blob: b010d0b552adaa11e64de768e754c4d8f0ca0e1a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2007
* Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com
*
* Copyright 2010-2011 Freescale Semiconductor, Inc.
*/
#include <common.h>
#include <env.h>
#include <log.h>
#include <mapmem.h>
#include <net.h>
#include <stdio_dev.h>
#include <linux/ctype.h>
#include <linux/types.h>
#include <asm/global_data.h>
#include <linux/libfdt.h>
#include <fdt_support.h>
#include <exports.h>
#include <fdtdec.h>
/**
* fdt_getprop_u32_default_node - Return a node's property or a default
*
* @fdt: ptr to device tree
* @off: offset of node
* @cell: cell offset in property
* @prop: property name
* @dflt: default value if the property isn't found
*
* Convenience function to return a node's property or a default value if
* the property doesn't exist.
*/
u32 fdt_getprop_u32_default_node(const void *fdt, int off, int cell,
const char *prop, const u32 dflt)
{
const fdt32_t *val;
int len;
val = fdt_getprop(fdt, off, prop, &len);
/* Check if property exists */
if (!val)
return dflt;
/* Check if property is long enough */
if (len < ((cell + 1) * sizeof(uint32_t)))
return dflt;
return fdt32_to_cpu(*val);
}
/**
* fdt_getprop_u32_default - Find a node and return it's property or a default
*
* @fdt: ptr to device tree
* @path: path of node
* @prop: property name
* @dflt: default value if the property isn't found
*
* Convenience function to find a node and return it's property or a
* default value if it doesn't exist.
*/
u32 fdt_getprop_u32_default(const void *fdt, const char *path,
const char *prop, const u32 dflt)
{
int off;
off = fdt_path_offset(fdt, path);
if (off < 0)
return dflt;
return fdt_getprop_u32_default_node(fdt, off, 0, prop, dflt);
}
/**
* fdt_find_and_setprop: Find a node and set it's property
*
* @fdt: ptr to device tree
* @node: path of node
* @prop: property name
* @val: ptr to new value
* @len: length of new property value
* @create: flag to create the property if it doesn't exist
*
* Convenience function to directly set a property given the path to the node.
*/
int fdt_find_and_setprop(void *fdt, const char *node, const char *prop,
const void *val, int len, int create)
{
int nodeoff = fdt_path_offset(fdt, node);
if (nodeoff < 0)
return nodeoff;
if ((!create) && (fdt_get_property(fdt, nodeoff, prop, NULL) == NULL))
return 0; /* create flag not set; so exit quietly */
return fdt_setprop(fdt, nodeoff, prop, val, len);
}
/**
* fdt_find_or_add_subnode() - find or possibly add a subnode of a given node
*
* @fdt: pointer to the device tree blob
* @parentoffset: structure block offset of a node
* @name: name of the subnode to locate
*
* fdt_subnode_offset() finds a subnode of the node with a given name.
* If the subnode does not exist, it will be created.
*/
int fdt_find_or_add_subnode(void *fdt, int parentoffset, const char *name)
{
int offset;
offset = fdt_subnode_offset(fdt, parentoffset, name);
if (offset == -FDT_ERR_NOTFOUND)
offset = fdt_add_subnode(fdt, parentoffset, name);
if (offset < 0)
printf("%s: %s: %s\n", __func__, name, fdt_strerror(offset));
return offset;
}
/* rename to CONFIG_OF_STDOUT_PATH ? */
#if defined(OF_STDOUT_PATH)
static int fdt_fixup_stdout(void *fdt, int chosenoff)
{
return fdt_setprop(fdt, chosenoff, "linux,stdout-path",
OF_STDOUT_PATH, strlen(OF_STDOUT_PATH) + 1);
}
#elif defined(CONFIG_OF_STDOUT_VIA_ALIAS) && defined(CONFIG_CONS_INDEX)
static int fdt_fixup_stdout(void *fdt, int chosenoff)
{
int err;
int aliasoff;
char sername[9] = { 0 };
const void *path;
int len;
char tmp[256]; /* long enough */
sprintf(sername, "serial%d", CONFIG_CONS_INDEX - 1);
aliasoff = fdt_path_offset(fdt, "/aliases");
if (aliasoff < 0) {
err = aliasoff;
goto noalias;
}
path = fdt_getprop(fdt, aliasoff, sername, &len);
if (!path) {
err = len;
goto noalias;
}
/* fdt_setprop may break "path" so we copy it to tmp buffer */
memcpy(tmp, path, len);
err = fdt_setprop(fdt, chosenoff, "linux,stdout-path", tmp, len);
if (err < 0)
printf("WARNING: could not set linux,stdout-path %s.\n",
fdt_strerror(err));
return err;
noalias:
printf("WARNING: %s: could not read %s alias: %s\n",
__func__, sername, fdt_strerror(err));
return 0;
}
#else
static int fdt_fixup_stdout(void *fdt, int chosenoff)
{
return 0;
}
#endif
static inline int fdt_setprop_uxx(void *fdt, int nodeoffset, const char *name,
uint64_t val, int is_u64)
{
if (is_u64)
return fdt_setprop_u64(fdt, nodeoffset, name, val);
else
return fdt_setprop_u32(fdt, nodeoffset, name, (uint32_t)val);
}
int fdt_root(void *fdt)
{
char *serial;
int err;
err = fdt_check_header(fdt);
if (err < 0) {
printf("fdt_root: %s\n", fdt_strerror(err));
return err;
}
serial = env_get("serial#");
if (serial) {
err = fdt_setprop(fdt, 0, "serial-number", serial,
strlen(serial) + 1);
if (err < 0) {
printf("WARNING: could not set serial-number %s.\n",
fdt_strerror(err));
return err;
}
}
return 0;
}
int fdt_initrd(void *fdt, ulong initrd_start, ulong initrd_end)
{
int nodeoffset;
int err, j, total;
int is_u64;
uint64_t addr, size;
/* just return if the size of initrd is zero */
if (initrd_start == initrd_end)
return 0;
/* find or create "/chosen" node. */
nodeoffset = fdt_find_or_add_subnode(fdt, 0, "chosen");
if (nodeoffset < 0)
return nodeoffset;
total = fdt_num_mem_rsv(fdt);
/*
* Look for an existing entry and update it. If we don't find
* the entry, we will j be the next available slot.
