| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com> |
| * Rohit Choraria <rohitkc@ti.com> |
| */ |
| |
| #include <common.h> |
| #include <log.h> |
| #include <asm/io.h> |
| #include <linux/errno.h> |
| |
| #ifdef CONFIG_ARCH_OMAP2PLUS |
| #include <asm/arch/mem.h> |
| #endif |
| |
| #include <linux/mtd/omap_gpmc.h> |
| #include <linux/mtd/nand_ecc.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/bch.h> |
| #include <linux/compiler.h> |
| #include <nand.h> |
| #include <linux/mtd/omap_elm.h> |
| |
| #ifndef GPMC_MAX_CS |
| #define GPMC_MAX_CS 4 |
| #endif |
| |
| #define BADBLOCK_MARKER_LENGTH 2 |
| #define SECTOR_BYTES 512 |
| #define ECCSIZE0_SHIFT 12 |
| #define ECCSIZE1_SHIFT 22 |
| #define ECC1RESULTSIZE 0x1 |
| #define ECCCLEAR (0x1 << 8) |
| #define ECCRESULTREG1 (0x1 << 0) |
| /* 4 bit padding to make byte aligned, 56 = 52 + 4 */ |
| #define BCH4_BIT_PAD 4 |
| |
| #ifdef CONFIG_BCH |
| static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2, |
| 0x97, 0x79, 0xe5, 0x24, 0xb5}; |
| #endif |
| static uint8_t cs_next; |
| |
| #if defined(CONFIG_NAND_OMAP_GPMC_WSCFG) |
| static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE] = |
| { CONFIG_NAND_OMAP_GPMC_WSCFG }; |
| #else |
| /* wscfg is preset to zero since its a static variable */ |
| static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE]; |
| #endif |
| |
| /* |
| * Driver configurations |
| */ |
| struct omap_nand_info { |
| struct bch_control *control; |
| enum omap_ecc ecc_scheme; |
| uint8_t cs; |
| uint8_t ws; /* wait status pin (0,1) */ |
| void __iomem *fifo; |
| }; |
| |
| /* We are wasting a bit of memory but al least we are safe */ |
| static struct omap_nand_info omap_nand_info[GPMC_MAX_CS]; |
| |
| /* |
| * omap_nand_hwcontrol - Set the address pointers corretly for the |
| * following address/data/command operation |
| */ |
| static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd, |
| uint32_t ctrl) |
| { |
| register struct nand_chip *this = mtd_to_nand(mtd); |
| struct omap_nand_info *info = nand_get_controller_data(this); |
| int cs = info->cs; |
| |
| /* |
| * Point the IO_ADDR to DATA and ADDRESS registers instead |
| * of chip address |
| */ |
| switch (ctrl) { |
| case NAND_CTRL_CHANGE | NAND_CTRL_CLE: |
| this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd; |
| break; |
| case NAND_CTRL_CHANGE | NAND_CTRL_ALE: |
| this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr; |
| break; |
| case NAND_CTRL_CHANGE | NAND_NCE: |
| this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat; |
| break; |
| } |
| |
| if (cmd != NAND_CMD_NONE) |
| writeb(cmd, this->IO_ADDR_W); |
| } |
| |
| /* Check wait pin as dev ready indicator */ |
| static int omap_dev_ready(struct mtd_info *mtd) |
| { |
| register struct nand_chip *this = mtd_to_nand(mtd); |
| struct omap_nand_info *info = nand_get_controller_data(this); |
| return gpmc_cfg->status & (1 << (8 + info->ws)); |
| } |
| |
| /* |
| * gen_true_ecc - This function will generate true ECC value, which |
| * can be used when correcting data read from NAND flash memory core |
| * |
| * @ecc_buf: buffer to store ecc code |
| * |
| * @return: re-formatted ECC value |
| */ |
| static uint32_t gen_true_ecc(uint8_t *ecc_buf) |
| { |
| return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) | |
| ((ecc_buf[2] & 0x0F) << 8); |
| } |
| |
| /* |
| * omap_correct_data - Compares the ecc read from nand spare area with ECC |
| * registers values and corrects one bit error if it has occurred |
| * Further details can be had from OMAP TRM and the following selected links: |
| * http://en.wikipedia.org/wiki/Hamming_code |
| * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf |
| * |
| * @mtd: MTD device structure |
| * @dat: page data |
| * @read_ecc: ecc read from nand flash |
| * @calc_ecc: ecc read from ECC registers |
| * |
| * Return: 0 if data is OK or corrected, else returns -1 |
| */ |
| static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat, |
| uint8_t *read_ecc, uint8_t *calc_ecc) |
| { |
| uint32_t orig_ecc, new_ecc, res, hm; |
| uint16_t parity_bits, byte; |
| uint8_t bit; |
| |
| /* Regenerate the orginal ECC */ |
| orig_ecc = gen_true_ecc(read_ecc); |
| new_ecc = gen_true_ecc(calc_ecc); |
| /* Get the XOR of real ecc */ |
| res = orig_ecc ^ new_ecc; |
| if (res) { |
| /* Get the hamming width */ |
| hm = hweight32(res); |
| /* Single bit errors can be corrected! */ |
| if (hm == 12) { |
| /* Correctable data! */ |
| parity_bits = res >> 16; |
| bit = (parity_bits & 0x7); |
| byte = (parity_bits >> 3) & 0x1FF; |
| /* Flip the bit to correct */ |
| dat[byte] ^= (0x1 << bit); |
| } else if (hm == 1) { |
| printf("Error: Ecc is wrong\n"); |
| /* ECC itself is corrupted */ |
| return 2; |
| } else { |
