0000}, {0x01B, 0x0000}, {0x01D, 0x0000},
{0x01E, 0x0000}, {0x01F, 0x0000}, {0x020, 0x0000}, {0x021, 0x0030},
{0x026, 0x0888}, {0x04D, 0x0152}, {0x04F, 0xA020}, {0x050, 0x07CC},
{0x053, 0xE9CA}, {0x055, 0xBD97}, {0x071, 0x3015}, {0x076, 0x03AA},
{0x07C, 0x0FDF}, {0x0C2, 0x3030}, {0x0C3, 0x8000}, {0x0E2, 0x5550},
{0x0E3, 0x12A4}, {0x0E4, 0x7D00}, {0x0E6, 0x0C83}, {0x101, 0xFCC0},
{0x104, 0x0C10}
};
/* 40M1G25 mode init data */
static u16 sgmii_phy_init[512] = {
/* 0 1 2 3 4 5 6 7 */
/*-----------------------------------------------------------*/
/* 8 9 A B C D E F */
0x3110, 0xFD83, 0x6430, 0x412F, 0x82C0, 0x06FA, 0x4500, 0x6D26, /* 00 */
0xAFC0, 0x8000, 0xC000, 0x0000, 0x2000, 0x49CC, 0x0BC9, 0x2A52, /* 08 */
0x0BD2, 0x0CDE, 0x13D2, 0x0CE8, 0x1149, 0x10E0, 0x0000, 0x0000, /* 10 */
0x0000, 0x0000, 0x0000, 0x0001, 0x0000, 0x4134, 0x0D2D, 0xFFFF, /* 18 */
0xFFE0, 0x4030, 0x1016, 0x0030, 0x0000, 0x0800, 0x0866, 0x0000, /* 20 */
0x0000, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, /* 28 */
0xFFFF, 0xFFFF, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* 30 */
0x0000, 0x0000, 0x000F, 0x6A62, 0x1988, 0x3100, 0x3100, 0x3100, /* 38 */
0x3100, 0xA708, 0x2430, 0x0830, 0x1030, 0x4610, 0xFF00, 0xFF00, /* 40 */
0x0060, 0x1000, 0x0400, 0x0040, 0x00F0, 0x0155, 0x1100, 0xA02A, /* 48 */
0x06FA, 0x0080, 0xB008, 0xE3ED, 0x5002, 0xB592, 0x7A80, 0x0001, /* 50 */
0x020A, 0x8820, 0x6014, 0x8054, 0xACAA, 0xFC88, 0x2A02, 0x45CF, /* 58 */
0x000F, 0x1817, 0x2860, 0x064F, 0x0000, 0x0204, 0x1800, 0x6000, /* 60 */
0x810F, 0x4F23, 0x4000, 0x4498, 0x0850, 0x0000, 0x000E, 0x1002, /* 68 */
0x9D3A, 0x3009, 0xD066, 0x0491, 0x0001, 0x6AB0, 0x0399, 0x3780, /* 70 */
0x0040, 0x5AC0, 0x4A80, 0x0000, 0x01DF, 0x0000, 0x0007, 0x0000, /* 78 */
0x2D54, 0x00A1, 0x4000, 0x0100, 0xA20A, 0x0000, 0x0000, 0x0000, /* 80 */
0x0000, 0x0000, 0x0000, 0x7400, 0x0E81, 0x1000, 0x1242, 0x0210, /* 88 */
0x80DF, 0x0F1F, 0x2F3F, 0x4F5F, 0x6F7F, 0x0F1F, 0x2F3F, 0x4F5F, /* 90 */
0x6F7F, 0x4BAD, 0x0000, 0x0000, 0x0800, 0x0000, 0x2400, 0xB651, /* 98 */
0xC9E0, 0x4247, 0x0A24, 0x0000, 0xAF19, 0x1004, 0x0000, 0x0000, /* A0 */
0x0000, 0x0013, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* A8 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* B0 */
0x0000, 0x0000, 0x0000, 0x0060, 0x0000, 0x0000, 0x0000, 0x0000, /* B8 */
0x0000, 0x0000, 0x3010, 0xFA00, 0x0000, 0x0000, 0x0000, 0x0003, /* C0 */
0x1618, 0x8200, 0x8000, 0x0400, 0x050F, 0x0000, 0x0000, 0x0000, /* C8 */
0x4C93, 0x0000, 0x1000, 0x1120, 0x0010, 0x1242, 0x1242, 0x1E00, /* D0 */
0x0000, 0x0000, 0x0000, 0x00F8, 0x0000, 0x0041, 0x0800, 0x0000, /* D8 */
0x82A0, 0x572E, 0x2490, 0x14A9, 0x4E00, 0x0000, 0x0803, 0x0541, /* E0 */
0x0C15, 0x0000, 0x0000, 0x0400, 0x2626, 0x0000, 0x0000, 0x4200, /* E8 */
0x0000, 0xAA55, 0x1020, 0x0000, 0x0000, 0x5010, 0x0000, 0x0000, /* F0 */
0x0000, 0x0000, 0x5000, 0x0000, 0x0000, 0x0000, 0x02F2, 0x0000, /* F8 */
0x101F, 0xFDC0, 0x4000, 0x8010, 0x0110, 0x0006, 0x0000, 0x0000, /*100 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*108 */
0x04CF, 0x0000, 0x04CF, 0x0000, 0x04CF, 0x0000, 0x04C6, 0x0000, /*110 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*118 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*120 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*128 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*130 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*138 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*140 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*148 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*150 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*158 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*160 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*168 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*170 */
