blob: 452fc3e3b97ccde238774011bcec30f42ace90b5 [file] [log] [blame]
/*
* Copyright (C) 2005-2006 Atmel Corporation
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <dm.h>
/*
* The u-boot networking stack is a little weird. It seems like the
* networking core allocates receive buffers up front without any
* regard to the hardware that's supposed to actually receive those
* packets.
*
* The MACB receives packets into 128-byte receive buffers, so the
* buffers allocated by the core isn't very practical to use. We'll
* allocate our own, but we need one such buffer in case a packet
* wraps around the DMA ring so that we have to copy it.
*
* Therefore, define CONFIG_SYS_RX_ETH_BUFFER to 1 in the board-specific
* configuration header. This way, the core allocates one RX buffer
* and one TX buffer, each of which can hold a ethernet packet of
* maximum size.
*
* For some reason, the networking core unconditionally specifies a
* 32-byte packet "alignment" (which really should be called
* "padding"). MACB shouldn't need that, but we'll refrain from any
* core modifications here...
*/
#include <net.h>
#ifndef CONFIG_DM_ETH
#include <netdev.h>
#endif
#include <malloc.h>
#include <miiphy.h>
#include <linux/mii.h>
#include <asm/io.h>
#include <asm/dma-mapping.h>
#include <asm/arch/clk.h>
#include <linux/errno.h>
#include "macb.h"
DECLARE_GLOBAL_DATA_PTR;
#define MACB_RX_BUFFER_SIZE 4096
#define MACB_RX_RING_SIZE (MACB_RX_BUFFER_SIZE / 128)
#define MACB_TX_RING_SIZE 16
#define MACB_TX_TIMEOUT 1000
#define MACB_AUTONEG_TIMEOUT 5000000
struct macb_dma_desc {
u32 addr;
u32 ctrl;
};
#define DMA_DESC_BYTES(n) (n * sizeof(struct macb_dma_desc))
#define MACB_TX_DMA_DESC_SIZE (DMA_DESC_BYTES(MACB_TX_RING_SIZE))
#define MACB_RX_DMA_DESC_SIZE (DMA_DESC_BYTES(MACB_RX_RING_SIZE))
#define MACB_TX_DUMMY_DMA_DESC_SIZE (DMA_DESC_BYTES(1))
#define RXADDR_USED 0x00000001
#define RXADDR_WRAP 0x00000002
#define RXBUF_FRMLEN_MASK 0x00000fff
#define RXBUF_FRAME_START 0x00004000
#define RXBUF_FRAME_END 0x00008000
#define RXBUF_TYPEID_MATCH 0x00400000
#define RXBUF_ADDR4_MATCH 0x00800000
#define RXBUF_ADDR3_MATCH 0x01000000
#define RXBUF_ADDR2_MATCH 0x02000000
#define RXBUF_ADDR1_MATCH 0x04000000
#define RXBUF_BROADCAST 0x80000000
#define TXBUF_FRMLEN_MASK 0x000007ff
#define TXBUF_FRAME_END 0x00008000
#define TXBUF_NOCRC 0x00010000
#define TXBUF_EXHAUSTED 0x08000000
#define TXBUF_UNDERRUN 0x10000000
#define TXBUF_MAXRETRY 0x20000000
#define TXBUF_WRAP 0x40000000
#define TXBUF_USED 0x80000000
struct macb_device {
void *regs;
unsigned int rx_tail;
unsigned int tx_head;
unsigned int tx_tail;
unsigned int next_rx_tail;
bool wrapped;
void *rx_buffer;
void *tx_buffer;
struct macb_dma_desc *rx_ring;
struct macb_dma_desc *tx_ring;
unsigned long rx_buffer_dma;
unsigned long rx_ring_dma;
unsigned long tx_ring_dma;
struct macb_dma_desc *dummy_desc;
unsigned long dummy_desc_dma;
const struct device *dev;
#ifndef CONFIG_DM_ETH
struct eth_device netdev;
#endif
unsigned short phy_addr;
struct mii_dev *bus;
#ifdef CONFIG_DM_ETH
phy_interface_t phy_interface;
#endif
};
#ifndef CONFIG_DM_ETH
#define to_macb(_nd) container_of(_nd, struct macb_device, netdev)
#endif
static int macb_is_gem(struct macb_device *macb)
{
return MACB_BFEXT(IDNUM, macb_readl(macb, MID)) == 0x2;
}
#ifndef cpu_is_sama5d2
#define cpu_is_sama5d2() 0
#endif
#ifndef cpu_is_sama5d4
#define cpu_is_sama5d4() 0
#endif
static int gem_is_gigabit_capable(struct macb_device *macb)
{
/*
* The GEM controllers embedded in SAMA5D2 and SAMA5D4 are
* configured to support only 10/100.