*/
for (j = 0; j < total; j++) {
err = fdt_get_mem_rsv(fdt, j, &addr, &size);
if (addr == initrd_start) {
fdt_del_mem_rsv(fdt, j);
break;
}
}
err = fdt_add_mem_rsv(fdt, initrd_start, initrd_end - initrd_start);
if (err < 0) {
printf("fdt_initrd: %s\n", fdt_strerror(err));
return err;
}
is_u64 = (fdt_address_cells(fdt, 0) == 2);
err = fdt_setprop_uxx(fdt, nodeoffset, "linux,initrd-start",
(uint64_t)initrd_start, is_u64);
if (err < 0) {
printf("WARNING: could not set linux,initrd-start %s.\n",
fdt_strerror(err));
return err;
}
err = fdt_setprop_uxx(fdt, nodeoffset, "linux,initrd-end",
(uint64_t)initrd_end, is_u64);
if (err < 0) {
printf("WARNING: could not set linux,initrd-end %s.\n",
fdt_strerror(err));
return err;
}
return 0;
}
int fdt_chosen(void *fdt)
{
int nodeoffset;
int err;
char *str; /* used to set string properties */
err = fdt_check_header(fdt);
if (err < 0) {
printf("fdt_chosen: %s\n", fdt_strerror(err));
return err;
}
/* find or create "/chosen" node. */
nodeoffset = fdt_find_or_add_subnode(fdt, 0, "chosen");
if (nodeoffset < 0)
return nodeoffset;
str = env_get("bootargs");
if (str) {
err = fdt_setprop(fdt, nodeoffset, "bootargs", str,
strlen(str) + 1);
if (err < 0) {
printf("WARNING: could not set bootargs %s.\n",
fdt_strerror(err));
return err;
}
}
return fdt_fixup_stdout(fdt, nodeoffset);
}
void do_fixup_by_path(void *fdt, const char *path, const char *prop,
const void *val, int len, int create)
{
#if defined(DEBUG)
int i;
debug("Updating property '%s/%s' = ", path, prop);
for (i = 0; i < len; i++)
debug(" %.2x", *(u8*)(val+i));
debug("\n");
#endif
int rc = fdt_find_and_setprop(fdt, path, prop, val, len, create);
if (rc)
printf("Unable to update property %s:%s, err=%s\n",
path, prop, fdt_strerror(rc));
}
void do_fixup_by_path_u32(void *fdt, const char *path, const char *prop,
u32 val, int create)
{
fdt32_t tmp = cpu_to_fdt32(val);
do_fixup_by_path(fdt, path, prop, &tmp, sizeof(tmp), create);
}
void do_fixup_by_prop(void *fdt,
const char *pname, const void *pval, int plen,
const char *prop, const void *val, int len,
int create)
{
int off;
#if defined(DEBUG)
int i;
debug("Updating property '%s' = ", prop);
for (i = 0; i < len; i++)
debug(" %.2x", *(u8*)(val+i));
debug("\n");
#endif
off = fdt_node_offset_by_prop_value(fdt, -1, pname, pval, plen);
while (off != -FDT_ERR_NOTFOUND) {
if (create || (fdt_get_property(fdt, off, prop, NULL) != NULL))
fdt_setprop(fdt, off, prop, val, len);
off = fdt_node_offset_by_prop_value(fdt, off, pname, pval, plen);
}
}
void do_fixup_by_prop_u32(void *fdt,
const char *pname, const void *pval, int plen,
const char *prop, u32 val, int create)
{
fdt32_t tmp = cpu_to_fdt32(val);
do_fixup_by_prop(fdt, pname, pval, plen, prop, &tmp, 4, create);
}
void do_fixup_by_compat(void *fdt, const char *compat,
const char *prop, const void *val, int len, int create)
{
int off = -1;
#if defined(DEBUG)
int i;
debug("Updating property '%s' = ", prop);
for (i = 0; i < len; i++)
debug(" %.2x", *(u8*)(val+i));
debug("\n");
#endif
off = fdt_node_offset_by_compatible(fdt, -1, compat);
while (off != -FDT_ERR_NOTFOUND) {
if (create || (fdt_get_property(fdt, off, prop, NULL) != NULL))
fdt_setprop(fdt, off, prop, val, len);
off = fdt_node_offset_by_compatible(fdt, off, compat);
}
}
void do_fixup_by_compat_u32(void *fdt, const char *compat,
const char *prop, u32 val, int create)
{
fdt32_t tmp = cpu_to_fdt32(val);
do_fixup_by_compat(fdt, compat, prop, &tmp, 4, create);
}
#ifdef CONFIG_ARCH_FIXUP_FDT_MEMORY
/*
* fdt_pack_reg - pack address and size array into the "reg"-suitable stream
*/
static int fdt_pack_reg(const void *fdt, void *buf, u64 *address, u64 *size,
int n)
{
int i;
int address_cells = fdt_address_cells(fdt, 0);
int size_cells = fdt_size_cells(fdt, 0);
char *p = buf;
for (i = 0; i < n; i++) {
if (address_cells == 2)
*(fdt64_t *)p = cpu_to_fdt64(address[i]);
else
*(fdt32_t *)p = cpu_to_fdt32(address[i]);
p += 4 * address_cells;
if (size_cells == 2)
*(fdt64_t *)p = cpu_to_fdt64(size[i]);
else
*(fdt32_t *)p = cpu_to_fdt32(size[i]);
p += 4 * size_cells;
}
return p - (char *)buf;
}
#if CONFIG_NR_DRAM_BANKS > 4
#define MEMORY_BANKS_MAX CONFIG_NR_DRAM_BANKS
#else
#define MEMORY_BANKS_MAX 4
#endif
int fdt_fixup_memory_banks(void *blob, u64 start[], u64 size[], int banks)
{
int err, nodeoffset;
int len, i;
u8 tmp[MEMORY_BANKS_MAX * 16]; /* Up to 64-bit address + 64-bit size */
if (banks > MEMORY_BANKS_MAX) {
printf("%s: num banks %d exceeds hardcoded limit %d."