0x0000, 0x0000, 0x0000, 0x00F0, 0x08A2, 0x3112, 0x0A14, 0x0000, /*178 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*180 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*188 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*190 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*198 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1A0 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1A8 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1B0 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1B8 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1C0 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1C8 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1D0 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1D8 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1E0 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1E8 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1F0 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000 /*1F8 */
};
/*
* comphy_poll_reg
*
* return: 1 on success, 0 on timeout
*/
static u32 comphy_poll_reg(void *addr, u32 val, u32 mask, u8 op_type)
{
u32 rval = 0xDEAD, timeout;
for (timeout = PLL_LOCK_TIMEOUT; timeout > 0; timeout--) {
if (op_type == POLL_16B_REG)
rval = readw(addr); /* 16 bit */
else
rval = readl(addr) ; /* 32 bit */
if ((rval & mask) == val)
return 1;
udelay(10000);
}
debug("Time out waiting (%p = %#010x)\n", addr, rval);
return 0;
}
/*
* comphy_pcie_power_up
*
* return: 1 if PLL locked (OK), 0 otherwise (FAIL)
*/
static int comphy_pcie_power_up(u32 speed, u32 invert)
{
int ret;
debug_enter();
/*
* 1. Enable max PLL.
*/
reg_set16(phy_addr(PCIE, LANE_CFG1), bf_use_max_pll_rate, 0);
/*
* 2. Select 20 bit SERDES interface.
*/
reg_set16(phy_addr(PCIE, GLOB_CLK_SRC_LO), bf_cfg_sel_20b, 0);
/*
* 3. Force to use reg setting for PCIe mode
*/
reg_set16(phy_addr(PCIE, MISC_REG1), bf_sel_bits_pcie_force, 0);
/*
* 4. Change RX wait
*/
reg_set16(phy_addr(PCIE, PWR_MGM_TIM1), 0x10C, 0xFFFF);
/*
* 5. Enable idle sync
*/
reg_set16(phy_addr(PCIE, UNIT_CTRL), 0x60 | rb_idle_sync_en, 0xFFFF);
/*
* 6. Enable the output of 100M/125M/500M clock
*/
reg_set16(phy_addr(PCIE, MISC_REG0),
0xA00D | rb_clk500m_en | rb_txdclk_2x_sel | rb_clk100m_125m_en, 0xFFFF);
/*
* 7. Enable TX
*/
reg_set(PCIE_REF_CLK_ADDR, 0x1342, 0xFFFFFFFF);
/*
* 8. Check crystal jumper setting and program the Power and PLL
* Control accordingly
*/
if (get_ref_clk() == 40) {
/* 40 MHz */
reg_set16(phy_addr(PCIE, PWR_PLL_CTRL), 0xFC63, 0xFFFF);
} else {
/* 25 MHz */
reg_set16(phy_addr(PCIE, PWR_PLL_CTRL), 0xFC62, 0xFFFF);
}
/*
* 9. Override Speed_PLL value and use MAC PLL
*/
reg_set16(phy_addr(PCIE, KVCO_CAL_CTRL), 0x0040 | rb_use_max_pll_rate,
0xFFFF);
/*
* 10. Check the Polarity invert bit
*/
if (invert & COMPHY_POLARITY_TXD_INVERT)
reg_set16(phy_addr(PCIE, SYNC_PATTERN), phy_txd_inv, 0);
else
reg_set16(phy_addr(PCIE, SYNC_PATTERN), 0, phy_txd_inv);
if (invert & COMPHY_POLARITY_RXD_INVERT)
reg_set16(phy_addr(PCIE, SYNC_PATTERN), phy_rxd_inv, 0);
else
reg_set16(phy_addr(PCIE, SYNC_PATTERN), 0, phy_rxd_inv);
/*
* 11. Release SW reset
*/
reg_set16(phy_addr(PCIE, GLOB_PHY_CTRL0),
rb_mode_core_clk_freq_sel | rb_mode_pipe_width_32,
bf_soft_rst | bf_mode_refdiv);
/* Wait for > 55 us to allow PCLK be enabled */
udelay(PLL_SET_DELAY_US);
/* Assert PCLK enabled */
ret = comphy_poll_reg(phy_addr(PCIE, LANE_STAT1), /* address */
rb_txdclk_pclk_en, /* value */
rb_txdclk_pclk_en, /* mask */
POLL_16B_REG); /* 16bit */
if (!ret)
printf("Failed to lock PCIe PLL\n");
debug_exit();
/* Return the status of the PLL */
return ret;
}
/*
* reg_set_indirect
*
* return: void
*/
static void reg_set_indirect(u32 reg, u16 data, u16 mask)
{
reg_set(rh_vsreg_addr, reg, 0xFFFFFFFF);
reg_set(rh_vsreg_data, data, mask);
}
/*
* comphy_sata_power_up
*
* return: 1 if PLL locked (OK), 0 otherwise (FAIL)
*/
static int comphy_sata_power_up(u32 invert)
{
int ret;
u32 data = 0;
debug_enter();
/*
* 0. Check the Polarity invert bits
*/
if (invert & COMPHY_POLARITY_TXD_INVERT)
data |= bs_txd_inv;
if (invert & COMPHY_POLARITY_RXD_INVERT)
data |= bs_rxd_inv;
reg_set_indirect(vphy_sync_pattern_reg, data, bs_txd_inv | bs_rxd_inv);
/*
* 1. Select 40-bit data width width
*/
reg_set_indirect(vphy_loopback_reg0, 0x800, bs_phyintf_40bit);
/*
* 2. Select reference clock and PHY mode (SATA)
*/
if (get_ref_clk() == 40) {
/* 40 MHz */
reg_set_indirect(vphy_power_reg0, 0x3, 0x00FF);
} else {
/* 20 MHz */
reg_set_indirect(vphy_power_reg0, 0x1, 0x00FF);
}
/*
* 3. Use maximum PLL rate (no power save)
*/
reg_set_indirect(vphy_calctl_reg, bs_max_pll_rate, bs_max_pll_rate);
/*
* 4. Reset reserved bit (??)