*/
return macb_is_gem(macb) && !cpu_is_sama5d2() && !cpu_is_sama5d4();
}
static void macb_mdio_write(struct macb_device *macb, u8 reg, u16 value)
{
unsigned long netctl;
unsigned long netstat;
unsigned long frame;
netctl = macb_readl(macb, NCR);
netctl |= MACB_BIT(MPE);
macb_writel(macb, NCR, netctl);
frame = (MACB_BF(SOF, 1)
| MACB_BF(RW, 1)
| MACB_BF(PHYA, macb->phy_addr)
| MACB_BF(REGA, reg)
| MACB_BF(CODE, 2)
| MACB_BF(DATA, value));
macb_writel(macb, MAN, frame);
do {
netstat = macb_readl(macb, NSR);
} while (!(netstat & MACB_BIT(IDLE)));
netctl = macb_readl(macb, NCR);
netctl &= ~MACB_BIT(MPE);
macb_writel(macb, NCR, netctl);
}
static u16 macb_mdio_read(struct macb_device *macb, u8 reg)
{
unsigned long netctl;
unsigned long netstat;
unsigned long frame;
netctl = macb_readl(macb, NCR);
netctl |= MACB_BIT(MPE);
macb_writel(macb, NCR, netctl);
frame = (MACB_BF(SOF, 1)
| MACB_BF(RW, 2)
| MACB_BF(PHYA, macb->phy_addr)
| MACB_BF(REGA, reg)
| MACB_BF(CODE, 2));
macb_writel(macb, MAN, frame);
do {
netstat = macb_readl(macb, NSR);
} while (!(netstat & MACB_BIT(IDLE)));
frame = macb_readl(macb, MAN);
netctl = macb_readl(macb, NCR);
netctl &= ~MACB_BIT(MPE);
macb_writel(macb, NCR, netctl);
return MACB_BFEXT(DATA, frame);
}
void __weak arch_get_mdio_control(const char *name)
{
return;
}
#if defined(CONFIG_CMD_MII) || defined(CONFIG_PHYLIB)
int macb_miiphy_read(struct mii_dev *bus, int phy_adr, int devad, int reg)
{
u16 value = 0;
#ifdef CONFIG_DM_ETH
struct udevice *dev = eth_get_dev_by_name(bus->name);
struct macb_device *macb = dev_get_priv(dev);
#else
struct eth_device *dev = eth_get_dev_by_name(bus->name);
struct macb_device *macb = to_macb(dev);
#endif
if (macb->phy_addr != phy_adr)
return -1;
arch_get_mdio_control(bus->name);
value = macb_mdio_read(macb, reg);
return value;
}
int macb_miiphy_write(struct mii_dev *bus, int phy_adr, int devad, int reg,
u16 value)
{
#ifdef CONFIG_DM_ETH
struct udevice *dev = eth_get_dev_by_name(bus->name);
struct macb_device *macb = dev_get_priv(dev);
#else
struct eth_device *dev = eth_get_dev_by_name(bus->name);
struct macb_device *macb = to_macb(dev);
#endif
if (macb->phy_addr != phy_adr)
return -1;
arch_get_mdio_control(bus->name);
macb_mdio_write(macb, reg, value);
return 0;
}
#endif
#define RX 1
#define TX 0
static inline void macb_invalidate_ring_desc(struct macb_device *macb, bool rx)
{
if (rx)
invalidate_dcache_range(macb->rx_ring_dma,
ALIGN(macb->rx_ring_dma + MACB_RX_DMA_DESC_SIZE,
PKTALIGN));
else
invalidate_dcache_range(macb->tx_ring_dma,
ALIGN(macb->tx_ring_dma + MACB_TX_DMA_DESC_SIZE,
PKTALIGN));
}
static inline void macb_flush_ring_desc(struct macb_device *macb, bool rx)
{
if (rx)
flush_dcache_range(macb->rx_ring_dma, macb->rx_ring_dma +
ALIGN(MACB_RX_DMA_DESC_SIZE, PKTALIGN));
else
flush_dcache_range(macb->tx_ring_dma, macb->tx_ring_dma +
ALIGN(MACB_TX_DMA_DESC_SIZE, PKTALIGN));
}