" Recompile with higher MEMORY_BANKS_MAX?\n",
__FUNCTION__, banks, MEMORY_BANKS_MAX);
return -1;
}
err = fdt_check_header(blob);
if (err < 0) {
printf("%s: %s\n", __FUNCTION__, fdt_strerror(err));
return err;
}
/* find or create "/memory" node. */
nodeoffset = fdt_find_or_add_subnode(blob, 0, "memory");
if (nodeoffset < 0)
return nodeoffset;
err = fdt_setprop(blob, nodeoffset, "device_type", "memory",
sizeof("memory"));
if (err < 0) {
printf("WARNING: could not set %s %s.\n", "device_type",
fdt_strerror(err));
return err;
}
for (i = 0; i < banks; i++) {
if (start[i] == 0 && size[i] == 0)
break;
}
banks = i;
if (!banks)
return 0;
len = fdt_pack_reg(blob, tmp, start, size, banks);
err = fdt_setprop(blob, nodeoffset, "reg", tmp, len);
if (err < 0) {
printf("WARNING: could not set %s %s.\n",
"reg", fdt_strerror(err));
return err;
}
return 0;
}
int fdt_set_usable_memory(void *blob, u64 start[], u64 size[], int areas)
{
int err, nodeoffset;
int len;
u8 tmp[8 * 16]; /* Up to 64-bit address + 64-bit size */
if (areas > 8) {
printf("%s: num areas %d exceeds hardcoded limit %d\n",
__func__, areas, 8);
return -1;
}
err = fdt_check_header(blob);
if (err < 0) {
printf("%s: %s\n", __func__, fdt_strerror(err));
return err;
}
/* find or create "/memory" node. */
nodeoffset = fdt_find_or_add_subnode(blob, 0, "memory");
if (nodeoffset < 0)
return nodeoffset;
len = fdt_pack_reg(blob, tmp, start, size, areas);
err = fdt_setprop(blob, nodeoffset, "linux,usable-memory", tmp, len);
if (err < 0) {
printf("WARNING: could not set %s %s.\n",
"reg", fdt_strerror(err));
return err;
}
return 0;
}
#endif
int fdt_fixup_memory(void *blob, u64 start, u64 size)
{
return fdt_fixup_memory_banks(blob, &start, &size, 1);
}
void fdt_fixup_ethernet(void *fdt)
{
int i = 0, j, prop;
char *tmp, *end;
char mac[16];
const char *path;
unsigned char mac_addr[ARP_HLEN];
int offset;
#ifdef FDT_SEQ_MACADDR_FROM_ENV
int nodeoff;
const struct fdt_property *fdt_prop;
#endif
if (fdt_path_offset(fdt, "/aliases") < 0)
return;
/* Cycle through all aliases */
for (prop = 0; ; prop++) {
const char *name;
/* FDT might have been edited, recompute the offset */
offset = fdt_first_property_offset(fdt,
fdt_path_offset(fdt, "/aliases"));
/* Select property number 'prop' */
for (j = 0; j < prop; j++)
offset = fdt_next_property_offset(fdt, offset);
if (offset < 0)
break;
path = fdt_getprop_by_offset(fdt, offset, &name, NULL);
if (!strncmp(name, "ethernet", 8)) {
/* Treat plain "ethernet" same as "ethernet0". */
if (!strcmp(name, "ethernet")
#ifdef FDT_SEQ_MACADDR_FROM_ENV
|| !strcmp(name, "ethernet0")
#endif
)
i = 0;
#ifndef FDT_SEQ_MACADDR_FROM_ENV
else
i = trailing_strtol(name);
#endif
if (i != -1) {
if (i == 0)
strcpy(mac, "ethaddr");
else
sprintf(mac, "eth%daddr", i);
} else {
continue;
}
#ifdef FDT_SEQ_MACADDR_FROM_ENV
nodeoff = fdt_path_offset(fdt, path);
fdt_prop = fdt_get_property(fdt, nodeoff, "status",
NULL);
if (fdt_prop && !strcmp(fdt_prop->data, "disabled"))
continue;
i++;
#endif
tmp = env_get(mac);
if (!tmp)
continue;
for (j = 0; j < 6; j++) {
mac_addr[j] = tmp ?
simple_strtoul(tmp, &end, 16) : 0;
if (tmp)
tmp = (*end) ? end + 1 : end;
}
do_fixup_by_path(fdt, path, "mac-address",
&mac_addr, 6, 0);
do_fixup_by_path(fdt, path, "local-mac-address",
&mac_addr, 6, 1);
}
}
}
int fdt_record_loadable(void *blob, u32 index, const char *name,
uintptr_t load_addr, u32 size, uintptr_t entry_point,
const char *type, const char *os)
{
int err, node;
err = fdt_check_header(blob);
if (err < 0) {
printf("%s: %s\n", __func__, fdt_strerror(err));
return err;
}
/* find or create "/fit-images" node */
node = fdt_find_or_add_subnode(blob, 0, "fit-images");
if (node < 0)
return node;
/* find or create "/fit-images/<name>" node */
node = fdt_find_or_add_subnode(blob, node, name);
if (node < 0)
return node;
/*
* We record these as 32bit entities, possibly truncating addresses.
* However, spl_fit.c is not 64bit safe either: i.e. we should not
* have an issue here.
*/
fdt_setprop_u32(blob, node, "load-addr", load_addr);
if (entry_point != -1)
fdt_setprop_u32(blob, node, "entry-point", entry_point);
fdt_setprop_u32(blob, node, "size", size);
if (type)
fdt_setprop_string(blob, node, "type", type);
if (os)
fdt_setprop_string(blob, node, "os", os);
return node;
}
/* Resize the fdt to its actual size + a bit of padding */
int fdt_shrink_to_minimum(void *blob, uint extrasize)
{
int i;
uint64_t addr, size;
int total, ret;
uint actualsize;
int fdt_memrsv = 0;
if (!blob)
return 0;
total = fdt_num_mem_rsv(blob);
