| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) 2011 Samsung Electronics |
| * |
| * Donghwa Lee <dh09.lee@samsung.com> |
| */ |
| |
| #include <config.h> |
| #include <errno.h> |
| #include <asm/io.h> |
| #include <asm/arch/pwm.h> |
| #include <asm/arch/clk.h> |
| |
| int s5p_pwm_enable(int pwm_id) |
| { |
| const struct s5p_timer *pwm = |
| #if defined(CONFIG_ARCH_NEXELL) |
| (struct s5p_timer *)PHY_BASEADDR_PWM; |
| #else |
| (struct s5p_timer *)samsung_get_base_timer(); |
| #endif |
| unsigned long tcon; |
| |
| tcon = readl(&pwm->tcon); |
| tcon |= TCON_START(pwm_id); |
| |
| writel(tcon, &pwm->tcon); |
| |
| return 0; |
| } |
| |
| void s5p_pwm_disable(int pwm_id) |
| { |
| const struct s5p_timer *pwm = |
| #if defined(CONFIG_ARCH_NEXELL) |
| (struct s5p_timer *)PHY_BASEADDR_PWM; |
| #else |
| (struct s5p_timer *)samsung_get_base_timer(); |
| #endif |
| unsigned long tcon; |
| |
| tcon = readl(&pwm->tcon); |
| tcon &= ~TCON_START(pwm_id); |
| |
| writel(tcon, &pwm->tcon); |
| } |
| |
| static unsigned long pwm_calc_tin(int pwm_id, unsigned long freq) |
| { |
| unsigned long tin_parent_rate; |
| unsigned int div; |
| |
| #if defined(CONFIG_ARCH_NEXELL) |
| unsigned int pre_div; |
| const struct s5p_timer *pwm = |
| (struct s5p_timer *)PHY_BASEADDR_PWM; |
| unsigned int val; |
| struct clk *clk = clk_get(CORECLK_NAME_PCLK); |
| |
| tin_parent_rate = clk_get_rate(clk); |
| #else |
| tin_parent_rate = get_pwm_clk(); |
| #endif |
| |
| #if defined(CONFIG_ARCH_NEXELL) |
| writel(0, &pwm->tcfg0); |
| val = readl(&pwm->tcfg0); |
| |
| if (pwm_id < 2) |
| div = ((val >> 0) & 0xff) + 1; |
| else |
| div = ((val >> 8) & 0xff) + 1; |
| |
| writel(0, &pwm->tcfg1); |
| val = readl(&pwm->tcfg1); |
| val = (val >> MUX_DIV_SHIFT(pwm_id)) & 0xF; |
| pre_div = (1UL << val); |
| |
| freq = tin_parent_rate / div / pre_div; |
| |
| return freq; |
| #else |
| for (div = 2; div <= 16; div *= 2) { |
| if ((tin_parent_rate / (div << 16)) < freq) |
| return tin_parent_rate / div; |
| } |
| |
| return tin_parent_rate / 16; |
| #endif |
| } |
| |
| #define NS_IN_SEC 1000000000UL |
| |
| int s5p_pwm_config(int pwm_id, int duty_ns, int period_ns) |
| { |
| const struct s5p_timer *pwm = |
| #if defined(CONFIG_ARCH_NEXELL) |
| (struct s5p_timer *)PHY_BASEADDR_PWM; |
| #else |
| (struct s5p_timer *)samsung_get_base_timer(); |
| #endif |
| unsigned int offset; |
| unsigned long tin_rate; |
| unsigned long tin_ns; |
| unsigned long frequency; |
| unsigned long tcon; |
| unsigned long tcnt; |
| unsigned long tcmp; |
| |
| /* |
| * We currently avoid using 64bit arithmetic by using the |
| * fact that anything faster than 1GHz is easily representable |
| * by 32bits. |
| */ |
| if (period_ns > NS_IN_SEC || duty_ns > NS_IN_SEC || period_ns == 0) |