static inline void macb_flush_rx_buffer(struct macb_device *macb)
{
flush_dcache_range(macb->rx_buffer_dma, macb->rx_buffer_dma +
ALIGN(MACB_RX_BUFFER_SIZE, PKTALIGN));
}
static inline void macb_invalidate_rx_buffer(struct macb_device *macb)
{
invalidate_dcache_range(macb->rx_buffer_dma, macb->rx_buffer_dma +
ALIGN(MACB_RX_BUFFER_SIZE, PKTALIGN));
}
#if defined(CONFIG_CMD_NET)
static int _macb_send(struct macb_device *macb, const char *name, void *packet,
int length)
{
unsigned long paddr, ctrl;
unsigned int tx_head = macb->tx_head;
int i;
paddr = dma_map_single(packet, length, DMA_TO_DEVICE);
ctrl = length & TXBUF_FRMLEN_MASK;
ctrl |= TXBUF_FRAME_END;
if (tx_head == (MACB_TX_RING_SIZE - 1)) {
ctrl |= TXBUF_WRAP;
macb->tx_head = 0;
} else {
macb->tx_head++;
}
macb->tx_ring[tx_head].ctrl = ctrl;
macb->tx_ring[tx_head].addr = paddr;
barrier();
macb_flush_ring_desc(macb, TX);
/* Do we need check paddr and length is dcache line aligned? */
flush_dcache_range(paddr, paddr + ALIGN(length, ARCH_DMA_MINALIGN));
macb_writel(macb, NCR, MACB_BIT(TE) | MACB_BIT(RE) | MACB_BIT(TSTART));
/*
* I guess this is necessary because the networking core may
* re-use the transmit buffer as soon as we return...
*/
for (i = 0; i <= MACB_TX_TIMEOUT; i++) {
barrier();
macb_invalidate_ring_desc(macb, TX);
ctrl = macb->tx_ring[tx_head].ctrl;
if (ctrl & TXBUF_USED)
break;
udelay(1);
}
dma_unmap_single(packet, length, paddr);
if (i <= MACB_TX_TIMEOUT) {
if (ctrl & TXBUF_UNDERRUN)
printf("%s: TX underrun\n", name);
if (ctrl & TXBUF_EXHAUSTED)
printf("%s: TX buffers exhausted in mid frame\n", name);
} else {
printf("%s: TX timeout\n", name);
}
/* No one cares anyway */
return 0;
}
static void reclaim_rx_buffers(struct macb_device *macb,
unsigned int new_tail)
{
unsigned int i;
i = macb->rx_tail;
macb_invalidate_ring_desc(macb, RX);
while (i > new_tail) {
macb->rx_ring[i].addr &= ~RXADDR_USED;
i++;
if (i > MACB_RX_RING_SIZE)
i = 0;
}
while (i < new_tail) {
macb->rx_ring[i].addr &= ~RXADDR_USED;
i++;
}
barrier();
macb_flush_ring_desc(macb, RX);
macb->rx_tail = new_tail;
}
static int _macb_recv(struct macb_device *macb, uchar **packetp)
{
unsigned int next_rx_tail = macb->next_rx_tail;
void *buffer;
int length;
u32 status;
macb->wrapped = false;
for (;;) {
macb_invalidate_ring_desc(macb, RX);
if (!(macb->rx_ring[next_rx_tail].addr & RXADDR_USED))
return -EAGAIN;
status = macb->rx_ring[next_rx_tail].ctrl;
if (status & RXBUF_FRAME_START) {
if (next_rx_tail != macb->rx_tail)
reclaim_rx_buffers(macb, next_rx_tail);
macb->wrapped = false;
}
if (status & RXBUF_FRAME_END) {
buffer = macb->rx_buffer + 128 * macb->rx_tail;
length = status & RXBUF_FRMLEN_MASK;
macb_invalidate_rx_buffer(macb);
if (macb->wrapped) {
unsigned int headlen, taillen;
headlen = 128 * (MACB_RX_RING_SIZE
- macb->rx_tail);
taillen = length - headlen;
memcpy((void *)net_rx_packets[0],
buffer, headlen);