for (i = 0; i < total; i++) {
fdt_get_mem_rsv(blob, i, &addr, &size);
if (addr == (uintptr_t)blob) {
fdt_del_mem_rsv(blob, i);
fdt_memrsv = 1;
break;
}
}
/*
* Calculate the actual size of the fdt
* plus the size needed for 5 fdt_add_mem_rsv, one
* for the fdt itself and 4 for a possible initrd
* ((initrd-start + initrd-end) * 2 (name & value))
*/
actualsize = fdt_off_dt_strings(blob) +
fdt_size_dt_strings(blob) + 5 * sizeof(struct fdt_reserve_entry);
actualsize += extrasize;
/* Make it so the fdt ends on a page boundary */
actualsize = ALIGN(actualsize + ((uintptr_t)blob & 0xfff), 0x1000);
actualsize = actualsize - ((uintptr_t)blob & 0xfff);
/* Change the fdt header to reflect the correct size */
fdt_set_totalsize(blob, actualsize);
if (fdt_memrsv) {
/* Add the new reservation */
ret = fdt_add_mem_rsv(blob, map_to_sysmem(blob), actualsize);
if (ret < 0)
return ret;
}
return actualsize;
}
#ifdef CONFIG_PCI
#define CONFIG_SYS_PCI_NR_INBOUND_WIN 4
#define FDT_PCI_PREFETCH (0x40000000)
#define FDT_PCI_MEM32 (0x02000000)
#define FDT_PCI_IO (0x01000000)
#define FDT_PCI_MEM64 (0x03000000)
int fdt_pci_dma_ranges(void *blob, int phb_off, struct pci_controller *hose) {
int addrcell, sizecell, len, r;
u32 *dma_range;
/* sized based on pci addr cells, size-cells, & address-cells */
u32 dma_ranges[(3 + 2 + 2) * CONFIG_SYS_PCI_NR_INBOUND_WIN];
addrcell = fdt_getprop_u32_default(blob, "/", "#address-cells", 1);
sizecell = fdt_getprop_u32_default(blob, "/", "#size-cells", 1);
dma_range = &dma_ranges[0];
for (r = 0; r < hose->region_count; r++) {
u64 bus_start, phys_start, size;
/* skip if !PCI_REGION_SYS_MEMORY */
if (!(hose->regions[r].flags & PCI_REGION_SYS_MEMORY))
continue;
bus_start = (u64)hose->regions[r].bus_start;
phys_start = (u64)hose->regions[r].phys_start;
size = (u64)hose->regions[r].size;
dma_range[0] = 0;
if (size >= 0x100000000ull)
dma_range[0] |= cpu_to_fdt32(FDT_PCI_MEM64);
else
dma_range[0] |= cpu_to_fdt32(FDT_PCI_MEM32);
if (hose->regions[r].flags & PCI_REGION_PREFETCH)
dma_range[0] |= cpu_to_fdt32(FDT_PCI_PREFETCH);
#ifdef CONFIG_SYS_PCI_64BIT
dma_range[1] = cpu_to_fdt32(bus_start >> 32);
#else
dma_range[1] = 0;
#endif
dma_range[2] = cpu_to_fdt32(bus_start & 0xffffffff);
if (addrcell == 2) {
dma_range[3] = cpu_to_fdt32(phys_start >> 32);
dma_range[4] = cpu_to_fdt32(phys_start & 0xffffffff);
} else {
dma_range[3] = cpu_to_fdt32(phys_start & 0xffffffff);
}
if (sizecell == 2) {
dma_range[3 + addrcell + 0] =
cpu_to_fdt32(size >> 32);
dma_range[3 + addrcell + 1] =
cpu_to_fdt32(size & 0xffffffff);
} else {
dma_range[3 + addrcell + 0] =
cpu_to_fdt32(size & 0xffffffff);
}
dma_range += (3 + addrcell + sizecell);
}
len = dma_range - &dma_ranges[0];
if (len)
fdt_setprop(blob, phb_off, "dma-ranges", &dma_ranges[0], len*4);
return 0;
}
#endif
int fdt_increase_size(void *fdt, int add_len)
{
int newlen;
newlen = fdt_totalsize(fdt) + add_len;
/* Open in place with a new len */
return fdt_open_into(fdt, fdt, newlen);
}
#ifdef CONFIG_FDT_FIXUP_PARTITIONS
#include <jffs2/load_kernel.h>
#include <mtd_node.h>
static int fdt_del_subnodes(const void *blob, int parent_offset)
{
int off, ndepth;
int ret;
for (ndepth = 0, off = fdt_next_node(blob, parent_offset, &ndepth);
(off >= 0) && (ndepth > 0);
off = fdt_next_node(blob, off, &ndepth)) {
if (ndepth == 1) {
debug("delete %s: offset: %x\n",
fdt_get_name(blob, off, 0), off);
ret = fdt_del_node((void *)blob, off);
if (ret < 0) {
printf("Can't delete node: %s\n",
fdt_strerror(ret));
return ret;
} else {
ndepth = 0;
off = parent_offset;
}
}
}
return 0;
}
static int fdt_del_partitions(void *blob, int parent_offset)
{
const void *prop;
int ndepth = 0;
int off;
int ret;
off = fdt_next_node(blob, parent_offset, &ndepth);
if (off > 0 && ndepth == 1) {
prop = fdt_getprop(blob, off, "label", NULL);
if (prop == NULL) {
/*
* Could not find label property, nand {}; node?
* Check subnode, delete partitions there if any.
*/
return fdt_del_partitions(blob, off);
} else {
ret = fdt_del_subnodes(blob, parent_offset);
if (ret < 0) {
printf("Can't remove subnodes: %s\n",
fdt_strerror(ret));
return ret;
}
}
}
return 0;
}
static int fdt_node_set_part_info(void *blob, int parent_offset,
struct mtd_device *dev)
{
struct list_head *pentry;
struct part_info *part;
int off, ndepth = 0;
int part_num, ret;
int sizecell;
char buf[64];
ret = fdt_del_partitions(blob, parent_offset);
if (ret < 0)
return ret;
/*
* Check if size/address is 1 or 2 cells.
* We assume #address-cells and #size-cells have same value.