| return -ERANGE; |
| |
| if (duty_ns > period_ns) |
| return -EINVAL; |
| |
| frequency = NS_IN_SEC / period_ns; |
| |
| /* Check to see if we are changing the clock rate of the PWM */ |
| tin_rate = pwm_calc_tin(pwm_id, frequency); |
| |
| tin_ns = NS_IN_SEC / tin_rate; |
| |
| if (IS_ENABLED(CONFIG_ARCH_NEXELL)) |
| /* The counter starts at zero. */ |
| tcnt = (period_ns / tin_ns) - 1; |
| else |
| tcnt = period_ns / tin_ns; |
| |
| /* Note, counters count down */ |
| tcmp = duty_ns / tin_ns; |
| tcmp = tcnt - tcmp; |
| |
| /* Update the PWM register block. */ |
| offset = pwm_id * 3; |
| if (pwm_id < 4) { |
| writel(tcnt, &pwm->tcntb0 + offset); |
| writel(tcmp, &pwm->tcmpb0 + offset); |
| } |
| |
| tcon = readl(&pwm->tcon); |
| tcon |= TCON_UPDATE(pwm_id); |
| if (pwm_id < 4) |
| tcon |= TCON_AUTO_RELOAD(pwm_id); |
| else |
| tcon |= TCON4_AUTO_RELOAD; |
| writel(tcon, &pwm->tcon); |
| |
| tcon &= ~TCON_UPDATE(pwm_id); |
| writel(tcon, &pwm->tcon); |
| |
| return 0; |
| } |
| |
| int s5p_pwm_init(int pwm_id, int div, int invert) |
| { |
| u32 val; |
| const struct s5p_timer *pwm = |
| #if defined(CONFIG_ARCH_NEXELL) |
| (struct s5p_timer *)PHY_BASEADDR_PWM; |
| #else |
| (struct s5p_timer *)samsung_get_base_timer(); |
| #endif |
| unsigned long ticks_per_period; |
| unsigned int offset, prescaler; |
| |
| /* |
| * Timer Freq(HZ) = |
| * PWM_CLK / { (prescaler_value + 1) * (divider_value) } |
| */ |
| |
| val = readl(&pwm->tcfg0); |
| if (pwm_id < 2) { |
| prescaler = PRESCALER_0; |
| val &= ~0xff; |
| val |= (prescaler & 0xff); |
| } else { |
| prescaler = PRESCALER_1; |
| val &= ~(0xff << 8); |
| val |= (prescaler & 0xff) << 8; |
| } |
| writel(val, &pwm->tcfg0); |
| val = readl(&pwm->tcfg1); |
| val &= ~(0xf << MUX_DIV_SHIFT(pwm_id)); |
| val |= (div & 0xf) << MUX_DIV_SHIFT(pwm_id); |
| writel(val, &pwm->tcfg1); |
| |
| if (pwm_id == 4) { |
| /* |
| * TODO(sjg): Use this as a countdown timer for now. We count |
| * down from the maximum value to 0, then reset. |
| */ |
| ticks_per_period = -1UL; |
| } else { |
| const unsigned long pwm_hz = 1000; |
| #if defined(CONFIG_ARCH_NEXELL) |
| struct clk *clk = clk_get(CORECLK_NAME_PCLK); |
| unsigned long timer_rate_hz = clk_get_rate(clk) / |
| #else |
| unsigned long timer_rate_hz = get_pwm_clk() / |
| #endif |
| ((prescaler + 1) * (1 << div)); |
| |
| ticks_per_period = timer_rate_hz / pwm_hz; |
| } |
| |
| /* set count value */ |
| offset = pwm_id * 3; |
| |
| writel(ticks_per_period, &pwm->tcntb0 + offset); |
| |
| val = readl(&pwm->tcon) & ~(0xf << TCON_OFFSET(pwm_id)); |
| if (invert && (pwm_id < 4)) |
| val |= TCON_INVERTER(pwm_id); |
| writel(val, &pwm->tcon); |
| |
| s5p_pwm_enable(pwm_id); |
| |
| return 0; |
| } |