*/
reg_set_indirect(vphy_reserve_reg, 0, bs_phyctrl_frm_pin);
/*
* 5. Set vendor-specific configuration (??)
*/
reg_set(rh_vs0_a, vsata_ctrl_reg, 0xFFFFFFFF);
reg_set(rh_vs0_d, bs_phy_pu_pll, bs_phy_pu_pll);
/* Wait for > 55 us to allow PLL be enabled */
udelay(PLL_SET_DELAY_US);
/* Assert SATA PLL enabled */
reg_set(rh_vsreg_addr, vphy_loopback_reg0, 0xFFFFFFFF);
ret = comphy_poll_reg(rh_vsreg_data, /* address */
bs_pll_ready_tx, /* value */
bs_pll_ready_tx, /* mask */
POLL_32B_REG); /* 32bit */
if (!ret)
printf("Failed to lock SATA PLL\n");
debug_exit();
return ret;
}
/*
* usb3_reg_set16
*
* return: void
*/
static void usb3_reg_set16(u32 reg, u16 data, u16 mask, u32 lane)
{
/*
* When Lane 2 PHY is for USB3, access the PHY registers
* through indirect Address and Data registers INDIR_ACC_PHY_ADDR
* (RD00E0178h [31:0]) and INDIR_ACC_PHY_DATA (RD00E017Ch [31:0])
* within the SATA Host Controller registers, Lane 2 base register
* offset is 0x200
*/
if (lane == 2)
reg_set_indirect(USB3PHY_LANE2_REG_BASE_OFFSET + reg, data,
mask);
else
reg_set16(phy_addr(USB3, reg), data, mask);
}
/*
* comphy_usb3_power_up
*
* return: 1 if PLL locked (OK), 0 otherwise (FAIL)
*/
static int comphy_usb3_power_up(u32 lane, u32 type, u32 speed, u32 invert)
{
int ret;
debug_enter();
/*
* 1. Power up OTG module
*/
reg_set(USB2_PHY_OTG_CTRL_ADDR, rb_pu_otg, 0);
/*
* 2. Set counter for 100us pulse in USB3 Host and Device
* restore default burst size limit (Reference Clock 31:24)
*/
reg_set(USB3_CTRPUL_VAL_REG, 0x8 << 24, rb_usb3_ctr_100ns);
/* 0xd005c300 = 0x1001 */
/* set PRD_TXDEEMPH (3.5db de-emph) */
usb3_reg_set16(LANE_CFG0, 0x1, 0xFF, lane);
/*
* Set BIT0: enable transmitter in high impedance mode
* Set BIT[3:4]: delay 2 clock cycles for HiZ off latency
* Set BIT6: Tx detect Rx at HiZ mode
* Unset BIT15: set to 0 to set USB3 De-emphasize level to -3.5db
* together with bit 0 of COMPHY_REG_LANE_CFG0_ADDR
* register
*/
usb3_reg_set16(LANE_CFG1,
tx_det_rx_mode | gen2_tx_data_dly_deft
| tx_elec_idle_mode_en,
prd_txdeemph1_mask | tx_det_rx_mode
| gen2_tx_data_dly_mask | tx_elec_idle_mode_en, lane);
/* 0xd005c310 = 0x93: set Spread Spectrum Clock Enabled */
usb3_reg_set16(LANE_CFG4, bf_spread_spectrum_clock_en, 0x80, lane);
/*
* set Override Margining Controls From the MAC: Use margining signals
* from lane configuration
*/
usb3_reg_set16(TEST_MODE_CTRL, rb_mode_margin_override, 0xFFFF, lane);
/* set Lane-to-Lane Bundle Clock Sampling Period = per PCLK cycles */
/* set Mode Clock Source = PCLK is generated from REFCLK */
usb3_reg_set16(GLOB_CLK_SRC_LO, 0x0, 0xFF, lane);
/* set G2 Spread Spectrum Clock Amplitude at 4K */
usb3_reg_set16(GEN2_SETTINGS_2, g2_tx_ssc_amp, 0xF000, lane);
/*
* unset G3 Spread Spectrum Clock Amplitude & set G3 TX and RX Register
* Master Current Select
*/
usb3_reg_set16(GEN2_SETTINGS_3, 0x0, 0xFFFF, lane);
/*
* 3. Check crystal jumper setting and program the Power and PLL
