| /* |
| * Copyright (C) 2016 |
| * Author: Chen-Yu Tsai <wens@csie.org> |
| * |
| * Based on assembly code by Marc Zyngier <marc.zyngier@arm.com>, |
| * which was based on code by Carl van Schaik <carl@ok-labs.com>. |
| * |
| * SPDX-License-Identifier: GPL-2.0 |
| */ |
| #include <config.h> |
| #include <common.h> |
| |
| #include <asm/arch/cpu.h> |
| #include <asm/arch/cpucfg.h> |
| #include <asm/arch/prcm.h> |
| #include <asm/armv7.h> |
| #include <asm/gic.h> |
| #include <asm/io.h> |
| #include <asm/psci.h> |
| #include <asm/secure.h> |
| #include <asm/system.h> |
| |
| #include <linux/bitops.h> |
| |
| #define __irq __attribute__ ((interrupt ("IRQ"))) |
| |
| #define GICD_BASE (SUNXI_GIC400_BASE + GIC_DIST_OFFSET) |
| #define GICC_BASE (SUNXI_GIC400_BASE + GIC_CPU_OFFSET_A15) |
| |
| /* |
| * R40 is different from other single cluster SoCs. |
| * |
| * The power clamps are located in the unused space after the per-core |
| * reset controls for core 3. The secondary core entry address register |
| * is in the SRAM controller address range. |
| */ |
| #define SUN8I_R40_PWROFF (0x110) |
| #define SUN8I_R40_PWR_CLAMP(cpu) (0x120 + (cpu) * 0x4) |
| #define SUN8I_R40_SRAMC_SOFT_ENTRY_REG0 (0xbc) |
| |
| static void __secure cp15_write_cntp_tval(u32 tval) |
| { |
| asm volatile ("mcr p15, 0, %0, c14, c2, 0" : : "r" (tval)); |
| } |
| |
| static void __secure cp15_write_cntp_ctl(u32 val) |
| { |
| asm volatile ("mcr p15, 0, %0, c14, c2, 1" : : "r" (val)); |
| } |
| |
| static u32 __secure cp15_read_cntp_ctl(void) |
| { |
| u32 val; |
| |
| asm volatile ("mrc p15, 0, %0, c14, c2, 1" : "=r" (val)); |
| |
| return val; |
| } |
| |
| #define ONE_MS (COUNTER_FREQUENCY / 1000) |
| |
| static void __secure __mdelay(u32 ms) |
| { |
| u32 reg = ONE_MS * ms; |
| |
| cp15_write_cntp_tval(reg); |
| isb(); |
| cp15_write_cntp_ctl(3); |
| |
| do { |
| isb(); |
| reg = cp15_read_cntp_ctl(); |
| } while (!(reg & BIT(2))); |
| |
| cp15_write_cntp_ctl(0); |
| isb(); |
| } |
| |
| static void __secure clamp_release(u32 __maybe_unused *clamp) |
| { |
| #if defined(CONFIG_MACH_SUN6I) || defined(CONFIG_MACH_SUN7I) || \ |
| defined(CONFIG_MACH_SUN8I_H3) || \ |
| defined(CONFIG_MACH_SUN8I_R40) |
| u32 tmp = 0x1ff; |
| do { |
| tmp >>= 1; |
| writel(tmp, clamp); |
| } while (tmp); |
| |
| __mdelay(10); |
| #endif |
| } |
| |
| static void __secure clamp_set(u32 __maybe_unused *clamp) |
| { |
| #if defined(CONFIG_MACH_SUN6I) || defined(CONFIG_MACH_SUN7I) || \ |
| defined(CONFIG_MACH_SUN8I_H3) || \ |
| defined(CONFIG_MACH_SUN8I_R40) |
| writel(0xff, clamp); |
| #endif |
| } |
| |
| static void __secure sunxi_power_switch(u32 *clamp, u32 *pwroff, bool on, |
| int cpu) |
| { |
| if (on) { |