| /* |
| * hm distance != parity pairs OR one, could mean 2 bit |
| * error OR potentially be on a blank page.. |
| * orig_ecc: contains spare area data from nand flash. |
| * new_ecc: generated ecc while reading data area. |
| * Note: if the ecc = 0, all data bits from which it was |
| * generated are 0xFF. |
| * The 3 byte(24 bits) ecc is generated per 512byte |
| * chunk of a page. If orig_ecc(from spare area) |
| * is 0xFF && new_ecc(computed now from data area)=0x0, |
| * this means that data area is 0xFF and spare area is |
| * 0xFF. A sure sign of a erased page! |
| */ |
| if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000)) |
| return 0; |
| printf("Error: Bad compare! failed\n"); |
| /* detected 2 bit error */ |
| return -EBADMSG; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write |
| * @mtd: MTD device structure |
| * @mode: Read/Write mode |
| */ |
| __maybe_unused |
| static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct omap_nand_info *info = nand_get_controller_data(nand); |
| unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0; |
| u32 val; |
| |
| /* Clear ecc and enable bits */ |
| writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control); |
| |
| /* program ecc and result sizes */ |
| val = ((((nand->ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) | |
| ECC1RESULTSIZE); |
| writel(val, &gpmc_cfg->ecc_size_config); |
| |
| switch (mode) { |
| case NAND_ECC_READ: |
| case NAND_ECC_WRITE: |
| writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control); |
| break; |
| case NAND_ECC_READSYN: |
| writel(ECCCLEAR, &gpmc_cfg->ecc_control); |
| break; |
| default: |
| printf("%s: error: unrecognized Mode[%d]!\n", __func__, mode); |
| break; |
| } |
| |
| /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ |
| val = (dev_width << 7) | (info->cs << 1) | (0x1); |
| writel(val, &gpmc_cfg->ecc_config); |
| } |
| |
| /* |
| * omap_calculate_ecc - Read ECC result |
| * @mtd: MTD structure |
| * @dat: unused |
| * @ecc_code: ecc_code buffer |
| * Using noninverted ECC can be considered ugly since writing a blank |
| * page ie. padding will clear the ECC bytes. This is no problem as |
| * long nobody is trying to write data on the seemingly unused page. |
| * Reading an erased page will produce an ECC mismatch between |
| * generated and read ECC bytes that has to be dealt with separately. |
| * E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC |
| * is used, the result of read will be 0x0 while the ECC offsets of the |
| * spare area will be 0xFF which will result in an ECC mismatch. |
| */ |
| static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat, |
| uint8_t *ecc_code) |
| { |
| u32 val; |
| |
| val = readl(&gpmc_cfg->ecc1_result); |
| ecc_code[0] = val & 0xFF; |
| ecc_code[1] = (val >> 16) & 0xFF; |
| ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0); |
| |
| return 0; |
| } |
| |
| /* GPMC ecc engine settings for read */ |
| #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */ |
| #define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */ |
| #define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */ |
| #define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */ |
| #define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */ |
| |
| /* GPMC ecc engine settings for write */ |
| #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */ |
| #define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */ |
| #define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */ |
| |
| /** |
| * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation |
| * @mtd: MTD device structure |
| * @mode: Read/Write mode |
| * |
| * When using BCH with SW correction (i.e. no ELM), sector size is set |
| * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode |
| * for both reading and writing with: |
| * eccsize0 = 0 (no additional protected byte in spare area) |
| * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area) |
| */ |
| static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, |
| int mode) |
| { |
| unsigned int bch_type; |
| unsigned int dev_width, nsectors; |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct omap_nand_info *info = nand_get_controller_data(chip); |
| u32 val, wr_mode; |
| unsigned int ecc_size1, ecc_size0; |
| |
| /* GPMC configurations for calculating ECC */ |
| switch (info->ecc_scheme) { |
| case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: |
| bch_type = 1; |
| nsectors = 1; |
| wr_mode = BCH_WRAPMODE_6; |
| ecc_size0 = BCH_ECC_SIZE0; |
| ecc_size1 = BCH_ECC_SIZE1; |
| break; |
| case OMAP_ECC_BCH8_CODE_HW: |
| bch_type = 1; |
| nsectors = chip->ecc.steps; |
| if (mode == NAND_ECC_READ) { |
| wr_mode = BCH_WRAPMODE_1; |
| ecc_size0 = BCH8R_ECC_SIZE0; |