*/
sizecell = fdt_getprop_u32_default_node(blob, parent_offset,
0, "#size-cells", 1);
/*
* Check if it is nand {}; subnode, adjust
* the offset in this case
*/
off = fdt_next_node(blob, parent_offset, &ndepth);
if (off > 0 && ndepth == 1)
parent_offset = off;
part_num = 0;
list_for_each_prev(pentry, &dev->parts) {
int newoff;
part = list_entry(pentry, struct part_info, link);
debug("%2d: %-20s0x%08llx\t0x%08llx\t%d\n",
part_num, part->name, part->size,
part->offset, part->mask_flags);
sprintf(buf, "partition@%llx", part->offset);
add_sub:
ret = fdt_add_subnode(blob, parent_offset, buf);
if (ret == -FDT_ERR_NOSPACE) {
ret = fdt_increase_size(blob, 512);
if (!ret)
goto add_sub;
else
goto err_size;
} else if (ret < 0) {
printf("Can't add partition node: %s\n",
fdt_strerror(ret));
return ret;
}
newoff = ret;
/* Check MTD_WRITEABLE_CMD flag */
if (part->mask_flags & 1) {
add_ro:
ret = fdt_setprop(blob, newoff, "read_only", NULL, 0);
if (ret == -FDT_ERR_NOSPACE) {
ret = fdt_increase_size(blob, 512);
if (!ret)
goto add_ro;
else
goto err_size;
} else if (ret < 0)
goto err_prop;
}
add_reg:
if (sizecell == 2) {
ret = fdt_setprop_u64(blob, newoff,
"reg", part->offset);
if (!ret)
ret = fdt_appendprop_u64(blob, newoff,
"reg", part->size);
} else {
ret = fdt_setprop_u32(blob, newoff,
"reg", part->offset);
if (!ret)
ret = fdt_appendprop_u32(blob, newoff,
"reg", part->size);
}
if (ret == -FDT_ERR_NOSPACE) {
ret = fdt_increase_size(blob, 512);
if (!ret)
goto add_reg;
else
goto err_size;
} else if (ret < 0)
goto err_prop;
add_label:
ret = fdt_setprop_string(blob, newoff, "label", part->name);
if (ret == -FDT_ERR_NOSPACE) {
ret = fdt_increase_size(blob, 512);
if (!ret)
goto add_label;
else
goto err_size;
} else if (ret < 0)
goto err_prop;
part_num++;
}
return 0;
err_size:
printf("Can't increase blob size: %s\n", fdt_strerror(ret));
return ret;
err_prop:
printf("Can't add property: %s\n", fdt_strerror(ret));
return ret;
}
/*
* Update partitions in nor/nand nodes using info from
* mtdparts environment variable. The nodes to update are
* specified by node_info structure which contains mtd device
* type and compatible string: E. g. the board code in
* ft_board_setup() could use:
*
* struct node_info nodes[] = {
* { "fsl,mpc5121-nfc", MTD_DEV_TYPE_NAND, },
* { "cfi-flash", MTD_DEV_TYPE_NOR, },
* };
*
* fdt_fixup_mtdparts(blob, nodes, ARRAY_SIZE(nodes));
*/
void fdt_fixup_mtdparts(void *blob, const struct node_info *node_info,
int node_info_size)
{
struct mtd_device *dev;
int i, idx;
int noff;
if (mtdparts_init() != 0)
return;
for (i = 0; i < node_info_size; i++) {
idx = 0;
noff = fdt_node_offset_by_compatible(blob, -1,
node_info[i].compat);
while (noff != -FDT_ERR_NOTFOUND) {
debug("%s: %s, mtd dev type %d\n",
fdt_get_name(blob, noff, 0),
node_info[i].compat, node_info[i].type);
dev = device_find(node_info[i].type, idx++);
if (dev) {
if (fdt_node_set_part_info(blob, noff, dev))
return; /* return on error */
}
/* Jump to next flash node */
noff = fdt_node_offset_by_compatible(blob, noff,
node_info[i].compat);
}
}
}
#endif
void fdt_del_node_and_alias(void *blob, const char *alias)
{
int off = fdt_path_offset(blob, alias);
if (off < 0)
return;
fdt_del_node(blob, off);
off = fdt_path_offset(blob, "/aliases");
fdt_delprop(blob, off, alias);
}
/* Max address size we deal with */
#define OF_MAX_ADDR_CELLS 4
#define OF_BAD_ADDR FDT_ADDR_T_NONE
#define OF_CHECK_COUNTS(na, ns) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS && \
(ns) > 0)
/* Debug utility */
#ifdef DEBUG
static void of_dump_addr(const char *s, const fdt32_t *addr, int na)
{
printf("%s", s);
while(na--)
printf(" %08x", *(addr++));
printf("\n");
}
#else
static void of_dump_addr(const char *s, const fdt32_t *addr, int na) { }
#endif
/**
* struct of_bus - Callbacks for bus specific translators
* @name: A string used to identify this bus in debug output.
* @addresses: The name of the DT property from which addresses are
* to be read, typically "reg".
* @match: Return non-zero if the node whose parent is at
* parentoffset in the FDT blob corresponds to a bus
* of this type, otherwise return zero. If NULL a match
* is assumed.
* @count_cells:Count how many cells (be32 values) a node whose parent
* is at parentoffset in the FDT blob will require to
* represent its address (written to *addrc) & size
* (written to *sizec).
* @map: Map the address addr from the address space of this
* bus to that of its parent, making use of the ranges
* read from DT to an array at range. na and ns are the
* number of cells (be32 values) used to hold and address
* or size, respectively, for this bus. pna is the number
* of cells used to hold an address for the parent bus.
* Returns the address in the address space of the parent
* bus.
* @translate: Update the value of the address cells at addr within an
* FDT by adding offset to it. na specifies the number of
* cells used to hold the address being translated. Returns
* zero on success, non-zero on error.
*
* Each bus type will include a struct of_bus in the of_busses array,
* providing implementations of some or all of the functions used to
* match the bus & handle address translation for its children.
*/
struct of_bus {
const char *name;
const char *addresses;
int (*match)(const void *blob, int parentoffset);
void (*count_cells)(const void *blob, int parentoffset,
int *addrc, int *sizec);
u64 (*map)(fdt32_t *addr, const fdt32_t *range,
int na, int ns, int pna);
int (*translate)(fdt32_t *addr, u64 offset, int na);
};
/* Default translator (generic bus) */
void fdt_support_default_count_cells(const void *blob, int parentoffset,
int *addrc, int *sizec)
{
const fdt32_t *prop;
if (addrc)
*addrc = fdt_address_cells(blob, parentoffset);
if (sizec) {
prop = fdt_getprop(blob, parentoffset, "#size-cells", NULL);
if (prop)
*sizec = be32_to_cpup(prop);
else
*sizec = 1;
}
}
static u64 of_bus_default_map(fdt32_t *addr, const fdt32_t *range,
int na, int ns, int pna)
{
u64 cp, s, da;
cp = fdt_read_number(range, na);
s = fdt_read_number(range + na + pna, ns);
da = fdt_read_number(addr, na);
debug("OF: default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
if (da < cp || da >= (cp + s))
return OF_BAD_ADDR;
return da - cp;
}
static int of_bus_default_translate(fdt32_t *addr, u64 offset, int na)
{
u64 a = fdt_read_number(addr, na);
memset(addr, 0, na * 4);
a += offset;
if (na > 1)
addr[na - 2] = cpu_to_fdt32(a >> 32);
addr[na - 1] = cpu_to_fdt32(a & 0xffffffffu);
return 0;
}
#ifdef CONFIG_OF_ISA_BUS
/* ISA bus translator */
static int of_bus_isa_match(const void *blob, int parentoffset)
{
const char *name;
name = fdt_get_name(blob, parentoffset, NULL);
if (!name)
return 0;
return !strcmp(name, "isa");
}
static void of_bus_isa_count_cells(const void *blob, int parentoffset,
int *addrc, int *sizec)
{
if (addrc)
*addrc = 2;
if (sizec)
*sizec = 1;
}
static u64 of_bus_isa_map(fdt32_t *addr, const fdt32_t *range,
int na, int ns, int pna)
{
u64 cp, s, da;
/* Check address type match */
if ((addr[0] ^ range[0]) & cpu_to_be32(1))
return OF_BAD_ADDR;
cp = fdt_read_number(range + 1, na - 1);
s = fdt_read_number(range + na + pna, ns);
da = fdt_read_number(addr + 1, na - 1);
debug("OF: ISA map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
if (da < cp || da >= (cp + s))
return OF_BAD_ADDR;
return da - cp;
}
static int of_bus_isa_translate(fdt32_t *addr, u64 offset, int na)
{
return of_bus_default_translate(addr + 1, offset, na - 1);
}
#endif /* CONFIG_OF_ISA_BUS */
/* Array of bus specific translators */
static struct of_bus of_busses[] = {
#ifdef CONFIG_OF_ISA_BUS
/* ISA */
{
.name = "isa",
.addresses = "reg",
.match = of_bus_isa_match,
.count_cells = of_bus_isa_count_cells,
.map = of_bus_isa_map,
.translate = of_bus_isa_translate,
},
#endif /* CONFIG_OF_ISA_BUS */
/* Default */
{
.name = "default",
.addresses = "reg",
.count_cells = fdt_support_default_count_cells,
.map = of_bus_default_map,
.translate = of_bus_default_translate,
},
};
static struct of_bus *of_match_bus(const void *blob, int parentoffset)
{
struct of_bus *bus;
if (ARRAY_SIZE(of_busses) == 1)
return of_busses;
for (bus = of_busses; bus; bus++) {
if (!bus->match || bus->match(blob, parentoffset))
return bus;
}
/*
* We should always have matched the default bus at least, since
* it has a NULL match field. If we didn't then it somehow isn't
* in the of_busses array or something equally catastrophic has
* gone wrong.
