blob: c135e2883db70374d0b1af9f699c6aa20870dee5 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* EFI device path from u-boot device-model mapping
*
* (C) Copyright 2017 Rob Clark
*/
#define LOG_CATEGORY LOGC_EFI
#include <common.h>
#include <blk.h>
#include <dm.h>
#include <log.h>
#include <net.h>
#include <usb.h>
#include <mmc.h>
#include <nvme.h>
#include <efi_loader.h>
#include <part.h>
#include <uuid.h>
#include <asm-generic/unaligned.h>
#include <linux/compat.h> /* U16_MAX */
#ifdef CONFIG_BLKMAP
const efi_guid_t efi_guid_blkmap_dev = U_BOOT_BLKMAP_DEV_GUID;
#endif
#ifdef CONFIG_SANDBOX
const efi_guid_t efi_guid_host_dev = U_BOOT_HOST_DEV_GUID;
#endif
#ifdef CONFIG_VIRTIO_BLK
const efi_guid_t efi_guid_virtio_dev = U_BOOT_VIRTIO_DEV_GUID;
#endif
/* template END node: */
const struct efi_device_path END = {
.type = DEVICE_PATH_TYPE_END,
.sub_type = DEVICE_PATH_SUB_TYPE_END,
.length = sizeof(END),
};
/* template ROOT node: */
static const struct efi_device_path_vendor ROOT = {
.dp = {
.type = DEVICE_PATH_TYPE_HARDWARE_DEVICE,
.sub_type = DEVICE_PATH_SUB_TYPE_VENDOR,
.length = sizeof(ROOT),
},
.guid = U_BOOT_GUID,
};
#if defined(CONFIG_MMC)
/*
* Determine if an MMC device is an SD card.
*
* @desc block device descriptor
* Return: true if the device is an SD card
*/
static bool is_sd(struct blk_desc *desc)
{
struct mmc *mmc = find_mmc_device(desc->devnum);
if (!mmc)
return false;
return IS_SD(mmc) != 0U;
}
#endif
/*
* Iterate to next block in device-path, terminating (returning NULL)
* at /End* node.
*/
struct efi_device_path *efi_dp_next(const struct efi_device_path *dp)
{
if (dp == NULL)
return NULL;
if (dp->type == DEVICE_PATH_TYPE_END)
return NULL;
dp = ((void *)dp) + dp->length;
if (dp->type == DEVICE_PATH_TYPE_END)
return NULL;
return (struct efi_device_path *)dp;
}
/*
* Compare two device-paths, stopping when the shorter of the two hits
* an End* node. This is useful to, for example, compare a device-path
* representing a device with one representing a file on the device, or
* a device with a parent device.
*/
int efi_dp_match(const struct efi_device_path *a,
const struct efi_device_path *b)
{
while (1) {
int ret;
ret = memcmp(&a->length, &b->length, sizeof(a->length));
if (ret)
return ret;
ret = memcmp(a, b, a->length);
if (ret)
return ret;
a = efi_dp_next(a);
b = efi_dp_next(b);
if (!a || !b)
return 0;
}
}
/**
* efi_dp_shorten() - shorten device-path
*
* When creating a short boot option we want to use a device-path that is
* independent of the location where the block device is plugged in.
*
* UsbWwi() nodes contain a serial number, hard drive paths a partition
* UUID. Both should be unique.
*
* See UEFI spec, section 3.1.2 for "short-form device path".
*
* @dp: original device-path
* @Return: shortened device-path or NULL
*/
struct efi_device_path *efi_dp_shorten(struct efi_device_path *dp)
{
while (dp) {
if (EFI_DP_TYPE(dp, MESSAGING_DEVICE, MSG_USB_WWI) ||
EFI_DP_TYPE(dp, MEDIA_DEVICE, HARD_DRIVE_PATH) ||
EFI_DP_TYPE(dp, MEDIA_DEVICE, FILE_PATH))
return dp;
dp = efi_dp_next(dp);
}
return dp;
}
/**
* find_handle() - find handle by device path and installed protocol
*
* If @rem is provided, the handle with the longest partial match is returned.