| ecc_size1 = BCH8R_ECC_SIZE1; |
| } else { |
| wr_mode = BCH_WRAPMODE_6; |
| ecc_size0 = BCH_ECC_SIZE0; |
| ecc_size1 = BCH_ECC_SIZE1; |
| } |
| break; |
| case OMAP_ECC_BCH16_CODE_HW: |
| bch_type = 0x2; |
| nsectors = chip->ecc.steps; |
| if (mode == NAND_ECC_READ) { |
| wr_mode = 0x01; |
| ecc_size0 = 52; /* ECC bits in nibbles per sector */ |
| ecc_size1 = 0; /* non-ECC bits in nibbles per sector */ |
| } else { |
| wr_mode = 0x01; |
| ecc_size0 = 0; /* extra bits in nibbles per sector */ |
| ecc_size1 = 52; /* OOB bits in nibbles per sector */ |
| } |
| break; |
| default: |
| return; |
| } |
| |
| writel(ECCRESULTREG1, &gpmc_cfg->ecc_control); |
| |
| /* Configure ecc size for BCH */ |
| val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT); |
| writel(val, &gpmc_cfg->ecc_size_config); |
| |
| dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; |
| |
| /* BCH configuration */ |
| val = ((1 << 16) | /* enable BCH */ |
| (bch_type << 12) | /* BCH4/BCH8/BCH16 */ |
| (wr_mode << 8) | /* wrap mode */ |
| (dev_width << 7) | /* bus width */ |
| (((nsectors - 1) & 0x7) << 4) | /* number of sectors */ |
| (info->cs << 1) | /* ECC CS */ |
| (0x1)); /* enable ECC */ |
| |
| writel(val, &gpmc_cfg->ecc_config); |
| |
| /* Clear ecc and enable bits */ |
| writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control); |
| } |
| |
| /** |
| * _omap_calculate_ecc_bch - Generate BCH ECC bytes for one sector |
| * @mtd: MTD device structure |
| * @dat: The pointer to data on which ecc is computed |
| * @ecc_code: The ecc_code buffer |
| * @sector: The sector number (for a multi sector page) |
| * |
| * Support calculating of BCH4/8/16 ECC vectors for one sector |
| * within a page. Sector number is in @sector. |
| */ |
| static int _omap_calculate_ecc_bch(struct mtd_info *mtd, const u8 *dat, |
| u8 *ecc_code, int sector) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct omap_nand_info *info = nand_get_controller_data(chip); |
| const uint32_t *ptr; |
| uint32_t val = 0; |
| int8_t i = 0, j; |
| |
| switch (info->ecc_scheme) { |
| #ifdef CONFIG_BCH |
| case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: |
| #endif |
| case OMAP_ECC_BCH8_CODE_HW: |
| ptr = &gpmc_cfg->bch_result_0_3[sector].bch_result_x[3]; |
| val = readl(ptr); |
| ecc_code[i++] = (val >> 0) & 0xFF; |
| ptr--; |
| for (j = 0; j < 3; j++) { |
| val = readl(ptr); |
| ecc_code[i++] = (val >> 24) & 0xFF; |
| ecc_code[i++] = (val >> 16) & 0xFF; |
| ecc_code[i++] = (val >> 8) & 0xFF; |
| ecc_code[i++] = (val >> 0) & 0xFF; |
| ptr--; |
| } |
| |
| break; |
| case OMAP_ECC_BCH16_CODE_HW: |
| val = readl(&gpmc_cfg->bch_result_4_6[sector].bch_result_x[2]); |
| ecc_code[i++] = (val >> 8) & 0xFF; |
| ecc_code[i++] = (val >> 0) & 0xFF; |
| val = readl(&gpmc_cfg->bch_result_4_6[sector].bch_result_x[1]); |
| ecc_code[i++] = (val >> 24) & 0xFF; |
| ecc_code[i++] = (val >> 16) & 0xFF; |
| ecc_code[i++] = (val >> 8) & 0xFF; |
| ecc_code[i++] = (val >> 0) & 0xFF; |
| val = readl(&gpmc_cfg->bch_result_4_6[sector].bch_result_x[0]); |
| ecc_code[i++] = (val >> 24) & 0xFF; |
| ecc_code[i++] = (val >> 16) & 0xFF; |
| ecc_code[i++] = (val >> 8) & 0xFF; |
| ecc_code[i++] = (val >> 0) & 0xFF; |
| for (j = 3; j >= 0; j--) { |
| val = readl(&gpmc_cfg->bch_result_0_3[sector].bch_result_x[j] |
| ); |
| ecc_code[i++] = (val >> 24) & 0xFF; |
| ecc_code[i++] = (val >> 16) & 0xFF; |
| ecc_code[i++] = (val >> 8) & 0xFF; |
| ecc_code[i++] = (val >> 0) & 0xFF; |
| } |
| break; |
| default: |
| return -EINVAL; |
| } |
| /* ECC scheme specific syndrome customizations */ |
| switch (info->ecc_scheme) { |
| #ifdef CONFIG_BCH |
| case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: |
| /* Add constant polynomial to remainder, so that |
| * ECC of blank pages results in 0x0 on reading back |
| */ |
| for (i = 0; i < chip->ecc.bytes; i++) |
| ecc_code[i] ^= bch8_polynomial[i]; |
| break; |
| #endif |
| case OMAP_ECC_BCH8_CODE_HW: |
| /* Set 14th ECC byte as 0x0 for ROM compatibility */ |
| ecc_code[chip->ecc.bytes - 1] = 0x0; |
| break; |
| case OMAP_ECC_BCH16_CODE_HW: |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /** |
| * omap_calculate_ecc_bch - ECC generator for 1 sector |
| * @mtd: MTD device structure |
| * @dat: The pointer to data on which ecc is computed |
| * @ecc_code: The ecc_code buffer |
| * |
| * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used |
| * when SW based correction is required as ECC is required for one sector |
| * at a time. |
| */ |
| static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd, |
| const u_char *dat, u_char *ecc_calc) |
| { |
| return _omap_calculate_ecc_bch(mtd, dat, ecc_calc, 0); |
| } |
| |