* Control accordingly
* 4. Change RX wait
*/
if (get_ref_clk() == 40) {
/* 40 MHz */
usb3_reg_set16(PWR_PLL_CTRL, 0xFCA3, 0xFFFF, lane);
usb3_reg_set16(PWR_MGM_TIM1, 0x10C, 0xFFFF, lane);
} else {
/* 25 MHz */
usb3_reg_set16(PWR_PLL_CTRL, 0xFCA2, 0xFFFF, lane);
usb3_reg_set16(PWR_MGM_TIM1, 0x107, 0xFFFF, lane);
}
/*
* 5. Enable idle sync
*/
usb3_reg_set16(UNIT_CTRL, 0x60 | rb_idle_sync_en, 0xFFFF, lane);
/*
* 6. Enable the output of 500M clock
*/
usb3_reg_set16(MISC_REG0, 0xA00D | rb_clk500m_en, 0xFFFF, lane);
/*
* 7. Set 20-bit data width
*/
usb3_reg_set16(DIG_LB_EN, 0x0400, 0xFFFF, lane);
/*
* 8. Override Speed_PLL value and use MAC PLL
*/
usb3_reg_set16(KVCO_CAL_CTRL, 0x0040 | rb_use_max_pll_rate, 0xFFFF,
lane);
/*
* 9. Check the Polarity invert bit
*/
if (invert & COMPHY_POLARITY_TXD_INVERT)
usb3_reg_set16(SYNC_PATTERN, phy_txd_inv, 0, lane);
else
usb3_reg_set16(SYNC_PATTERN, 0, phy_txd_inv, lane);
if (invert & COMPHY_POLARITY_RXD_INVERT)
usb3_reg_set16(SYNC_PATTERN, phy_rxd_inv, 0, lane);
else
usb3_reg_set16(SYNC_PATTERN, 0, phy_rxd_inv, lane);
/*
* 10. Set max speed generation to USB3.0 5Gbps
*/
usb3_reg_set16(SYNC_MASK_GEN, 0x0400, 0x0C00, lane);
/*
* 11. Set capacitor value for FFE gain peaking to 0xF
*/
usb3_reg_set16(GEN3_SETTINGS_3, 0xF, 0xF, lane);
/*
* 12. Release SW reset
*/
usb3_reg_set16(GLOB_PHY_CTRL0,
rb_mode_core_clk_freq_sel | rb_mode_pipe_width_32
| 0x20, 0xFFFF, lane);
/* Wait for > 55 us to allow PCLK be enabled */
udelay(PLL_SET_DELAY_US);
/* Assert PCLK enabled */
if (lane == 2) {
reg_set(rh_vsreg_addr,
LANE_STAT1 + USB3PHY_LANE2_REG_BASE_OFFSET,
0xFFFFFFFF);
ret = comphy_poll_reg(rh_vsreg_data, /* address */
rb_txdclk_pclk_en, /* value */
rb_txdclk_pclk_en, /* mask */
POLL_32B_REG); /* 32bit */
} else {
ret = comphy_poll_reg(phy_addr(USB3, LANE_STAT1), /* address */
rb_txdclk_pclk_en, /* value */
rb_txdclk_pclk_en, /* mask */
POLL_16B_REG); /* 16bit */
}
if (!ret)
printf("Failed to lock USB3 PLL\n");
/*
* Set Soft ID for Host mode (Device mode works with Hard ID
* detection)
*/
if (type == COMPHY_TYPE_USB3_HOST0) {
/*
* set BIT0: set ID_MODE of Host/Device = "Soft ID" (BIT1)
* clear BIT1: set SOFT_ID = Host
* set BIT4: set INT_MODE = ID. Interrupt Mode: enable
* interrupt by ID instead of using both interrupts
* of HOST and Device ORed simultaneously
* INT_MODE=ID in order to avoid unexpected
* behaviour or both interrupts together
*/
reg_set(USB32_CTRL_BASE,
usb32_ctrl_id_mode | usb32_ctrl_int_mode,
usb32_ctrl_id_mode | usb32_ctrl_soft_id |
usb32_ctrl_int_mode);
}
debug_exit();
return ret;
}
/*
* comphy_usb2_power_up
*
* return: 1 if PLL locked (OK), 0 otherwise (FAIL)
*/
static int comphy_usb2_power_up(u8 usb32)
{
int ret;
debug_enter();
if (usb32 != 0 && usb32 != 1) {
printf("invalid usb32 value: (%d), should be either 0 or 1\n",
usb32);
debug_exit();
return 0;
}
/*
* 0. Setup PLL. 40MHz clock uses defaults.