*/
assert(0);
return NULL;
}
static int of_translate_one(const void *blob, int parent, struct of_bus *bus,
struct of_bus *pbus, fdt32_t *addr,
int na, int ns, int pna, const char *rprop)
{
const fdt32_t *ranges;
int rlen;
int rone;
u64 offset = OF_BAD_ADDR;
/* Normally, an absence of a "ranges" property means we are
* crossing a non-translatable boundary, and thus the addresses
* below the current not cannot be converted to CPU physical ones.
* Unfortunately, while this is very clear in the spec, it's not
* what Apple understood, and they do have things like /uni-n or
* /ht nodes with no "ranges" property and a lot of perfectly
* useable mapped devices below them. Thus we treat the absence of
* "ranges" as equivalent to an empty "ranges" property which means
* a 1:1 translation at that level. It's up to the caller not to try
* to translate addresses that aren't supposed to be translated in
* the first place. --BenH.
*/
ranges = fdt_getprop(blob, parent, rprop, &rlen);
if (ranges == NULL || rlen == 0) {
offset = fdt_read_number(addr, na);
memset(addr, 0, pna * 4);
debug("OF: no ranges, 1:1 translation\n");
goto finish;
}
debug("OF: walking ranges...\n");
/* Now walk through the ranges */
rlen /= 4;
rone = na + pna + ns;
for (; rlen >= rone; rlen -= rone, ranges += rone) {
offset = bus->map(addr, ranges, na, ns, pna);
if (offset != OF_BAD_ADDR)
break;
}
if (offset == OF_BAD_ADDR) {
debug("OF: not found !\n");
return 1;
}
memcpy(addr, ranges + na, 4 * pna);
finish:
of_dump_addr("OF: parent translation for:", addr, pna);
debug("OF: with offset: %llu\n", offset);
/* Translate it into parent bus space */
return pbus->translate(addr, offset, pna);
}
/*
* Translate an address from the device-tree into a CPU physical address,
* this walks up the tree and applies the various bus mappings on the
* way.
*
* Note: We consider that crossing any level with #size-cells == 0 to mean
* that translation is impossible (that is we are not dealing with a value
* that can be mapped to a cpu physical address). This is not really specified
* that way, but this is traditionally the way IBM at least do things
*/
static u64 __of_translate_address(const void *blob, int node_offset,
const fdt32_t *in_addr, const char *rprop)
{
int parent;
struct of_bus *bus, *pbus;
fdt32_t addr[OF_MAX_ADDR_CELLS];
int na, ns, pna, pns;
u64 result = OF_BAD_ADDR;
debug("OF: ** translation for device %s **\n",
fdt_get_name(blob, node_offset, NULL));
/* Get parent & match bus type */
parent = fdt_parent_offset(blob, node_offset);
if (parent < 0)
goto bail;
bus = of_match_bus(blob, parent);
/* Cound address cells & copy address locally */
bus->count_cells(blob, parent, &na, &ns);
if (!OF_CHECK_COUNTS(na, ns)) {
printf("%s: Bad cell count for %s\n", __FUNCTION__,
fdt_get_name(blob, node_offset, NULL));
goto bail;
}
memcpy(addr, in_addr, na * 4);
debug("OF: bus is %s (na=%d, ns=%d) on %s\n",
bus->name, na, ns, fdt_get_name(blob, parent, NULL));
of_dump_addr("OF: translating address:", addr, na);
/* Translate */
for (;;) {
/* Switch to parent bus */
node_offset = parent;
parent = fdt_parent_offset(blob, node_offset);
/* If root, we have finished */
if (parent < 0) {
debug("OF: reached root node\n");
result = fdt_read_number(addr, na);
break;
}
/* Get new parent bus and counts */
pbus = of_match_bus(blob, parent);
pbus->count_cells(blob, parent, &pna, &pns);
if (!OF_CHECK_COUNTS(pna, pns)) {
printf("%s: Bad cell count for %s\n", __FUNCTION__,
fdt_get_name(blob, node_offset, NULL));
break;
}
debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n",
pbus->name, pna, pns, fdt_get_name(blob, parent, NULL));
/* Apply bus translation */
if (of_translate_one(blob, node_offset, bus, pbus,
addr, na, ns, pna, rprop))
break;
/* Complete the move up one level */
na = pna;
ns = pns;
bus = pbus;
of_dump_addr("OF: one level translation:", addr, na);
}
bail:
return result;
}
u64 fdt_translate_address(const void *blob, int node_offset,
const fdt32_t *in_addr)
{
return __of_translate_address(blob, node_offset, in_addr, "ranges");
}
u64 fdt_translate_dma_address(const void *blob, int node_offset,
const fdt32_t *in_addr)
{
return __of_translate_address(blob, node_offset, in_addr, "dma-ranges");
}
/**
* fdt_node_offset_by_compat_reg: Find a node that matches compatiable and
* who's reg property matches a physical cpu address
*
* @blob: ptr to device tree
* @compat: compatiable string to match
* @compat_off: property name
*
*/
int fdt_node_offset_by_compat_reg(void *blob, const char *compat,
phys_addr_t compat_off)
{
int len, off = fdt_node_offset_by_compatible(blob, -1, compat);
while (off != -FDT_ERR_NOTFOUND) {
const fdt32_t *reg = fdt_getprop(blob, off, "reg", &len);
if (reg) {
if (compat_off == fdt_translate_address(blob, off, reg))
return off;
}
off = fdt_node_offset_by_compatible(blob, off, compat);
}
return -FDT_ERR_NOTFOUND;
}
/**
* fdt_alloc_phandle: Return next free phandle value
*
* @blob: ptr to device tree
*/
int fdt_alloc_phandle(void *blob)
{
int offset;
uint32_t phandle = 0;
for (offset = fdt_next_node(blob, -1, NULL); offset >= 0;
offset = fdt_next_node(blob, offset, NULL)) {
phandle = max(phandle, fdt_get_phandle(blob, offset));
}
return phandle + 1;
}
/*
* fdt_set_phandle: Create a phandle property for the given node
*
* @fdt: ptr to device tree
* @nodeoffset: node to update
* @phandle: phandle value to set (must be unique)
*/
int fdt_set_phandle(void *fdt, int nodeoffset, uint32_t phandle)
{
int ret;
#ifdef DEBUG
int off = fdt_node_offset_by_phandle(fdt, phandle);
if ((off >= 0) && (off != nodeoffset)) {
char buf[64];
fdt_get_path(fdt, nodeoffset, buf, sizeof(buf));
printf("Trying to update node %s with phandle %u ",
buf, phandle);
fdt_get_path(fdt, off, buf, sizeof(buf));
printf("that already exists in node %s.\n", buf);
return -FDT_ERR_BADPHANDLE;
}
#endif
ret = fdt_setprop_cell(fdt, nodeoffset, "phandle", phandle);
if (ret < 0)
return ret;
/*
* For now, also set the deprecated "linux,phandle" property, so that we
* don't break older kernels.