*
* @dp: device path to search
* @guid: GUID of protocol that must be installed on path or NULL
* @short_path: use short form device path for matching
* @rem: pointer to receive remaining device path
* Return: matching handle
*/
static efi_handle_t find_handle(struct efi_device_path *dp,
const efi_guid_t *guid, bool short_path,
struct efi_device_path **rem)
{
efi_handle_t handle, best_handle = NULL;
efi_uintn_t len, best_len = 0;
len = efi_dp_instance_size(dp);
list_for_each_entry(handle, &efi_obj_list, link) {
struct efi_handler *handler;
struct efi_device_path *dp_current;
efi_uintn_t len_current;
efi_status_t ret;
if (guid) {
ret = efi_search_protocol(handle, guid, &handler);
if (ret != EFI_SUCCESS)
continue;
}
ret = efi_search_protocol(handle, &efi_guid_device_path,
&handler);
if (ret != EFI_SUCCESS)
continue;
dp_current = handler->protocol_interface;
if (short_path) {
dp_current = efi_dp_shorten(dp_current);
if (!dp_current)
continue;
}
len_current = efi_dp_instance_size(dp_current);
if (rem) {
if (len_current > len)
continue;
} else {
if (len_current != len)
continue;
}
if (memcmp(dp_current, dp, len_current))
continue;
if (!rem)
return handle;
if (len_current > best_len) {
best_len = len_current;
best_handle = handle;
*rem = (void*)((u8 *)dp + len_current);
}
}
return best_handle;
}
/**
* efi_dp_find_obj() - find handle by device path
*
* If @rem is provided, the handle with the longest partial match is returned.
*
* @dp: device path to search
* @guid: GUID of protocol that must be installed on path or NULL
* @rem: pointer to receive remaining device path
* Return: matching handle
*/
efi_handle_t efi_dp_find_obj(struct efi_device_path *dp,
const efi_guid_t *guid,
struct efi_device_path **rem)
{
efi_handle_t handle;
handle = find_handle(dp, guid, false, rem);
if (!handle)
/* Match short form device path */
handle = find_handle(dp, guid, true, rem);
return handle;
}
/*
* Determine the last device path node that is not the end node.
*
* @dp device path
* Return: last node before the end node if it exists
* otherwise NULL
*/
const struct efi_device_path *efi_dp_last_node(const struct efi_device_path *dp)
{
struct efi_device_path *ret;
if (!dp || dp->type == DEVICE_PATH_TYPE_END)
return NULL;
while (dp) {
ret = (struct efi_device_path *)dp;
dp = efi_dp_next(dp);
}
return ret;
}
/* get size of the first device path instance excluding end node */
efi_uintn_t efi_dp_instance_size(const struct efi_device_path *dp)
{
efi_uintn_t sz = 0;
if (!dp || dp->type == DEVICE_PATH_TYPE_END)
return 0;
while (dp) {
sz += dp->length;
dp = efi_dp_next(dp);
}
return sz;
}
/* get size of multi-instance device path excluding end node */
efi_uintn_t efi_dp_size(const struct efi_device_path *dp)
{
const struct efi_device_path *p = dp;
if (!p)
return 0;
while (p->type != DEVICE_PATH_TYPE_END ||
p->sub_type != DEVICE_PATH_SUB_TYPE_END)
p = (void *)p + p->length;
return (void *)p - (void *)dp;
}
/* copy multi-instance device path */
struct efi_device_path *efi_dp_dup(const struct efi_device_path *dp)
{
struct efi_device_path *ndp;
size_t sz = efi_dp_size(dp) + sizeof(END);
if (!dp)
return NULL;
ndp = efi_alloc(sz);
if (!ndp)
return NULL;
memcpy(ndp, dp, sz);
return ndp;
}
/**
* efi_dp_append_or_concatenate() - Append or concatenate two device paths.
* Concatenated device path will be separated
* by a sub-type 0xff end node
*
* @dp1: First device path
* @dp2: Second device path
* @concat: If true the two device paths will be concatenated and separated
* by an end of entrire device path sub-type 0xff end node.
* If true the second device path will be appended to the first and
* terminated by an end node
*
* Return:
* concatenated device path or NULL. Caller must free the returned value
*/
static struct
efi_device_path *efi_dp_append_or_concatenate(const struct efi_device_path *dp1,
const struct efi_device_path *dp2,
bool concat)
{
struct efi_device_path *ret;
size_t end_size = sizeof(END);
if (concat)
end_size = 2 * sizeof(END);
if (!dp1 && !dp2) {
/* return an end node */
ret = efi_dp_dup(&END);
} else if (!dp1) {
ret = efi_dp_dup(dp2);
} else if (!dp2) {
ret = efi_dp_dup(dp1);
} else {
/* both dp1 and dp2 are non-null */
unsigned sz1 = efi_dp_size(dp1);
unsigned sz2 = efi_dp_size(dp2);
void *p = efi_alloc(sz1 + sz2 + end_size);
if (!p)
return NULL;
ret = p;
memcpy(p, dp1, sz1);
p += sz1;
if (concat) {
memcpy(p, &END, sizeof(END));
p += sizeof(END);
}
/* the end node of the second device path has to be retained */
memcpy(p, dp2, sz2);
p += sz2;
memcpy(p, &END, sizeof(END));
}
return ret;
}
/**
* efi_dp_append() - Append a device to an existing device path.