* See "PLL Settings for Typical REFCLK" table
*/
if (get_ref_clk() == 25) {
reg_set(USB2_PHY_BASE(usb32), 5 | (96 << 16),
0x3F | (0xFF << 16) | (0x3 << 28));
}
/*
* 1. PHY pull up and disable USB2 suspend
*/
reg_set(USB2_PHY_CTRL_ADDR(usb32),
RB_USB2PHY_SUSPM(usb32) | RB_USB2PHY_PU(usb32), 0);
if (usb32 != 0) {
/*
* 2. Power up OTG module
*/
reg_set(USB2_PHY_OTG_CTRL_ADDR, rb_pu_otg, 0);
/*
* 3. Configure PHY charger detection
*/
reg_set(USB2_PHY_CHRGR_DET_ADDR, 0,
rb_cdp_en | rb_dcp_en | rb_pd_en | rb_cdp_dm_auto |
rb_enswitch_dp | rb_enswitch_dm | rb_pu_chrg_dtc);
}
/* Assert PLL calibration done */
ret = comphy_poll_reg(USB2_PHY_CAL_CTRL_ADDR(usb32),
rb_usb2phy_pllcal_done, /* value */
rb_usb2phy_pllcal_done, /* mask */
POLL_32B_REG); /* 32bit */
if (!ret) {
printf("Failed to end USB2 PLL calibration\n");
goto out;
}
/* Assert impedance calibration done */
ret = comphy_poll_reg(USB2_PHY_CAL_CTRL_ADDR(usb32),
rb_usb2phy_impcal_done, /* value */
rb_usb2phy_impcal_done, /* mask */
POLL_32B_REG); /* 32bit */
if (!ret) {
printf("Failed to end USB2 impedance calibration\n");
goto out;
}
/* Assert squetch calibration done */
ret = comphy_poll_reg(USB2_PHY_RX_CHAN_CTRL1_ADDR(usb32),
rb_usb2phy_sqcal_done, /* value */
rb_usb2phy_sqcal_done, /* mask */
POLL_32B_REG); /* 32bit */
if (!ret) {
printf("Failed to end USB2 unknown calibration\n");
goto out;
}
/* Assert PLL is ready */
ret = comphy_poll_reg(USB2_PHY_PLL_CTRL0_ADDR(usb32),
rb_usb2phy_pll_ready, /* value */
rb_usb2phy_pll_ready, /* mask */
POLL_32B_REG); /* 32bit */
if (!ret) {
printf("Failed to lock USB2 PLL\n");
goto out;
}
out:
debug_exit();
return ret;
}
/*
* comphy_emmc_power_up
*
* return: 1 if PLL locked (OK), 0 otherwise (FAIL)
*/
static int comphy_emmc_power_up(void)
{
debug_enter();
/*
* 1. Bus power ON, Bus voltage 1.8V
*/
reg_set(SDIO_HOST_CTRL1_ADDR, 0xB00, 0xF00);
/*
* 2. Set FIFO parameters
*/
reg_set(SDIO_SDHC_FIFO_ADDR, 0x315, 0xFFFFFFFF);
/*
* 3. Set Capabilities 1_2
*/
reg_set(SDIO_CAP_12_ADDR, 0x25FAC8B2, 0xFFFFFFFF);
/*
* 4. Set Endian
*/
reg_set(SDIO_ENDIAN_ADDR, 0x00c00000, 0);
/*
* 4. Init PHY
*/
reg_set(SDIO_PHY_TIMING_ADDR, 0x80000000, 0x80000000);
reg_set(SDIO_PHY_PAD_CTRL0_ADDR, 0x50000000, 0xF0000000);
/*
* 5. DLL reset
*/
reg_set(SDIO_DLL_RST_ADDR, 0xFFFEFFFF, 0);
reg_set(SDIO_DLL_RST_ADDR, 0x00010000, 0);
debug_exit();
return 1;
}
/*
* comphy_sgmii_power_up
*
* return:
*/
static void comphy_sgmii_phy_init(u32 lane, u32 speed)
{
const int fix_arr_sz = ARRAY_SIZE(sgmii_phy_init_fix);
int addr, fix_idx;
u16 val;
fix_idx = 0;
for (addr = 0; addr < 512; addr++) {
/*
* All PHY register values are defined in full for 3.125Gbps
* SERDES speed. The values required for 1.25 Gbps are almost
* the same and only few registers should be "fixed" in
* comparison to 3.125 Gbps values. These register values are
* stored in "sgmii_phy_init_fix" array.
*/
if (speed != COMPHY_SPEED_1_25G &&
sgmii_phy_init_fix[fix_idx].addr == addr) {
/* Use new value */
val = sgmii_phy_init_fix[fix_idx].value;
if (fix_idx < fix_arr_sz)
fix_idx++;
} else {
val = sgmii_phy_init[addr];
}
reg_set16(sgmiiphy_addr(lane, addr), val, 0xFFFF);
}
}
/*
* comphy_sgmii_power_up
*
* return: 1 if PLL locked (OK), 0 otherwise (FAIL)
*/
static int comphy_sgmii_power_up(u32 lane, u32 speed, u32 invert)
{
int ret;
u32 saved_selector;
debug_enter();
/*
* 1. Configure PHY to SATA/SAS mode by setting pin PIN_PIPE_SEL=0
*/
saved_selector = readl(COMPHY_SEL_ADDR);
reg_set(COMPHY_SEL_ADDR, 0, 0xFFFFFFFF);
/*
* 2. Reset PHY by setting PHY input port PIN_RESET=1.