| static inline void omap_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct omap_nand_info *info = nand_get_controller_data(chip); |
| u32 alignment = ((uintptr_t)buf | len) & 3; |
| |
| if (alignment & 1) |
| readsb(info->fifo, buf, len); |
| else if (alignment & 3) |
| readsw(info->fifo, buf, len >> 1); |
| else |
| readsl(info->fifo, buf, len >> 2); |
| } |
| |
| #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH |
| |
| #define PREFETCH_CONFIG1_CS_SHIFT 24 |
| #define PREFETCH_FIFOTHRESHOLD_MAX 0x40 |
| #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8) |
| #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff) |
| #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F) |
| #define ENABLE_PREFETCH (1 << 7) |
| |
| /** |
| * omap_prefetch_enable - configures and starts prefetch transfer |
| * @fifo_th: fifo threshold to be used for read/ write |
| * @count: number of bytes to be transferred |
| * @is_write: prefetch read(0) or write post(1) mode |
| * @cs: chip select to use |
| */ |
| static int omap_prefetch_enable(int fifo_th, unsigned int count, int is_write, int cs) |
| { |
| uint32_t val; |
| |
| if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX) |
| return -EINVAL; |
| |
| if (readl(&gpmc_cfg->prefetch_control)) |
| return -EBUSY; |
| |
| /* Set the amount of bytes to be prefetched */ |
| writel(count, &gpmc_cfg->prefetch_config2); |
| |
| val = (cs << PREFETCH_CONFIG1_CS_SHIFT) | (is_write & 1) | |
| PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH; |
| writel(val, &gpmc_cfg->prefetch_config1); |
| |
| /* Start the prefetch engine */ |
| writel(1, &gpmc_cfg->prefetch_control); |
| |
| return 0; |
| } |
| |
| /** |
| * omap_prefetch_reset - disables and stops the prefetch engine |
| */ |
| static void omap_prefetch_reset(void) |
| { |
| writel(0, &gpmc_cfg->prefetch_control); |
| writel(0, &gpmc_cfg->prefetch_config1); |
| } |
| |
| static int __read_prefetch_aligned(struct nand_chip *chip, uint32_t *buf, int len) |
| { |
| int ret; |
| uint32_t cnt; |
| struct omap_nand_info *info = nand_get_controller_data(chip); |
| |
| ret = omap_prefetch_enable(PREFETCH_FIFOTHRESHOLD_MAX, len, 0, info->cs); |
| if (ret < 0) |
| return ret; |
| |
| do { |
| int i; |
| |
| cnt = readl(&gpmc_cfg->prefetch_status); |
| cnt = PREFETCH_STATUS_FIFO_CNT(cnt); |
| |
| for (i = 0; i < cnt / 4; i++) { |
| *buf++ = readl(info->fifo); |
| len -= 4; |
| } |
| } while (len); |
| |
| omap_prefetch_reset(); |
| |
| return 0; |
| } |
| |
| static void omap_nand_read_prefetch(struct mtd_info *mtd, uint8_t *buf, int len) |
| { |
| int ret; |
| uintptr_t head, tail; |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| /* |
| * If the destination buffer is unaligned, start with reading |
| * the overlap byte-wise. |
| */ |
| head = ((uintptr_t)buf) % 4; |
| if (head) { |
| omap_nand_read_buf(mtd, buf, head); |
| buf += head; |
| len -= head; |
| } |
| |
| /* |
| * Only transfer multiples of 4 bytes in a pre-fetched fashion. |
| * If there's a residue, care for it byte-wise afterwards. |
| */ |
| tail = len % 4; |
| |
| ret = __read_prefetch_aligned(chip, (uint32_t *)buf, len - tail); |
| if (ret < 0) { |
| /* fallback in case the prefetch engine is busy */ |
| omap_nand_read_buf(mtd, buf, len); |
| } else if (tail) { |
| buf += len - tail; |
| omap_nand_read_buf(mtd, buf, tail); |
| } |
| } |
| #endif /* CONFIG_NAND_OMAP_GPMC_PREFETCH */ |
| |
| #ifdef CONFIG_NAND_OMAP_ELM |
| |
| /** |
| * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors |
| * @mtd: MTD device structure |
| * @dat: The pointer to data on which ecc is computed |
| * @ecc_code: The ecc_code buffer |
| * |
| * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go. |
| */ |
| static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd, |
| const u_char *dat, u_char *ecc_calc) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| int eccbytes = chip->ecc.bytes; |
| unsigned long nsectors; |
| int i, ret; |
| |
| nsectors = ((readl(&gpmc_cfg->ecc_config) >> 4) & 0x7) + 1; |
| for (i = 0; i < nsectors; i++) { |
| ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i); |
| if (ret) |
| return ret; |
| |
| ecc_calc += eccbytes; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * omap_reverse_list - re-orders list elements in reverse order [internal] |
| * @list: pointer to start of list |
| * @length: length of list |
| */ |
| static void omap_reverse_list(u8 *list, unsigned int length) |
| { |
| unsigned int i, j; |
| unsigned int half_length = length / 2; |
| u8 tmp; |
| for (i = 0, j = length - 1; i < half_length; i++, j--) { |
| tmp = list[i]; |
| list[i] = list[j]; |
| list[j] = tmp; |
| } |
| } |
| |
| /* |
| * omap_correct_data_bch - Compares the ecc read from nand spare area |
| * with ECC registers values and corrects one bit error if it has occurred |