*/
ret = fdt_setprop_cell(fdt, nodeoffset, "linux,phandle", phandle);
return ret;
}
/*
* fdt_create_phandle: Create a phandle property for the given node
*
* @fdt: ptr to device tree
* @nodeoffset: node to update
*/
unsigned int fdt_create_phandle(void *fdt, int nodeoffset)
{
/* see if there is a phandle already */
int phandle = fdt_get_phandle(fdt, nodeoffset);
/* if we got 0, means no phandle so create one */
if (phandle == 0) {
int ret;
phandle = fdt_alloc_phandle(fdt);
ret = fdt_set_phandle(fdt, nodeoffset, phandle);
if (ret < 0) {
printf("Can't set phandle %u: %s\n", phandle,
fdt_strerror(ret));
return 0;
}
}
return phandle;
}
/*
* fdt_set_node_status: Set status for the given node
*
* @fdt: ptr to device tree
* @nodeoffset: node to update
* @status: FDT_STATUS_OKAY, FDT_STATUS_DISABLED,
* FDT_STATUS_FAIL, FDT_STATUS_FAIL_ERROR_CODE
* @error_code: optional, only used if status is FDT_STATUS_FAIL_ERROR_CODE
*/
int fdt_set_node_status(void *fdt, int nodeoffset,
enum fdt_status status, unsigned int error_code)
{
char buf[16];
int ret = 0;
if (nodeoffset < 0)
return nodeoffset;
switch (status) {
case FDT_STATUS_OKAY:
ret = fdt_setprop_string(fdt, nodeoffset, "status", "okay");
break;
case FDT_STATUS_DISABLED:
ret = fdt_setprop_string(fdt, nodeoffset, "status", "disabled");
break;
case FDT_STATUS_FAIL:
ret = fdt_setprop_string(fdt, nodeoffset, "status", "fail");
break;
case FDT_STATUS_FAIL_ERROR_CODE:
sprintf(buf, "fail-%d", error_code);
ret = fdt_setprop_string(fdt, nodeoffset, "status", buf);
break;
default:
printf("Invalid fdt status: %x\n", status);
ret = -1;
break;
}
return ret;
}
/*
* fdt_set_status_by_alias: Set status for the given node given an alias
*
* @fdt: ptr to device tree
* @alias: alias of node to update
* @status: FDT_STATUS_OKAY, FDT_STATUS_DISABLED,
* FDT_STATUS_FAIL, FDT_STATUS_FAIL_ERROR_CODE
* @error_code: optional, only used if status is FDT_STATUS_FAIL_ERROR_CODE
*/
int fdt_set_status_by_alias(void *fdt, const char* alias,
enum fdt_status status, unsigned int error_code)
{
int offset = fdt_path_offset(fdt, alias);
return fdt_set_node_status(fdt, offset, status, error_code);
}
#if defined(CONFIG_VIDEO) || defined(CONFIG_LCD)
int fdt_add_edid(void *blob, const char *compat, unsigned char *edid_buf)
{
int noff;
int ret;
noff = fdt_node_offset_by_compatible(blob, -1, compat);
if (noff != -FDT_ERR_NOTFOUND) {
debug("%s: %s\n", fdt_get_name(blob, noff, 0), compat);
add_edid:
ret = fdt_setprop(blob, noff, "edid", edid_buf, 128);
if (ret == -FDT_ERR_NOSPACE) {
ret = fdt_increase_size(blob, 512);
if (!ret)
goto add_edid;
else
goto err_size;
} else if (ret < 0) {
printf("Can't add property: %s\n", fdt_strerror(ret));
return ret;
}
}
return 0;
err_size:
printf("Can't increase blob size: %s\n", fdt_strerror(ret));
return ret;
}
#endif
/*
* Verify the physical address of device tree node for a given alias
*
* This function locates the device tree node of a given alias, and then
* verifies that the physical address of that device matches the given
* parameter. It displays a message if there is a mismatch.
*
* Returns 1 on success, 0 on failure
*/
int fdt_verify_alias_address(void *fdt, int anode, const char *alias, u64 addr)
{
const char *path;
const fdt32_t *reg;
int node, len;
u64 dt_addr;
path = fdt_getprop(fdt, anode, alias, NULL);
if (!path) {
/* If there's no such alias, then it's not a failure */
return 1;
}
node = fdt_path_offset(fdt, path);
if (node < 0) {
printf("Warning: device tree alias '%s' points to invalid "
"node %s.\n", alias, path);
return 0;
}
reg = fdt_getprop(fdt, node, "reg", &len);
if (!reg) {
printf("Warning: device tree node '%s' has no address.\n",
path);
return 0;
}
dt_addr = fdt_translate_address(fdt, node, reg);
if (addr != dt_addr) {
printf("Warning: U-Boot configured device %s at address %llu,\n"
"but the device tree has it address %llx.\n",
alias, addr, dt_addr);
return 0;
}
return 1;
}
/*
* Returns the base address of an SOC or PCI node
*/
u64 fdt_get_base_address(const void *fdt, int node)
{
int size;
const fdt32_t *prop;
prop = fdt_getprop(fdt, node, "reg", &size);
return prop ? fdt_translate_address(fdt, node, prop) : OF_BAD_ADDR;
}
/*
* Read a property of size <prop_len>. Currently only supports 1 or 2 cells.