memcpy((void *)net_rx_packets[0] + headlen,
macb->rx_buffer, taillen);
*packetp = (void *)net_rx_packets[0];
} else {
*packetp = buffer;
}
if (++next_rx_tail >= MACB_RX_RING_SIZE)
next_rx_tail = 0;
macb->next_rx_tail = next_rx_tail;
return length;
} else {
if (++next_rx_tail >= MACB_RX_RING_SIZE) {
macb->wrapped = true;
next_rx_tail = 0;
}
}
barrier();
}
}
static void macb_phy_reset(struct macb_device *macb, const char *name)
{
int i;
u16 status, adv;
adv = ADVERTISE_CSMA | ADVERTISE_ALL;
macb_mdio_write(macb, MII_ADVERTISE, adv);
printf("%s: Starting autonegotiation...\n", name);
macb_mdio_write(macb, MII_BMCR, (BMCR_ANENABLE
| BMCR_ANRESTART));
for (i = 0; i < MACB_AUTONEG_TIMEOUT / 100; i++) {
status = macb_mdio_read(macb, MII_BMSR);
if (status & BMSR_ANEGCOMPLETE)
break;
udelay(100);
}
if (status & BMSR_ANEGCOMPLETE)
printf("%s: Autonegotiation complete\n", name);
else
printf("%s: Autonegotiation timed out (status=0x%04x)\n",
name, status);
}
#ifdef CONFIG_MACB_SEARCH_PHY
static int macb_phy_find(struct macb_device *macb, const char *name)
{
int i;
u16 phy_id;
/* Search for PHY... */
for (i = 0; i < 32; i++) {
macb->phy_addr = i;
phy_id = macb_mdio_read(macb, MII_PHYSID1);
if (phy_id != 0xffff) {
printf("%s: PHY present at %d\n", name, i);
return 1;
}
}
/* PHY isn't up to snuff */
printf("%s: PHY not found\n", name);
return 0;
}
#endif /* CONFIG_MACB_SEARCH_PHY */
#ifdef CONFIG_DM_ETH
static int macb_phy_init(struct udevice *dev, const char *name)
#else
static int macb_phy_init(struct macb_device *macb, const char *name)
#endif
{
#ifdef CONFIG_DM_ETH
struct macb_device *macb = dev_get_priv(dev);
#endif
#ifdef CONFIG_PHYLIB
struct phy_device *phydev;
#endif
u32 ncfgr;
u16 phy_id, status, adv, lpa;
int media, speed, duplex;
int i;
arch_get_mdio_control(name);
#ifdef CONFIG_MACB_SEARCH_PHY
/* Auto-detect phy_addr */
if (!macb_phy_find(macb, name))
return 0;
#endif /* CONFIG_MACB_SEARCH_PHY */
/* Check if the PHY is up to snuff... */
phy_id = macb_mdio_read(macb, MII_PHYSID1);
if (phy_id == 0xffff) {
printf("%s: No PHY present\n", name);
return 0;
}
#ifdef CONFIG_PHYLIB
#ifdef CONFIG_DM_ETH
phydev = phy_connect(macb->bus, macb->phy_addr, dev,
macb->phy_interface);
#else
/* need to consider other phy interface mode */
phydev = phy_connect(macb->bus, macb->phy_addr, &macb->netdev,
PHY_INTERFACE_MODE_RGMII);
#endif
if (!phydev) {
printf("phy_connect failed\n");
return -ENODEV;
}
phy_config(phydev);
#endif
status = macb_mdio_read(macb, MII_BMSR);
if (!(status & BMSR_LSTATUS)) {
/* Try to re-negotiate if we don't have link already. */
macb_phy_reset(macb, name);
for (i = 0; i < MACB_AUTONEG_TIMEOUT / 100; i++) {
status = macb_mdio_read(macb, MII_BMSR);
if (status & BMSR_LSTATUS)
break;
udelay(100);
}
}
if (!(status & BMSR_LSTATUS)) {
printf("%s: link down (status: 0x%04x)\n",
name, status);
return 0;
}
/* First check for GMAC and that it is GiB capable */