| * |
| * @mtd: MTD device structure |
| * @dat: page data |
| * @read_ecc: ecc read from nand flash (ignored) |
| * @calc_ecc: ecc read from ECC registers |
| * |
| * Return: 0 if data is OK or corrected, else returns -1 |
| */ |
| static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat, |
| uint8_t *read_ecc, uint8_t *calc_ecc) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct omap_nand_info *info = nand_get_controller_data(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| uint32_t error_count = 0, error_max; |
| uint32_t error_loc[ELM_MAX_ERROR_COUNT]; |
| enum bch_level bch_type; |
| uint32_t i, ecc_flag = 0; |
| uint8_t count; |
| uint32_t byte_pos, bit_pos; |
| int err = 0; |
| |
| /* check calculated ecc */ |
| for (i = 0; i < ecc->bytes && !ecc_flag; i++) { |
| if (calc_ecc[i] != 0x00) |
| goto not_ecc_match; |
| } |
| return 0; |
| not_ecc_match: |
| |
| /* check for whether it's an erased-page */ |
| for (i = 0; i < ecc->bytes; i++) { |
| if (read_ecc[i] != 0xff) |
| goto not_erased; |
| } |
| for (i = 0; i < SECTOR_BYTES; i++) { |
| if (dat[i] != 0xff) |
| goto not_erased; |
| } |
| return 0; |
| not_erased: |
| |
| /* |
| * Check for whether it's an erased page with a correctable |
| * number of bitflips. Erased pages have all 1's in the data, |
| * so we just compute the number of 0 bits in the data and |
| * see if it's under the correction threshold. |
| * |
| * NOTE: The check for a perfect erased page above is faster for |
| * the more common case, even though it's logically redundant. |
| */ |
| for (i = 0; i < ecc->bytes; i++) |
| error_count += hweight8(~read_ecc[i]); |
| |
| for (i = 0; i < SECTOR_BYTES; i++) |
| error_count += hweight8(~dat[i]); |
| |
| if (error_count <= ecc->strength) { |
| memset(read_ecc, 0xFF, ecc->bytes); |
| memset(dat, 0xFF, SECTOR_BYTES); |
| debug("nand: %u bit-flip(s) corrected in erased page\n", |
| error_count); |
| return error_count; |
| } |
| |
| /* |
| * while reading ECC result we read it in big endian. |
| * Hence while loading to ELM we have rotate to get the right endian. |
| */ |
| switch (info->ecc_scheme) { |
| case OMAP_ECC_BCH8_CODE_HW: |
| bch_type = BCH_8_BIT; |
| omap_reverse_list(calc_ecc, ecc->bytes - 1); |
| break; |
| case OMAP_ECC_BCH16_CODE_HW: |
| bch_type = BCH_16_BIT; |
| omap_reverse_list(calc_ecc, ecc->bytes); |
| break; |
| default: |
| return -EINVAL; |
| } |
| /* use elm module to check for errors */ |
| elm_config(bch_type); |
| error_count = 0; |
| err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc); |
| if (err) |
| return err; |
| |
| /* correct bch error */ |
| for (count = 0; count < error_count; count++) { |
| switch (info->ecc_scheme) { |
| case OMAP_ECC_BCH8_CODE_HW: |
| /* 14th byte in ECC is reserved to match ROM layout */ |
| error_max = SECTOR_BYTES + (ecc->bytes - 1); |
| break; |
| case OMAP_ECC_BCH16_CODE_HW: |
| error_max = SECTOR_BYTES + ecc->bytes; |
| break; |
| default: |
| return -EINVAL; |
| } |
| byte_pos = error_max - (error_loc[count] / 8) - 1; |
| bit_pos = error_loc[count] % 8; |
| if (byte_pos < SECTOR_BYTES) { |
| dat[byte_pos] ^= 1 << bit_pos; |
| debug("nand: bit-flip corrected @data=%d\n", byte_pos); |
| } else if (byte_pos < error_max) { |
| read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos; |
| debug("nand: bit-flip corrected @oob=%d\n", byte_pos - |
| SECTOR_BYTES); |
| } else { |
| err = -EBADMSG; |
| printf("nand: error: invalid bit-flip location\n"); |
| } |
| } |
| return (err) ? err : error_count; |
| } |
| |
| /** |
| * omap_read_page_bch - hardware ecc based page read function |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * @oob_required: caller expects OOB data read to chip->oob_poi |
| * @page: page number to read |
| * |
| */ |
| static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int oob_required, int page) |
| { |
| int i, eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| int ecctotal = chip->ecc.total; |
| int eccsteps = chip->ecc.steps; |
| uint8_t *p = buf; |
| uint8_t *ecc_calc = chip->buffers->ecccalc; |
| uint8_t *ecc_code = chip->buffers->ecccode; |
| uint32_t *eccpos = chip->ecc.layout->eccpos; |
| uint8_t *oob = chip->oob_poi; |
| uint32_t oob_pos; |
| |
| /* oob area start */ |
| oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0]; |
| oob += chip->ecc.layout->eccpos[0]; |
| |
| /* Enable ECC engine */ |
| chip->ecc.hwctl(mtd, NAND_ECC_READ); |
| |
| /* read entire page */ |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, 0, -1); |
| chip->read_buf(mtd, buf, mtd->writesize); |
| |
| /* read all ecc bytes from oob area */ |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1); |
| chip->read_buf(mtd, oob, ecctotal); |
| |
| /* Calculate ecc bytes */ |
| omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc); |
| |
| for (i = 0; i < chip->ecc.total; i++) |
| ecc_code[i] = chip->oob_poi[eccpos[i]]; |
| |
| /* error detect & correct */ |
| eccsteps = chip->ecc.steps; |
| p = buf; |
| |
| for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| int stat; |
| stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); |
| if (stat < 0) |
| mtd->ecc_stats.failed++; |
| else |
| mtd->ecc_stats.corrected += stat; |
| } |
| |
| return 0; |
| } |
| #endif /* CONFIG_NAND_OMAP_ELM */ |
| |
| /* |
| * OMAP3 BCH8 support (with BCH library) |
| */ |
| #ifdef CONFIG_BCH |
| /** |
| * omap_correct_data_bch_sw - Decode received data and correct errors |
| * @mtd: MTD device structure |
| * @data: page data |
| * @read_ecc: ecc read from nand flash |
| * @calc_ecc: ecc read from HW ECC registers |
| */ |
| static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data, |
| u_char *read_ecc, u_char *calc_ecc) |
| { |
| int i, count; |
| /* cannot correct more than 8 errors */ |
| unsigned int errloc[8]; |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct omap_nand_info *info = nand_get_controller_data(chip); |
| |
| count = decode_bch(info->control, NULL, SECTOR_BYTES, |
| read_ecc, calc_ecc, NULL, errloc); |
| if (count > 0) { |
| /* correct errors */ |
| for (i = 0; i < count; i++) { |
| /* correct data only, not ecc bytes */ |
| if (errloc[i] < SECTOR_BYTES << 3) |
| data[errloc[i] >> 3] ^= 1 << (errloc[i] & 7); |
| debug("corrected bitflip %u\n", errloc[i]); |
| #ifdef DEBUG |
| puts("read_ecc: "); |
| /* |
| * BCH8 have 13 bytes of ECC; BCH4 needs adoption |
| * here! |
| */ |
| for (i = 0; i < 13; i++) |
| printf("%02x ", read_ecc[i]); |
| puts("\n"); |
| puts("calc_ecc: "); |
| for (i = 0; i < 13; i++) |
| printf("%02x ", calc_ecc[i]); |
| puts("\n"); |
| #endif |
| } |
| } else if (count < 0) { |
| puts("ecc unrecoverable error\n"); |
| } |
| return count; |
| } |
| |
| /** |
| * omap_free_bch - Release BCH ecc resources |
| * @mtd: MTD device structure |
| */ |
| static void __maybe_unused omap_free_bch(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct omap_nand_info *info = nand_get_controller_data(chip); |
| |
| if (info->control) { |
| free_bch(info->control); |
| info->control = NULL; |
| } |
| } |
| #endif /* CONFIG_BCH */ |
| |
| /** |
| * omap_select_ecc_scheme - configures driver for particular ecc-scheme |
| * @nand: NAND chip device structure |
| * @ecc_scheme: ecc scheme to configure |
| * @pagesize: number of main-area bytes per page of NAND device |
| * @oobsize: number of OOB/spare bytes per page of NAND device |
| */ |
| static int omap_select_ecc_scheme(struct nand_chip *nand, |
| enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) { |
| struct omap_nand_info *info = nand_get_controller_data(nand); |
| struct nand_ecclayout *ecclayout = nand->ecc.layout; |
| int eccsteps = pagesize / SECTOR_BYTES; |
| int i; |
| |
| switch (ecc_scheme) { |
| case OMAP_ECC_HAM1_CODE_SW: |
| debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n"); |
| /* For this ecc-scheme, ecc.bytes, ecc.layout, ... are |
| * initialized in nand_scan_tail(), so just set ecc.mode */ |
| info->control = NULL; |
| nand->ecc.mode = NAND_ECC_SOFT; |
| nand->ecc.layout = NULL; |
| nand->ecc.size = 0; |
| break; |
| |
| case OMAP_ECC_HAM1_CODE_HW: |
| debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n"); |
| /* check ecc-scheme requirements before updating ecc info */ |
| if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) { |
| printf("nand: error: insufficient OOB: require=%d\n", ( |
| (3 * eccsteps) + BADBLOCK_MARKER_LENGTH)); |
| return -EINVAL; |
| } |
| info->control = NULL; |
| /* populate ecc specific fields */ |
| memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl)); |
| nand->ecc.mode = NAND_ECC_HW; |
| nand->ecc.strength = 1; |
| nand->ecc.size = SECTOR_BYTES; |
| nand->ecc.bytes = 3; |
| nand->ecc.hwctl = omap_enable_hwecc; |
| nand->ecc.correct = omap_correct_data; |
| nand->ecc.calculate = omap_calculate_ecc; |
| /* define ecc-layout */ |
| ecclayout->eccbytes = nand->ecc.bytes * eccsteps; |
| for (i = 0; i < ecclayout->eccbytes; i++) { |
| if (nand->options & NAND_BUSWIDTH_16) |
| ecclayout->eccpos[i] = i + 2; |
| else |
| ecclayout->eccpos[i] = i + 1; |
| } |
| ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH; |
| ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes - |
| BADBLOCK_MARKER_LENGTH; |
| break; |
| |
| case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: |
| #ifdef CONFIG_BCH |
| debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n"); |
| /* check ecc-scheme requirements before updating ecc info */ |
| if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) { |