* 3. Set PHY input port PIN_TX_IDLE=1, PIN_PU_IVREF=1 to keep
* PHY TXP/TXN output to idle state during PHY initialization
* 4. Set PHY input port PIN_PU_PLL=0, PIN_PU_RX=0, PIN_PU_TX=0.
*/
reg_set(COMPHY_PHY_CFG1_ADDR(lane),
rb_pin_reset_comphy | rb_pin_tx_idle | rb_pin_pu_iveref,
rb_pin_reset_core | rb_pin_pu_pll |
rb_pin_pu_rx | rb_pin_pu_tx);
/*
* 5. Release reset to the PHY by setting PIN_RESET=0.
*/
reg_set(COMPHY_PHY_CFG1_ADDR(lane), 0, rb_pin_reset_comphy);
/*
* 7. Set PIN_PHY_GEN_TX[3:0] and PIN_PHY_GEN_RX[3:0] to decide
* COMPHY bit rate
*/
if (speed == COMPHY_SPEED_3_125G) { /* 3.125 GHz */
reg_set(COMPHY_PHY_CFG1_ADDR(lane),
(0x8 << rf_gen_rx_sel_shift) |
(0x8 << rf_gen_tx_sel_shift),
rf_gen_rx_select | rf_gen_tx_select);
} else if (speed == COMPHY_SPEED_1_25G) { /* 1.25 GHz */
reg_set(COMPHY_PHY_CFG1_ADDR(lane),
(0x6 << rf_gen_rx_sel_shift) |
(0x6 << rf_gen_tx_sel_shift),
rf_gen_rx_select | rf_gen_tx_select);
} else {
printf("Unsupported COMPHY speed!\n");
return 0;
}
/*
* 8. Wait 1mS for bandgap and reference clocks to stabilize;
* then start SW programming.
*/
mdelay(10);
/* 9. Program COMPHY register PHY_MODE */
reg_set16(sgmiiphy_addr(lane, PWR_PLL_CTRL),
PHY_MODE_SGMII << rf_phy_mode_shift, rf_phy_mode_mask);
/*
* 10. Set COMPHY register REFCLK_SEL to select the correct REFCLK
* source
*/
reg_set16(sgmiiphy_addr(lane, MISC_REG0), 0, rb_ref_clk_sel);
/*
* 11. Set correct reference clock frequency in COMPHY register
* REF_FREF_SEL.
*/
if (get_ref_clk() == 40) {
reg_set16(sgmiiphy_addr(lane, PWR_PLL_CTRL),
0x4 << rf_ref_freq_sel_shift, rf_ref_freq_sel_mask);
} else {
/* 25MHz */
reg_set16(sgmiiphy_addr(lane, PWR_PLL_CTRL),
0x1 << rf_ref_freq_sel_shift, rf_ref_freq_sel_mask);
}
/* 12. Program COMPHY register PHY_GEN_MAX[1:0] */
/*
* This step is mentioned in the flow received from verification team.
* However the PHY_GEN_MAX value is only meaningful for other
* interfaces (not SGMII). For instance, it selects SATA speed
* 1.5/3/6 Gbps or PCIe speed 2.5/5 Gbps
*/
/*
* 13. Program COMPHY register SEL_BITS to set correct parallel data
* bus width
*/
/* 10bit */
reg_set16(sgmiiphy_addr(lane, DIG_LB_EN), 0, rf_data_width_mask);
/*
* 14. As long as DFE function needs to be enabled in any mode,
* COMPHY register DFE_UPDATE_EN[5:0] shall be programmed to 0x3F
* for real chip during COMPHY power on.
*/
/*
* The step 14 exists (and empty) in the original initialization flow
* obtained from the verification team. According to the functional
* specification DFE_UPDATE_EN already has the default value 0x3F
*/
/*
* 15. Program COMPHY GEN registers.
* These registers should be programmed based on the lab testing
* result to achieve optimal performance. Please contact the CEA
* group to get the related GEN table during real chip bring-up.
* We only requred to run though the entire registers programming
* flow defined by "comphy_sgmii_phy_init" when the REF clock is
* 40 MHz. For REF clock 25 MHz the default values stored in PHY
* registers are OK.
*/
debug("Running C-DPI phy init %s mode\n",
speed == COMPHY_SPEED_3_125G ? "2G5" : "1G");
if (get_ref_clk() == 40)
comphy_sgmii_phy_init(lane, speed);
/*
* 16. [Simulation Only] should not be used for real chip.
* By pass power up calibration by programming EXT_FORCE_CAL_DONE
* (R02h[9]) to 1 to shorten COMPHY simulation time.
*/
/*
* 17. [Simulation Only: should not be used for real chip]
* Program COMPHY register FAST_DFE_TIMER_EN=1 to shorten RX
* training simulation time.