if (gem_is_gigabit_capable(macb)) {
lpa = macb_mdio_read(macb, MII_STAT1000);
if (lpa & (LPA_1000FULL | LPA_1000HALF)) {
duplex = ((lpa & LPA_1000FULL) ? 1 : 0);
printf("%s: link up, 1000Mbps %s-duplex (lpa: 0x%04x)\n",
name,
duplex ? "full" : "half",
lpa);
ncfgr = macb_readl(macb, NCFGR);
ncfgr &= ~(MACB_BIT(SPD) | MACB_BIT(FD));
ncfgr |= GEM_BIT(GBE);
if (duplex)
ncfgr |= MACB_BIT(FD);
macb_writel(macb, NCFGR, ncfgr);
return 1;
}
}
/* fall back for EMAC checking */
adv = macb_mdio_read(macb, MII_ADVERTISE);
lpa = macb_mdio_read(macb, MII_LPA);
media = mii_nway_result(lpa & adv);
speed = (media & (ADVERTISE_100FULL | ADVERTISE_100HALF)
? 1 : 0);
duplex = (media & ADVERTISE_FULL) ? 1 : 0;
printf("%s: link up, %sMbps %s-duplex (lpa: 0x%04x)\n",
name,
speed ? "100" : "10",
duplex ? "full" : "half",
lpa);
ncfgr = macb_readl(macb, NCFGR);
ncfgr &= ~(MACB_BIT(SPD) | MACB_BIT(FD) | GEM_BIT(GBE));
if (speed)
ncfgr |= MACB_BIT(SPD);
if (duplex)
ncfgr |= MACB_BIT(FD);
macb_writel(macb, NCFGR, ncfgr);
return 1;
}
static int gmac_init_multi_queues(struct macb_device *macb)
{
int i, num_queues = 1;
u32 queue_mask;
/* bit 0 is never set but queue 0 always exists */
queue_mask = gem_readl(macb, DCFG6) & 0xff;
queue_mask |= 0x1;
for (i = 1; i < MACB_MAX_QUEUES; i++)
if (queue_mask & (1 << i))
num_queues++;
macb->dummy_desc->ctrl = TXBUF_USED;
macb->dummy_desc->addr = 0;
flush_dcache_range(macb->dummy_desc_dma, macb->dummy_desc_dma +
ALIGN(MACB_TX_DUMMY_DMA_DESC_SIZE, PKTALIGN));
for (i = 1; i < num_queues; i++)
gem_writel_queue_TBQP(macb, macb->dummy_desc_dma, i - 1);
return 0;
}
#ifdef CONFIG_DM_ETH
static int _macb_init(struct udevice *dev, const char *name)
#else
static int _macb_init(struct macb_device *macb, const char *name)
#endif
{
#ifdef CONFIG_DM_ETH
struct macb_device *macb = dev_get_priv(dev);
#endif
unsigned long paddr;
int i;
/*
* macb_halt should have been called at some point before now,
* so we'll assume the controller is idle.
*/
/* initialize DMA descriptors */
paddr = macb->rx_buffer_dma;
for (i = 0; i < MACB_RX_RING_SIZE; i++) {
if (i == (MACB_RX_RING_SIZE - 1))
paddr |= RXADDR_WRAP;
macb->rx_ring[i].addr = paddr;
macb->rx_ring[i].ctrl = 0;
paddr += 128;
}
macb_flush_ring_desc(macb, RX);
macb_flush_rx_buffer(macb);
for (i = 0; i < MACB_TX_RING_SIZE; i++) {
macb->tx_ring[i].addr = 0;
if (i == (MACB_TX_RING_SIZE - 1))
macb->tx_ring[i].ctrl = TXBUF_USED | TXBUF_WRAP;
else
macb->tx_ring[i].ctrl = TXBUF_USED;
}
macb_flush_ring_desc(macb, TX);
macb->rx_tail = 0;
macb->tx_head = 0;
macb->tx_tail = 0;
macb->next_rx_tail = 0;
macb_writel(macb, RBQP, macb->rx_ring_dma);
macb_writel(macb, TBQP, macb->tx_ring_dma);
if (macb_is_gem(macb)) {
/* Check the multi queue and initialize the queue for tx */
gmac_init_multi_queues(macb);
/*
* When the GMAC IP with GE feature, this bit is used to
* select interface between RGMII and GMII.