| /* Release power clamp */ |
| clamp_release(clamp); |
| |
| /* Clear power gating */ |
| clrbits_le32(pwroff, BIT(cpu)); |
| } else { |
| /* Set power gating */ |
| setbits_le32(pwroff, BIT(cpu)); |
| |
| /* Activate power clamp */ |
| clamp_set(clamp); |
| } |
| } |
| |
| #ifdef CONFIG_MACH_SUN8I_R40 |
| /* secondary core entry address is programmed differently on R40 */ |
| static void __secure sunxi_set_entry_address(void *entry) |
| { |
| writel((u32)entry, |
| SUNXI_SRAMC_BASE + SUN8I_R40_SRAMC_SOFT_ENTRY_REG0); |
| } |
| #else |
| static void __secure sunxi_set_entry_address(void *entry) |
| { |
| struct sunxi_cpucfg_reg *cpucfg = |
| (struct sunxi_cpucfg_reg *)SUNXI_CPUCFG_BASE; |
| |
| writel((u32)entry, &cpucfg->priv0); |
| } |
| #endif |
| |
| #ifdef CONFIG_MACH_SUN7I |
| /* sun7i (A20) is different from other single cluster SoCs */ |
| static void __secure sunxi_cpu_set_power(int __always_unused cpu, bool on) |
| { |
| struct sunxi_cpucfg_reg *cpucfg = |
| (struct sunxi_cpucfg_reg *)SUNXI_CPUCFG_BASE; |
| |
| sunxi_power_switch(&cpucfg->cpu1_pwr_clamp, &cpucfg->cpu1_pwroff, |
| on, 0); |
| } |
| #elif defined CONFIG_MACH_SUN8I_R40 |
| static void __secure sunxi_cpu_set_power(int cpu, bool on) |
| { |
| struct sunxi_cpucfg_reg *cpucfg = |
| (struct sunxi_cpucfg_reg *)SUNXI_CPUCFG_BASE; |
| |
| sunxi_power_switch((void *)cpucfg + SUN8I_R40_PWR_CLAMP(cpu), |
| (void *)cpucfg + SUN8I_R40_PWROFF, |
| on, 0); |
| } |
| #else /* ! CONFIG_MACH_SUN7I && ! CONFIG_MACH_SUN8I_R40 */ |
| static void __secure sunxi_cpu_set_power(int cpu, bool on) |
| { |
| struct sunxi_prcm_reg *prcm = |
| (struct sunxi_prcm_reg *)SUNXI_PRCM_BASE; |
| |
| sunxi_power_switch(&prcm->cpu_pwr_clamp[cpu], &prcm->cpu_pwroff, |
| on, cpu); |
| } |
| #endif /* CONFIG_MACH_SUN7I */ |
| |
| void __secure sunxi_cpu_power_off(u32 cpuid) |
| { |
| struct sunxi_cpucfg_reg *cpucfg = |
| (struct sunxi_cpucfg_reg *)SUNXI_CPUCFG_BASE; |
| u32 cpu = cpuid & 0x3; |
| |
| /* Wait for the core to enter WFI */ |
| while (1) { |
| if (readl(&cpucfg->cpu[cpu].status) & BIT(2)) |
| break; |
| __mdelay(1); |
| } |
| |
| /* Assert reset on target CPU */ |
| writel(0, &cpucfg->cpu[cpu].rst); |
| |
| /* Lock CPU (Disable external debug access) */ |
| clrbits_le32(&cpucfg->dbg_ctrl1, BIT(cpu)); |
| |
| /* Power down CPU */ |
| sunxi_cpu_set_power(cpuid, false); |
| |
| /* Unlock CPU (Disable external debug access) */ |
| setbits_le32(&cpucfg->dbg_ctrl1, BIT(cpu)); |
| } |
| |
| static u32 __secure cp15_read_scr(void) |
| { |
| u32 scr; |
| |
| asm volatile ("mrc p15, 0, %0, c1, c1, 0" : "=r" (scr)); |
| |
| return scr; |
| } |
| |
| static void __secure cp15_write_scr(u32 scr) |
| { |