| printf("nand: error: insufficient OOB: require=%d\n", ( |
| (13 * eccsteps) + BADBLOCK_MARKER_LENGTH)); |
| return -EINVAL; |
| } |
| /* check if BCH S/W library can be used for error detection */ |
| info->control = init_bch(13, 8, 0x201b); |
| if (!info->control) { |
| printf("nand: error: could not init_bch()\n"); |
| return -ENODEV; |
| } |
| /* populate ecc specific fields */ |
| memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl)); |
| nand->ecc.mode = NAND_ECC_HW; |
| nand->ecc.strength = 8; |
| nand->ecc.size = SECTOR_BYTES; |
| nand->ecc.bytes = 13; |
| nand->ecc.hwctl = omap_enable_hwecc_bch; |
| nand->ecc.correct = omap_correct_data_bch_sw; |
| nand->ecc.calculate = omap_calculate_ecc_bch; |
| /* define ecc-layout */ |
| ecclayout->eccbytes = nand->ecc.bytes * eccsteps; |
| ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH; |
| for (i = 1; i < ecclayout->eccbytes; i++) { |
| if (i % nand->ecc.bytes) |
| ecclayout->eccpos[i] = |
| ecclayout->eccpos[i - 1] + 1; |
| else |
| ecclayout->eccpos[i] = |
| ecclayout->eccpos[i - 1] + 2; |
| } |
| ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH; |
| ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes - |
| BADBLOCK_MARKER_LENGTH; |
| break; |
| #else |
| printf("nand: error: CONFIG_BCH required for ECC\n"); |
| return -EINVAL; |
| #endif |
| |
| case OMAP_ECC_BCH8_CODE_HW: |
| #ifdef CONFIG_NAND_OMAP_ELM |
| debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n"); |
| /* check ecc-scheme requirements before updating ecc info */ |
| if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) { |
| printf("nand: error: insufficient OOB: require=%d\n", ( |
| (14 * eccsteps) + BADBLOCK_MARKER_LENGTH)); |
| return -EINVAL; |
| } |
| /* intialize ELM for ECC error detection */ |
| elm_init(); |
| info->control = NULL; |
| /* populate ecc specific fields */ |
| memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl)); |
| nand->ecc.mode = NAND_ECC_HW; |
| nand->ecc.strength = 8; |
| nand->ecc.size = SECTOR_BYTES; |
| nand->ecc.bytes = 14; |
| nand->ecc.hwctl = omap_enable_hwecc_bch; |
| nand->ecc.correct = omap_correct_data_bch; |
| nand->ecc.calculate = omap_calculate_ecc_bch; |
| nand->ecc.read_page = omap_read_page_bch; |
| /* define ecc-layout */ |
| ecclayout->eccbytes = nand->ecc.bytes * eccsteps; |
| for (i = 0; i < ecclayout->eccbytes; i++) |
| ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH; |
| ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH; |
| ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes - |
| BADBLOCK_MARKER_LENGTH; |
| break; |
| #else |
| printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n"); |
| return -EINVAL; |
| #endif |
| |
| case OMAP_ECC_BCH16_CODE_HW: |
| #ifdef CONFIG_NAND_OMAP_ELM |
| debug("nand: using OMAP_ECC_BCH16_CODE_HW\n"); |
| /* check ecc-scheme requirements before updating ecc info */ |
| if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) { |
| printf("nand: error: insufficient OOB: require=%d\n", ( |
| (26 * eccsteps) + BADBLOCK_MARKER_LENGTH)); |
| return -EINVAL; |
| } |
| /* intialize ELM for ECC error detection */ |
| elm_init(); |
| /* populate ecc specific fields */ |
| nand->ecc.mode = NAND_ECC_HW; |
| nand->ecc.size = SECTOR_BYTES; |
| nand->ecc.bytes = 26; |
| nand->ecc.strength = 16; |
| nand->ecc.hwctl = omap_enable_hwecc_bch; |
| nand->ecc.correct = omap_correct_data_bch; |
| nand->ecc.calculate = omap_calculate_ecc_bch; |
| nand->ecc.read_page = omap_read_page_bch; |
| /* define ecc-layout */ |
| ecclayout->eccbytes = nand->ecc.bytes * eccsteps; |
| for (i = 0; i < ecclayout->eccbytes; i++) |
| ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH; |
| ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH; |
| ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes - |
| BADBLOCK_MARKER_LENGTH; |
| break; |
| #else |
| printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n"); |
| return -EINVAL; |
| #endif |
| default: |
| debug("nand: error: ecc scheme not enabled or supported\n"); |
| return -EINVAL; |
| } |
| |
| /* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */ |
| if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW) |
| nand->ecc.layout = ecclayout; |
| |
| info->ecc_scheme = ecc_scheme; |
| return 0; |
| } |
| |
| #ifndef CONFIG_SPL_BUILD |
| /* |
| * omap_nand_switch_ecc - switch the ECC operation between different engines |
| * (h/w and s/w) and different algorithms (hamming and BCHx) |
| * |
| * @hardware - true if one of the HW engines should be used |
| * @eccstrength - the number of bits that could be corrected |
| * (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16) |
| */ |
| int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength) |
| { |
| struct nand_chip *nand; |