*
* @dp1: First device path
* @dp2: Second device path
*
* Return:
* concatenated device path or NULL. Caller must free the returned value
*/
struct efi_device_path *efi_dp_append(const struct efi_device_path *dp1,
const struct efi_device_path *dp2)
{
return efi_dp_append_or_concatenate(dp1, dp2, false);
}
/**
* efi_dp_concat() - Concatenate 2 device paths. The final device path will
* contain two device paths separated by and end node (0xff).
*
* @dp1: First device path
* @dp2: Second device path
*
* Return:
* concatenated device path or NULL. Caller must free the returned value
*/
struct efi_device_path *efi_dp_concat(const struct efi_device_path *dp1,
const struct efi_device_path *dp2)
{
return efi_dp_append_or_concatenate(dp1, dp2, true);
}
struct efi_device_path *efi_dp_append_node(const struct efi_device_path *dp,
const struct efi_device_path *node)
{
struct efi_device_path *ret;
if (!node && !dp) {
ret = efi_dp_dup(&END);
} else if (!node) {
ret = efi_dp_dup(dp);
} else if (!dp) {
size_t sz = node->length;
void *p = efi_alloc(sz + sizeof(END));
if (!p)
return NULL;
memcpy(p, node, sz);
memcpy(p + sz, &END, sizeof(END));
ret = p;
} else {
/* both dp and node are non-null */
size_t sz = efi_dp_size(dp);
void *p = efi_alloc(sz + node->length + sizeof(END));
if (!p)
return NULL;
memcpy(p, dp, sz);
memcpy(p + sz, node, node->length);
memcpy(p + sz + node->length, &END, sizeof(END));
ret = p;
}
return ret;
}
struct efi_device_path *efi_dp_create_device_node(const u8 type,
const u8 sub_type,
const u16 length)
{
struct efi_device_path *ret;
if (length < sizeof(struct efi_device_path))
return NULL;
ret = efi_alloc(length);
if (!ret)
return ret;
ret->type = type;
ret->sub_type = sub_type;
ret->length = length;
return ret;
}
struct efi_device_path *efi_dp_append_instance(
const struct efi_device_path *dp,
const struct efi_device_path *dpi)
{
size_t sz, szi;
struct efi_device_path *p, *ret;
if (!dpi)
return NULL;
if (!dp)
return efi_dp_dup(dpi);
sz = efi_dp_size(dp);
szi = efi_dp_instance_size(dpi);
p = efi_alloc(sz + szi + 2 * sizeof(END));
if (!p)
return NULL;
ret = p;
memcpy(p, dp, sz + sizeof(END));
p = (void *)p + sz;
p->sub_type = DEVICE_PATH_SUB_TYPE_INSTANCE_END;
p = (void *)p + sizeof(END);
memcpy(p, dpi, szi);
p = (void *)p + szi;
memcpy(p, &END, sizeof(END));
return ret;
}
struct efi_device_path *efi_dp_get_next_instance(struct efi_device_path **dp,
efi_uintn_t *size)
{
size_t sz;
struct efi_device_path *p;
if (size)
*size = 0;
if (!dp || !*dp)
return NULL;
sz = efi_dp_instance_size(*dp);
p = efi_alloc(sz + sizeof(END));
if (!p)
return NULL;
memcpy(p, *dp, sz + sizeof(END));
*dp = (void *)*dp + sz;
if ((*dp)->sub_type == DEVICE_PATH_SUB_TYPE_INSTANCE_END)
*dp = (void *)*dp + sizeof(END);
else
*dp = NULL;
if (size)
*size = sz + sizeof(END);
return p;
}
bool efi_dp_is_multi_instance(const struct efi_device_path *dp)
{
const struct efi_device_path *p = dp;
if (!p)
return false;
while (p->type != DEVICE_PATH_TYPE_END)
p = (void *)p + p->length;
return p->sub_type == DEVICE_PATH_SUB_TYPE_INSTANCE_END;
}
/* size of device-path not including END node for device and all parents
* up to the root device.