*/
/*
* 18. Check the PHY Polarity invert bit
*/
if (invert & COMPHY_POLARITY_TXD_INVERT)
reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), phy_txd_inv, 0);
else
reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), 0, phy_txd_inv);
if (invert & COMPHY_POLARITY_RXD_INVERT)
reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), phy_rxd_inv, 0);
else
reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), 0, phy_rxd_inv);
/*
* 19. Set PHY input ports PIN_PU_PLL, PIN_PU_TX and PIN_PU_RX to 1
* to start PHY power up sequence. All the PHY register
* programming should be done before PIN_PU_PLL=1. There should be
* no register programming for normal PHY operation from this point.
*/
reg_set(COMPHY_PHY_CFG1_ADDR(lane),
rb_pin_pu_pll | rb_pin_pu_rx | rb_pin_pu_tx,
rb_pin_pu_pll | rb_pin_pu_rx | rb_pin_pu_tx);
/*
* 20. Wait for PHY power up sequence to finish by checking output ports
* PIN_PLL_READY_TX=1 and PIN_PLL_READY_RX=1.
*/
ret = comphy_poll_reg(COMPHY_PHY_STAT1_ADDR(lane), /* address */
rb_pll_ready_tx | rb_pll_ready_rx, /* value */
rb_pll_ready_tx | rb_pll_ready_rx, /* mask */
POLL_32B_REG); /* 32bit */
if (!ret) {
printf("Failed to lock PLL for SGMII PHY %d\n", lane);
goto out;
}
/*
* 21. Set COMPHY input port PIN_TX_IDLE=0
*/
reg_set(COMPHY_PHY_CFG1_ADDR(lane), 0x0, rb_pin_tx_idle);
/*
* 22. After valid data appear on PIN_RXDATA bus, set PIN_RX_INIT=1.
* to start RX initialization. PIN_RX_INIT_DONE will be cleared to
* 0 by the PHY. After RX initialization is done, PIN_RX_INIT_DONE
* will be set to 1 by COMPHY. Set PIN_RX_INIT=0 after
* PIN_RX_INIT_DONE= 1.
* Please refer to RX initialization part for details.
*/
reg_set(COMPHY_PHY_CFG1_ADDR(lane), rb_phy_rx_init, 0x0);
ret = comphy_poll_reg(COMPHY_PHY_STAT1_ADDR(lane), /* address */
rb_rx_init_done, /* value */
rb_rx_init_done, /* mask */
POLL_32B_REG); /* 32bit */
if (!ret) {
printf("Failed to init RX of SGMII PHY %d\n", lane);
goto out;
}
/*
* Restore saved selector.
*/
reg_set(COMPHY_SEL_ADDR, saved_selector, 0xFFFFFFFF);
out:
debug_exit();
return ret;
}
void comphy_dedicated_phys_init(void)
{
int node, usb32, ret = 1;
const void *blob = gd->fdt_blob;
debug_enter();
for (usb32 = 0; usb32 <= 1; usb32++) {
/*
* There are 2 UTMI PHYs in this SOC.
* One is independendent and one is paired with USB3 port (OTG)
*/
if (usb32 == 0) {
node = fdt_node_offset_by_compatible(
blob, -1, "marvell,armada-3700-ehci");
} else {
node = fdt_node_offset_by_compatible(
blob, -1, "marvell,armada3700-xhci");
}
if (node > 0) {
if (fdtdec_get_is_enabled(blob, node)) {
ret = comphy_usb2_power_up(usb32);
if (!ret)
printf("Failed to initialize UTMI PHY\n");
else
debug("UTMI PHY init succeed\n");
} else {
debug("USB%d node is disabled\n",
usb32 == 0 ? 2 : 3);
}
} else {
debug("No USB%d node in DT\n", usb32 == 0 ? 2 : 3);
}
}
node = fdt_node_offset_by_compatible(blob, -1,
"marvell,armada-8k-sdhci");
if (node <= 0) {
node = fdt_node_offset_by_compatible(
blob, -1, "marvell,armada-3700-sdhci");
}
if (node > 0) {
if (fdtdec_get_is_enabled(blob, node)) {
ret = comphy_emmc_power_up();
if (!ret)
printf("Failed to initialize SDIO/eMMC PHY\n");
else
debug("SDIO/eMMC PHY init succeed\n");
} else {
debug("SDIO/eMMC node is disabled\n");
}
} else {
debug("No SDIO/eMMC node in DT\n");
}
debug_exit();
}
static int find_available_node_by_compatible(int offset, const char *compatible)
{
fdt_for_each_node_by_compatible(offset, gd->fdt_blob, offset,
compatible)
if (fdtdec_get_is_enabled(gd->fdt_blob, offset))
return offset;
return -1;
}
static bool comphy_a3700_find_lane(const int nodes[3], int node,
int port, int *lane, int *invert)
{
int res, i, j;
for (i = 0; ; i++) {
struct fdtdec_phandle_args args;
res = fdtdec_parse_phandle_with_args(gd->fdt_blob, node, "phys",
"#phy-cells", 0, i, &args);
if (res)
return false;
for (j = 0; j < 3; j++) {
if (nodes[j] >= 0 && args.node == nodes[j] &&