| struct mtd_info *mtd = get_nand_dev_by_index(nand_curr_device); |
| int err = 0; |
| |
| if (!mtd) { |
| printf("nand: error: no NAND devices found\n"); |
| return -ENODEV; |
| } |
| |
| nand = mtd_to_nand(mtd); |
| nand->options |= NAND_OWN_BUFFERS; |
| nand->options &= ~NAND_SUBPAGE_READ; |
| /* Setup the ecc configurations again */ |
| if (hardware) { |
| if (eccstrength == 1) { |
| err = omap_select_ecc_scheme(nand, |
| OMAP_ECC_HAM1_CODE_HW, |
| mtd->writesize, mtd->oobsize); |
| } else if (eccstrength == 8) { |
| err = omap_select_ecc_scheme(nand, |
| OMAP_ECC_BCH8_CODE_HW, |
| mtd->writesize, mtd->oobsize); |
| } else if (eccstrength == 16) { |
| err = omap_select_ecc_scheme(nand, |
| OMAP_ECC_BCH16_CODE_HW, |
| mtd->writesize, mtd->oobsize); |
| } else { |
| printf("nand: error: unsupported ECC scheme\n"); |
| return -EINVAL; |
| } |
| } else { |
| if (eccstrength == 1) { |
| err = omap_select_ecc_scheme(nand, |
| OMAP_ECC_HAM1_CODE_SW, |
| mtd->writesize, mtd->oobsize); |
| } else if (eccstrength == 8) { |
| err = omap_select_ecc_scheme(nand, |
| OMAP_ECC_BCH8_CODE_HW_DETECTION_SW, |
| mtd->writesize, mtd->oobsize); |
| } else { |
| printf("nand: error: unsupported ECC scheme\n"); |
| return -EINVAL; |
| } |
| } |
| |
| /* Update NAND handling after ECC mode switch */ |
| if (!err) |
| err = nand_scan_tail(mtd); |
| return err; |
| } |
| #endif /* CONFIG_SPL_BUILD */ |
| |
| /* |
| * Board-specific NAND initialization. The following members of the |
| * argument are board-specific: |
| * - IO_ADDR_R: address to read the 8 I/O lines of the flash device |
| * - IO_ADDR_W: address to write the 8 I/O lines of the flash device |
| * - cmd_ctrl: hardwarespecific function for accesing control-lines |
| * - waitfunc: hardwarespecific function for accesing device ready/busy line |
| * - ecc.hwctl: function to enable (reset) hardware ecc generator |
| * - ecc.mode: mode of ecc, see defines |
| * - chip_delay: chip dependent delay for transfering data from array to |
| * read regs (tR) |
| * - options: various chip options. They can partly be set to inform |
| * nand_scan about special functionality. See the defines for further |
| * explanation |
| */ |
| int board_nand_init(struct nand_chip *nand) |
| { |
| int32_t gpmc_config = 0; |
| int cs = cs_next++; |
| int err = 0; |
| struct omap_nand_info *info; |
| |
| /* |
| * xloader/Uboot's gpmc configuration would have configured GPMC for |
| * nand type of memory. The following logic scans and latches on to the |
| * first CS with NAND type memory. |
| * TBD: need to make this logic generic to handle multiple CS NAND |
| * devices. |
| */ |
| while (cs < GPMC_MAX_CS) { |
| /* Check if NAND type is set */ |
| if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) { |
| /* Found it!! */ |
| break; |
| } |
| cs++; |
| } |
| if (cs >= GPMC_MAX_CS) { |
| printf("nand: error: Unable to find NAND settings in " |
| "GPMC Configuration - quitting\n"); |
| return -ENODEV; |
| } |
| |
| gpmc_config = readl(&gpmc_cfg->config); |
| /* Disable Write protect */ |
| gpmc_config |= 0x10; |
| writel(gpmc_config, &gpmc_cfg->config); |
| |
| nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat; |
| nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd; |
| |
| info = &omap_nand_info[cs]; |
| info->control = NULL; |
| info->cs = cs; |
| info->ws = wscfg[cs]; |
| info->fifo = (void __iomem *)CFG_SYS_NAND_BASE; |
| nand_set_controller_data(nand, &omap_nand_info[cs]); |
| nand->cmd_ctrl = omap_nand_hwcontrol; |
| nand->options |= NAND_NO_PADDING | NAND_CACHEPRG; |
| nand->chip_delay = 100; |
| nand->ecc.layout = kzalloc(sizeof(*nand->ecc.layout), GFP_KERNEL); |
| if (!nand->ecc.layout) |
| return -ENOMEM; |
| |
| /* configure driver and controller based on NAND device bus-width */ |
| gpmc_config = readl(&gpmc_cfg->cs[cs].config1); |
| #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT) |
| nand->options |= NAND_BUSWIDTH_16; |
| writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1); |
| #else |
| nand->options &= ~NAND_BUSWIDTH_16; |
| writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1); |
| #endif |
| /* select ECC scheme */ |
| #if defined(CONFIG_NAND_OMAP_ECCSCHEME) |
| err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME, |
| CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE); |
| #else |
| /* pagesize and oobsize are not required to configure sw ecc-scheme */ |
| err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW, |
| 0, 0); |
| #endif |
| if (err) |
| return err; |
| |
| #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH |
| nand->read_buf = omap_nand_read_prefetch; |
| #else |
| nand->read_buf = omap_nand_read_buf; |
| #endif |
| |
| nand->dev_ready = omap_dev_ready; |
| |
| return 0; |
| } |