*/
static int fdt_read_prop(const fdt32_t *prop, int prop_len, int cell_off,
uint64_t *val, int cells)
{
const fdt32_t *prop32 = &prop[cell_off];
const unaligned_fdt64_t *prop64 = (const fdt64_t *)&prop[cell_off];
if ((cell_off + cells) > prop_len)
return -FDT_ERR_NOSPACE;
switch (cells) {
case 1:
*val = fdt32_to_cpu(*prop32);
break;
case 2:
*val = fdt64_to_cpu(*prop64);
break;
default:
return -FDT_ERR_NOSPACE;
}
return 0;
}
/**
* fdt_read_range - Read a node's n'th range property
*
* @fdt: ptr to device tree
* @node: offset of node
* @n: range index
* @child_addr: pointer to storage for the "child address" field
* @addr: pointer to storage for the CPU view translated physical start
* @len: pointer to storage for the range length
*
* Convenience function that reads and interprets a specific range out of
* a number of the "ranges" property array.
*/
int fdt_read_range(void *fdt, int node, int n, uint64_t *child_addr,
uint64_t *addr, uint64_t *len)
{
int pnode = fdt_parent_offset(fdt, node);
const fdt32_t *ranges;
int pacells;
int acells;
int scells;
int ranges_len;
int cell = 0;
int r = 0;
/*
* The "ranges" property is an array of
* { <child address> <parent address> <size in child address space> }
*
* All 3 elements can span a diffent number of cells. Fetch their size.
*/
pacells = fdt_getprop_u32_default_node(fdt, pnode, 0, "#address-cells", 1);
acells = fdt_getprop_u32_default_node(fdt, node, 0, "#address-cells", 1);
scells = fdt_getprop_u32_default_node(fdt, node, 0, "#size-cells", 1);
/* Now try to get the ranges property */
ranges = fdt_getprop(fdt, node, "ranges", &ranges_len);
if (!ranges)
return -FDT_ERR_NOTFOUND;
ranges_len /= sizeof(uint32_t);
/* Jump to the n'th entry */
cell = n * (pacells + acells + scells);
/* Read <child address> */
if (child_addr) {
r = fdt_read_prop(ranges, ranges_len, cell, child_addr,
acells);
if (r)
return r;
}
cell += acells;
/* Read <parent address> */
if (addr)
*addr = fdt_translate_address(fdt, node, ranges + cell);
cell += pacells;
/* Read <size in child address space> */
if (len) {
r = fdt_read_prop(ranges, ranges_len, cell, len, scells);
if (r)
return r;
}
return 0;
}
/**
* fdt_setup_simplefb_node - Fill and enable a simplefb node
*
* @fdt: ptr to device tree
* @node: offset of the simplefb node
* @base_address: framebuffer base address
* @width: width in pixels
* @height: height in pixels
* @stride: bytes per line
* @format: pixel format string
*
* Convenience function to fill and enable a simplefb node.
*/
int fdt_setup_simplefb_node(void *fdt, int node, u64 base_address, u32 width,
u32 height, u32 stride, const char *format)
{
char name[32];
fdt32_t cells[4];
int i, addrc, sizec, ret;
fdt_support_default_count_cells(fdt, fdt_parent_offset(fdt, node),
&addrc, &sizec);
i = 0;
if (addrc == 2)
cells[i++] = cpu_to_fdt32(base_address >> 32);
cells[i++] = cpu_to_fdt32(base_address);
if (sizec == 2)
cells[i++] = 0;
cells[i++] = cpu_to_fdt32(height * stride);
ret = fdt_setprop(fdt, node, "reg", cells, sizeof(cells[0]) * i);
if (ret < 0)
return ret;
snprintf(name, sizeof(name), "framebuffer@%llx", base_address);
ret = fdt_set_name(fdt, node, name);
if (ret < 0)
return ret;
ret = fdt_setprop_u32(fdt, node, "width", width);
if (ret < 0)
return ret;
ret = fdt_setprop_u32(fdt, node, "height", height);
if (ret < 0)
return ret;
ret = fdt_setprop_u32(fdt, node, "stride", stride);
if (ret < 0)
return ret;
ret = fdt_setprop_string(fdt, node, "format", format);
if (ret < 0)
return ret;
ret = fdt_setprop_string(fdt, node, "status", "okay");
if (ret < 0)
return ret;
return 0;
}
/*
* Update native-mode in display-timings from display environment variable.
* The node to update are specified by path.
*/
int fdt_fixup_display(void *blob, const char *path, const char *display)
{
int off, toff;
if (!display || !path)
return -FDT_ERR_NOTFOUND;
toff = fdt_path_offset(blob, path);
if (toff >= 0)
toff = fdt_subnode_offset(blob, toff, "display-timings");
if (toff < 0)
return toff;
for (off = fdt_first_subnode(blob, toff);
off >= 0;
off = fdt_next_subnode(blob, off)) {
uint32_t h = fdt_get_phandle(blob, off);
debug("%s:0x%x\n", fdt_get_name(blob, off, NULL),
fdt32_to_cpu(h));
if (strcasecmp(fdt_get_name(blob, off, NULL), display) == 0)
return fdt_setprop_u32(blob, toff, "native-mode", h);
}
return toff;
}
#ifdef CONFIG_OF_LIBFDT_OVERLAY
/**
* fdt_overlay_apply_verbose - Apply an overlay with verbose error reporting
*
* @fdt: ptr to device tree
* @fdto: ptr to device tree overlay
*
* Convenience function to apply an overlay and display helpful messages
* in the case of an error
*/
int fdt_overlay_apply_verbose(void *fdt, void *fdto)
{
int err;
bool has_symbols;
err = fdt_path_offset(fdt, "/__symbols__");
has_symbols = err >= 0;
err = fdt_overlay_apply(fdt, fdto);
if (err < 0) {
printf("failed on fdt_overlay_apply(): %s\n",
fdt_strerror(err));
if (!has_symbols) {
printf("base fdt does did not have a /__symbols__ node\n");
printf("make sure you've compiled with -@\n");
}
}
return err;
}
#endif