(args.args_count >= 1 ? args.args[0] : 0) == port) {
*lane = j;
*invert = args.args_count >= 2 ? args.args[1]
: 0;
return true;
}
}
}
return false;
}
static void comphy_a3700_fill_cfg(struct chip_serdes_phy_config *cfg,
const int nodes[3], const char *compatible,
int type)
{
int node, lane, port, speed, invert;
port = (type == COMPHY_TYPE_SGMII1) ? 1 : 0;
node = -1;
while (1) {
node = find_available_node_by_compatible(node, compatible);
if (node < 0)
return;
if (comphy_a3700_find_lane(nodes, node, port, &lane, &invert))
break;
}
if (cfg->comphy_map_data[lane].type != COMPHY_TYPE_UNCONNECTED) {
printf("Error: More PHYs defined for lane %d, skipping\n",
lane);
return;
}
if (type == COMPHY_TYPE_SGMII0 || type == COMPHY_TYPE_SGMII1) {
const char *phy_mode;
phy_mode = fdt_getprop(gd->fdt_blob, node, "phy-mode", NULL);
if (phy_mode &&
!strcmp(phy_mode,
phy_string_for_interface(PHY_INTERFACE_MODE_2500BASEX)))
speed = COMPHY_SPEED_3_125G;
else
speed = COMPHY_SPEED_1_25G;
} else if (type == COMPHY_TYPE_SATA0) {
speed = COMPHY_SPEED_6G;
} else {
speed = COMPHY_SPEED_5G;
}
cfg->comphy_map_data[lane].type = type;
cfg->comphy_map_data[lane].speed = speed;
cfg->comphy_map_data[lane].invert = invert;
}
static const fdt32_t comphy_a3700_mux_lane_order[3] = {
__constant_cpu_to_be32(1),
__constant_cpu_to_be32(0),
__constant_cpu_to_be32(2),
};
int comphy_a3700_init_serdes_map(int node, struct chip_serdes_phy_config *cfg)
{
int comphy_nodes[3];
int child, i;
for (i = 0; i < ARRAY_SIZE(comphy_nodes); i++)
comphy_nodes[i] = -FDT_ERR_NOTFOUND;
fdt_for_each_subnode(child, gd->fdt_blob, node) {
if (!fdtdec_get_is_enabled(gd->fdt_blob, child))
continue;
i = fdtdec_get_int(gd->fdt_blob, child, "reg", -1);
if (i < 0 || i >= ARRAY_SIZE(comphy_nodes))
continue;
comphy_nodes[i] = child;
}
for (i = 0; i < ARRAY_SIZE(comphy_nodes); i++) {
cfg->comphy_map_data[i].type = COMPHY_TYPE_UNCONNECTED;
cfg->comphy_map_data[i].speed = COMPHY_SPEED_INVALID;
}
comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada3700-u3d",
COMPHY_TYPE_USB3_DEVICE);
comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada3700-xhci",
COMPHY_TYPE_USB3_HOST0);
comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada-3700-pcie",
COMPHY_TYPE_PEX0);
comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada-3700-ahci",
COMPHY_TYPE_SATA0);
comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada-3700-neta",
COMPHY_TYPE_SGMII0);
comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada-3700-neta",
COMPHY_TYPE_SGMII1);
cfg->comphy_lanes_count = 3;
cfg->comphy_mux_bitcount = 4;
cfg->comphy_mux_lane_order = comphy_a3700_mux_lane_order;
return 0;
}
int comphy_a3700_init(struct chip_serdes_phy_config *chip_cfg,
struct comphy_map *serdes_map)
{
struct comphy_map *comphy_map;
u32 comphy_max_count = chip_cfg->comphy_lanes_count;
u32 lane, ret = 0;
debug_enter();
/* Initialize PHY mux */
chip_cfg->mux_data = a3700_comphy_mux_data;
comphy_mux_init(chip_cfg, serdes_map, COMPHY_SEL_ADDR);
for (lane = 0, comphy_map = serdes_map; lane < comphy_max_count;
lane++, comphy_map++) {
debug("Initialize serdes number %d\n", lane);
debug("Serdes type = 0x%x invert=%d\n",
comphy_map->type, comphy_map->invert);
switch (comphy_map->type) {
case COMPHY_TYPE_UNCONNECTED:
continue;
break;
case COMPHY_TYPE_PEX0:
ret = comphy_pcie_power_up(comphy_map->speed,
comphy_map->invert);
break;
case COMPHY_TYPE_USB3_HOST0:
case COMPHY_TYPE_USB3_DEVICE:
ret = comphy_usb3_power_up(lane,
comphy_map->type,
comphy_map->speed,
comphy_map->invert);
break;
case COMPHY_TYPE_SGMII0:
case COMPHY_TYPE_SGMII1:
ret = comphy_sgmii_power_up(lane, comphy_map->speed,
comphy_map->invert);
break;
case COMPHY_TYPE_SATA0:
ret = comphy_sata_power_up(comphy_map->invert);
break;
default:
debug("Unknown SerDes type, skip initialize SerDes %d\n",
lane);
ret = 1;
break;
}
if (!ret)
printf("PLL is not locked - Failed to initialize lane %d\n",
lane);
}
debug_exit();
return ret;
}