*/
__maybe_unused static unsigned int dp_size(struct udevice *dev)
{
if (!dev || !dev->driver)
return sizeof(ROOT);
switch (device_get_uclass_id(dev)) {
case UCLASS_ROOT:
case UCLASS_SIMPLE_BUS:
/* stop traversing parents at this point: */
return sizeof(ROOT);
case UCLASS_ETH:
return dp_size(dev->parent) +
sizeof(struct efi_device_path_mac_addr);
case UCLASS_BLK:
switch (dev->parent->uclass->uc_drv->id) {
#ifdef CONFIG_IDE
case UCLASS_IDE:
return dp_size(dev->parent) +
sizeof(struct efi_device_path_atapi);
#endif
#if defined(CONFIG_SCSI)
case UCLASS_SCSI:
return dp_size(dev->parent) +
sizeof(struct efi_device_path_scsi);
#endif
#if defined(CONFIG_MMC)
case UCLASS_MMC:
return dp_size(dev->parent) +
sizeof(struct efi_device_path_sd_mmc_path);
#endif
#if defined(CONFIG_AHCI) || defined(CONFIG_SATA)
case UCLASS_AHCI:
return dp_size(dev->parent) +
sizeof(struct efi_device_path_sata);
#endif
#if defined(CONFIG_NVME)
case UCLASS_NVME:
return dp_size(dev->parent) +
sizeof(struct efi_device_path_nvme);
#endif
#ifdef CONFIG_SANDBOX
case UCLASS_HOST:
/*
* Sandbox's host device will be represented
* as vendor device with extra one byte for
* device number
*/
return dp_size(dev->parent)
+ sizeof(struct efi_device_path_vendor) + 1;
#endif
#ifdef CONFIG_USB
case UCLASS_MASS_STORAGE:
return dp_size(dev->parent)
+ sizeof(struct efi_device_path_controller);
#endif
#ifdef CONFIG_VIRTIO_BLK
case UCLASS_VIRTIO:
/*
* Virtio devices will be represented as a vendor
* device node with an extra byte for the device
* number.
*/
return dp_size(dev->parent)
+ sizeof(struct efi_device_path_vendor) + 1;
#endif
#ifdef CONFIG_BLKMAP
case UCLASS_BLKMAP:
/*
* blkmap devices will be represented as a vendor
* device node with an extra byte for the device
* number.
*/
return dp_size(dev->parent)
+ sizeof(struct efi_device_path_vendor) + 1;
#endif
default:
return dp_size(dev->parent);
}
#if defined(CONFIG_MMC)
case UCLASS_MMC:
return dp_size(dev->parent) +
sizeof(struct efi_device_path_sd_mmc_path);
#endif
case UCLASS_MASS_STORAGE:
case UCLASS_USB_HUB:
return dp_size(dev->parent) +
sizeof(struct efi_device_path_usb);
default:
/* just skip over unknown classes: */
return dp_size(dev->parent);
}
}
/*
* Recursively build a device path.