* When the GMAC IP without GE feature, this bit is used
* to select interface between RMII and MII.
*/
#ifdef CONFIG_DM_ETH
if (macb->phy_interface == PHY_INTERFACE_MODE_RMII)
gem_writel(macb, UR, GEM_BIT(RGMII));
else
gem_writel(macb, UR, 0);
#else
#if defined(CONFIG_RGMII) || defined(CONFIG_RMII)
gem_writel(macb, UR, GEM_BIT(RGMII));
#else
gem_writel(macb, UR, 0);
#endif
#endif
} else {
/* choose RMII or MII mode. This depends on the board */
#ifdef CONFIG_DM_ETH
#ifdef CONFIG_AT91FAMILY
if (macb->phy_interface == PHY_INTERFACE_MODE_RMII) {
macb_writel(macb, USRIO,
MACB_BIT(RMII) | MACB_BIT(CLKEN));
} else {
macb_writel(macb, USRIO, MACB_BIT(CLKEN));
}
#else
if (macb->phy_interface == PHY_INTERFACE_MODE_RMII)
macb_writel(macb, USRIO, 0);
else
macb_writel(macb, USRIO, MACB_BIT(MII));
#endif
#else
#ifdef CONFIG_RMII
#ifdef CONFIG_AT91FAMILY
macb_writel(macb, USRIO, MACB_BIT(RMII) | MACB_BIT(CLKEN));
#else
macb_writel(macb, USRIO, 0);
#endif
#else
#ifdef CONFIG_AT91FAMILY
macb_writel(macb, USRIO, MACB_BIT(CLKEN));
#else
macb_writel(macb, USRIO, MACB_BIT(MII));
#endif
#endif /* CONFIG_RMII */
#endif
}
#ifdef CONFIG_DM_ETH
if (!macb_phy_init(dev, name))
#else
if (!macb_phy_init(macb, name))
#endif
return -1;
/* Enable TX and RX */
macb_writel(macb, NCR, MACB_BIT(TE) | MACB_BIT(RE));
return 0;
}
static void _macb_halt(struct macb_device *macb)
{
u32 ncr, tsr;
/* Halt the controller and wait for any ongoing transmission to end. */
ncr = macb_readl(macb, NCR);
ncr |= MACB_BIT(THALT);
macb_writel(macb, NCR, ncr);
do {
tsr = macb_readl(macb, TSR);
} while (tsr & MACB_BIT(TGO));
/* Disable TX and RX, and clear statistics */
macb_writel(macb, NCR, MACB_BIT(CLRSTAT));
}
static int _macb_write_hwaddr(struct macb_device *macb, unsigned char *enetaddr)
{
u32 hwaddr_bottom;
u16 hwaddr_top;
/* set hardware address */
hwaddr_bottom = enetaddr[0] | enetaddr[1] << 8 |
enetaddr[2] << 16 | enetaddr[3] << 24;
macb_writel(macb, SA1B, hwaddr_bottom);
hwaddr_top = enetaddr[4] | enetaddr[5] << 8;
macb_writel(macb, SA1T, hwaddr_top);
return 0;
}
static u32 macb_mdc_clk_div(int id, struct macb_device *macb)
{
u32 config;
unsigned long macb_hz = get_macb_pclk_rate(id);
if (macb_hz < 20000000)
config = MACB_BF(CLK, MACB_CLK_DIV8);
else if (macb_hz < 40000000)
config = MACB_BF(CLK, MACB_CLK_DIV16);
else if (macb_hz < 80000000)
config = MACB_BF(CLK, MACB_CLK_DIV32);
else
config = MACB_BF(CLK, MACB_CLK_DIV64);
return config;
}
static u32 gem_mdc_clk_div(int id, struct macb_device *macb)
{
u32 config;
unsigned long macb_hz = get_macb_pclk_rate(id);
if (macb_hz < 20000000)
config = GEM_BF(CLK, GEM_CLK_DIV8);
else if (macb_hz < 40000000)
config = GEM_BF(CLK, GEM_CLK_DIV16);
else if (macb_hz < 80000000)
config = GEM_BF(CLK, GEM_CLK_DIV32);
else if (macb_hz < 120000000)
config = GEM_BF(CLK, GEM_CLK_DIV48);
else if (macb_hz < 160000000)
config = GEM_BF(CLK, GEM_CLK_DIV64);
else
config = GEM_BF(CLK, GEM_CLK_DIV96);
return config;
}
/*
* Get the DMA bus width field of the network configuration register that we
* should program. We find the width from decoding the design configuration
* register to find the maximum supported data bus width.