| asm volatile ("mcr p15, 0, %0, c1, c1, 0" : : "r" (scr)); |
| isb(); |
| } |
| |
| /* |
| * Although this is an FIQ handler, the FIQ is processed in monitor mode, |
| * which means there's no FIQ banked registers. This is the same as IRQ |
| * mode, so use the IRQ attribute to ask the compiler to handler entry |
| * and return. |
| */ |
| void __secure __irq psci_fiq_enter(void) |
| { |
| u32 scr, reg, cpu; |
| |
| /* Switch to secure mode */ |
| scr = cp15_read_scr(); |
| cp15_write_scr(scr & ~BIT(0)); |
| |
| /* Validate reason based on IAR and acknowledge */ |
| reg = readl(GICC_BASE + GICC_IAR); |
| |
| /* Skip spurious interrupts 1022 and 1023 */ |
| if (reg == 1023 || reg == 1022) |
| goto out; |
| |
| /* End of interrupt */ |
| writel(reg, GICC_BASE + GICC_EOIR); |
| dsb(); |
| |
| /* Get CPU number */ |
| cpu = (reg >> 10) & 0x7; |
| |
| /* Power off the CPU */ |
| sunxi_cpu_power_off(cpu); |
| |
| out: |
| /* Restore security level */ |
| cp15_write_scr(scr); |
| } |
| |
| int __secure psci_cpu_on(u32 __always_unused unused, u32 mpidr, u32 pc) |
| { |
| struct sunxi_cpucfg_reg *cpucfg = |
| (struct sunxi_cpucfg_reg *)SUNXI_CPUCFG_BASE; |
| u32 cpu = (mpidr & 0x3); |
| |
| /* store target PC */ |
| psci_save_target_pc(cpu, pc); |
| |
| /* Set secondary core power on PC */ |
| sunxi_set_entry_address(&psci_cpu_entry); |
| |
| /* Assert reset on target CPU */ |
| writel(0, &cpucfg->cpu[cpu].rst); |
| |
| /* Invalidate L1 cache */ |
| clrbits_le32(&cpucfg->gen_ctrl, BIT(cpu)); |
| |
| /* Lock CPU (Disable external debug access) */ |
| clrbits_le32(&cpucfg->dbg_ctrl1, BIT(cpu)); |
| |
| /* Power up target CPU */ |
| sunxi_cpu_set_power(cpu, true); |
| |
| /* De-assert reset on target CPU */ |
| writel(BIT(1) | BIT(0), &cpucfg->cpu[cpu].rst); |
| |
| /* Unlock CPU (Disable external debug access) */ |
| setbits_le32(&cpucfg->dbg_ctrl1, BIT(cpu)); |
| |
| return ARM_PSCI_RET_SUCCESS; |
| } |
| |
| void __secure psci_cpu_off(void) |
| { |
| psci_cpu_off_common(); |
| |
| /* Ask CPU0 via SGI15 to pull the rug... */ |
| writel(BIT(16) | 15, GICD_BASE + GICD_SGIR); |
| dsb(); |
| |
| /* Wait to be turned off */ |
| while (1) |
| wfi(); |
| } |
| |
| void __secure psci_arch_init(void) |
| { |
| u32 reg; |
| |
| /* SGI15 as Group-0 */ |
| clrbits_le32(GICD_BASE + GICD_IGROUPRn, BIT(15)); |
| |
| /* Set SGI15 priority to 0 */ |
| writeb(0, GICD_BASE + GICD_IPRIORITYRn + 15); |
| |
| /* Be cool with non-secure */ |
| writel(0xff, GICC_BASE + GICC_PMR); |
| |
| /* Switch FIQEn on */ |
| setbits_le32(GICC_BASE + GICC_CTLR, BIT(3)); |
| |
| reg = cp15_read_scr(); |
| reg |= BIT(2); /* Enable FIQ in monitor mode */ |
| reg &= ~BIT(0); /* Secure mode */ |
| cp15_write_scr(reg); |
| } |