*/
static u32 macb_dbw(struct macb_device *macb)
{
switch (GEM_BFEXT(DBWDEF, gem_readl(macb, DCFG1))) {
case 4:
return GEM_BF(DBW, GEM_DBW128);
case 2:
return GEM_BF(DBW, GEM_DBW64);
case 1:
default:
return GEM_BF(DBW, GEM_DBW32);
}
}
static void _macb_eth_initialize(struct macb_device *macb)
{
int id = 0; /* This is not used by functions we call */
u32 ncfgr;
/* TODO: we need check the rx/tx_ring_dma is dcache line aligned */
macb->rx_buffer = dma_alloc_coherent(MACB_RX_BUFFER_SIZE,
&macb->rx_buffer_dma);
macb->rx_ring = dma_alloc_coherent(MACB_RX_DMA_DESC_SIZE,
&macb->rx_ring_dma);
macb->tx_ring = dma_alloc_coherent(MACB_TX_DMA_DESC_SIZE,
&macb->tx_ring_dma);
macb->dummy_desc = dma_alloc_coherent(MACB_TX_DUMMY_DMA_DESC_SIZE,
&macb->dummy_desc_dma);
/*
* Do some basic initialization so that we at least can talk
* to the PHY
*/
if (macb_is_gem(macb)) {
ncfgr = gem_mdc_clk_div(id, macb);
ncfgr |= macb_dbw(macb);
} else {
ncfgr = macb_mdc_clk_div(id, macb);
}
macb_writel(macb, NCFGR, ncfgr);
}
#ifndef CONFIG_DM_ETH
static int macb_send(struct eth_device *netdev, void *packet, int length)
{
struct macb_device *macb = to_macb(netdev);
return _macb_send(macb, netdev->name, packet, length);
}
static int macb_recv(struct eth_device *netdev)
{
struct macb_device *macb = to_macb(netdev);
uchar *packet;
int length;
macb->wrapped = false;
for (;;) {
macb->next_rx_tail = macb->rx_tail;
length = _macb_recv(macb, &packet);
if (length >= 0) {
net_process_received_packet(packet, length);
reclaim_rx_buffers(macb, macb->next_rx_tail);
} else if (length < 0) {
return length;
}
}
}
static int macb_init(struct eth_device *netdev, bd_t *bd)
{
struct macb_device *macb = to_macb(netdev);
return _macb_init(macb, netdev->name);
}
static void macb_halt(struct eth_device *netdev)
{
struct macb_device *macb = to_macb(netdev);
return _macb_halt(macb);
}
static int macb_write_hwaddr(struct eth_device *netdev)
{
struct macb_device *macb = to_macb(netdev);
return _macb_write_hwaddr(macb, netdev->enetaddr);
}
int macb_eth_initialize(int id, void *regs, unsigned int phy_addr)
{
struct macb_device *macb;
struct eth_device *netdev;
macb = malloc(sizeof(struct macb_device));
if (!macb) {
printf("Error: Failed to allocate memory for MACB%d\n", id);
return -1;
}
memset(macb, 0, sizeof(struct macb_device));
netdev = &macb->netdev;
macb->regs = regs;
macb->phy_addr = phy_addr;
if (macb_is_gem(macb))
sprintf(netdev->name, "gmac%d", id);
else
sprintf(netdev->name, "macb%d", id);
netdev->init = macb_init;
netdev->halt = macb_halt;
netdev->send = macb_send;
netdev->recv = macb_recv;
netdev->write_hwaddr = macb_write_hwaddr;
_macb_eth_initialize(macb);
eth_register(netdev);
#if defined(CONFIG_CMD_MII) || defined(CONFIG_PHYLIB)
int retval;
struct mii_dev *mdiodev = mdio_alloc();
if (!mdiodev)
return -ENOMEM;
strncpy(mdiodev->name, netdev->name, MDIO_NAME_LEN);
mdiodev->read = macb_miiphy_read;
mdiodev->write = macb_miiphy_write;
retval = mdio_register(mdiodev);
if (retval < 0)
return retval;
macb->bus = miiphy_get_dev_by_name(netdev->name);
#endif
return 0;
}
#endif /* !CONFIG_DM_ETH */
#ifdef CONFIG_DM_ETH
static int macb_start(struct udevice *dev)
{
return _macb_init(dev, dev->name);
}
static int macb_send(struct udevice *dev, void *packet, int length)
{
struct macb_device *macb = dev_get_priv(dev);
return _macb_send(macb, dev->name, packet, length);
}
static int macb_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct macb_device *macb = dev_get_priv(dev);
macb->next_rx_tail = macb->rx_tail;
macb->wrapped = false;
return _macb_recv(macb, packetp);
}
static int macb_free_pkt(struct udevice *dev, uchar *packet, int length)
{
struct macb_device *macb = dev_get_priv(dev);
reclaim_rx_buffers(macb, macb->next_rx_tail);
return 0;
}
static void macb_stop(struct udevice *dev)
{
struct macb_device *macb = dev_get_priv(dev);
_macb_halt(macb);
}
static int macb_write_hwaddr(struct udevice *dev)
{
struct eth_pdata *plat = dev_get_platdata(dev);
struct macb_device *macb = dev_get_priv(dev);
return _macb_write_hwaddr(macb, plat->enetaddr);
}
static const struct eth_ops macb_eth_ops = {
.start = macb_start,
.send = macb_send,
.recv = macb_recv,
.stop = macb_stop,
.free_pkt = macb_free_pkt,
.write_hwaddr = macb_write_hwaddr,
};
static int macb_eth_probe(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_platdata(dev);
struct macb_device *macb = dev_get_priv(dev);
#ifdef CONFIG_DM_ETH
const char *phy_mode;
phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
NULL);
if (phy_mode)
macb->phy_interface = phy_get_interface_by_name(phy_mode);
if (macb->phy_interface == -1) {
debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
return -EINVAL;
}
#endif
macb->regs = (void *)pdata->iobase;
_macb_eth_initialize(macb);
#if defined(CONFIG_CMD_MII) || defined(CONFIG_PHYLIB)
int retval;
struct mii_dev *mdiodev = mdio_alloc();
if (!mdiodev)
return -ENOMEM;
strncpy(mdiodev->name, dev->name, MDIO_NAME_LEN);
mdiodev->read = macb_miiphy_read;
mdiodev->write = macb_miiphy_write;
retval = mdio_register(mdiodev);
if (retval < 0)
return retval;
macb->bus = miiphy_get_dev_by_name(dev->name);
#endif
return 0;
}
static int macb_eth_ofdata_to_platdata(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_platdata(dev);
pdata->iobase = dev_get_addr(dev);
return 0;
}
static const struct udevice_id macb_eth_ids[] = {
{ .compatible = "cdns,macb" },
{ }
};
U_BOOT_DRIVER(eth_macb) = {
.name = "eth_macb",
.id = UCLASS_ETH,
.of_match = macb_eth_ids,
.ofdata_to_platdata = macb_eth_ofdata_to_platdata,
.probe = macb_eth_probe,
.ops = &macb_eth_ops,
.priv_auto_alloc_size = sizeof(struct macb_device),
.platdata_auto_alloc_size = sizeof(struct eth_pdata),
};
#endif
#endif