*
* @buf pointer to the end of the device path
* @dev device
* Return: pointer to the end of the device path
*/
__maybe_unused static void *dp_fill(void *buf, struct udevice *dev)
{
if (!dev || !dev->driver)
return buf;
switch (device_get_uclass_id(dev)) {
case UCLASS_ROOT:
case UCLASS_SIMPLE_BUS: {
/* stop traversing parents at this point: */
struct efi_device_path_vendor *vdp = buf;
*vdp = ROOT;
return &vdp[1];
}
#ifdef CONFIG_NETDEVICES
case UCLASS_ETH: {
struct efi_device_path_mac_addr *dp =
dp_fill(buf, dev->parent);
struct eth_pdata *pdata = dev_get_plat(dev);
dp->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE;
dp->dp.sub_type = DEVICE_PATH_SUB_TYPE_MSG_MAC_ADDR;
dp->dp.length = sizeof(*dp);
memset(&dp->mac, 0, sizeof(dp->mac));
/* We only support IPv4 */
memcpy(&dp->mac, &pdata->enetaddr, ARP_HLEN);
/* Ethernet */
dp->if_type = 1;
return &dp[1];
}
#endif
case UCLASS_BLK:
switch (dev->parent->uclass->uc_drv->id) {
#ifdef CONFIG_BLKMAP
case UCLASS_BLKMAP: {
struct efi_device_path_vendor *dp;
struct blk_desc *desc = dev_get_uclass_plat(dev);
dp = dp_fill(buf, dev->parent);
dp->dp.type = DEVICE_PATH_TYPE_HARDWARE_DEVICE;
dp->dp.sub_type = DEVICE_PATH_SUB_TYPE_VENDOR;
dp->dp.length = sizeof(*dp) + 1;
memcpy(&dp->guid, &efi_guid_blkmap_dev,
sizeof(efi_guid_t));
dp->vendor_data[0] = desc->devnum;
return &dp->vendor_data[1];
}
#endif
#ifdef CONFIG_SANDBOX
case UCLASS_HOST: {
/* stop traversing parents at this point: */
struct efi_device_path_vendor *dp;
struct blk_desc *desc = dev_get_uclass_plat(dev);
dp = dp_fill(buf, dev->parent);
dp->dp.type = DEVICE_PATH_TYPE_HARDWARE_DEVICE;
dp->dp.sub_type = DEVICE_PATH_SUB_TYPE_VENDOR;
dp->dp.length = sizeof(*dp) + 1;
memcpy(&dp->guid, &efi_guid_host_dev,
sizeof(efi_guid_t));
dp->vendor_data[0] = desc->devnum;
return &dp->vendor_data[1];
}
#endif
#ifdef CONFIG_VIRTIO_BLK
case UCLASS_VIRTIO: {
struct efi_device_path_vendor *dp;
struct blk_desc *desc = dev_get_uclass_plat(dev);
dp = dp_fill(buf, dev->parent);
dp->dp.type = DEVICE_PATH_TYPE_HARDWARE_DEVICE;
dp->dp.sub_type = DEVICE_PATH_SUB_TYPE_VENDOR;
dp->dp.length = sizeof(*dp) + 1;
memcpy(&dp->guid, &efi_guid_virtio_dev,
sizeof(efi_guid_t));
dp->vendor_data[0] = desc->devnum;
return &dp->vendor_data[1];
}
#endif
#ifdef CONFIG_IDE
case UCLASS_IDE: {
struct efi_device_path_atapi *dp =
dp_fill(buf, dev->parent);
struct blk_desc *desc = dev_get_uclass_plat(dev);
dp->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE;
dp->dp.sub_type = DEVICE_PATH_SUB_TYPE_MSG_ATAPI;
dp->dp.length = sizeof(*dp);
dp->logical_unit_number = desc->devnum;
dp->primary_secondary = IDE_BUS(desc->devnum);
dp->slave_master = desc->devnum %
(CONFIG_SYS_IDE_MAXDEVICE /
CONFIG_SYS_IDE_MAXBUS);
return &dp[1];
}
#endif
#if defined(CONFIG_SCSI)
case UCLASS_SCSI: {
struct efi_device_path_scsi *dp =
dp_fill(buf, dev->parent);
struct blk_desc *desc = dev_get_uclass_plat(dev);
dp->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE;
dp->dp.sub_type = DEVICE_PATH_SUB_TYPE_MSG_SCSI;
dp->dp.length = sizeof(*dp);
dp->logical_unit_number = desc->lun;
dp->target_id = desc->target;
return &dp[1];
}
#endif
#if defined(CONFIG_MMC)
case UCLASS_MMC: {
struct efi_device_path_sd_mmc_path *sddp =
dp_fill(buf, dev->parent);
struct blk_desc *desc = dev_get_uclass_plat(dev);
sddp->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE;
sddp->dp.sub_type = is_sd(desc) ?
DEVICE_PATH_SUB_TYPE_MSG_SD :
DEVICE_PATH_SUB_TYPE_MSG_MMC;
sddp->dp.length = sizeof(*sddp);
sddp->slot_number = dev_seq(dev);
return &sddp[1];
}
#endif
#if defined(CONFIG_AHCI) || defined(CONFIG_SATA)
case UCLASS_AHCI: {
struct efi_device_path_sata *dp =
dp_fill(buf, dev->parent);
struct blk_desc *desc = dev_get_uclass_plat(dev);
dp->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE;
dp->dp.sub_type = DEVICE_PATH_SUB_TYPE_MSG_SATA;
dp->dp.length = sizeof(*dp);
dp->hba_port = desc->devnum;
/* default 0xffff implies no port multiplier */
dp->port_multiplier_port = 0xffff;
dp->logical_unit_number = desc->lun;
return &dp[1];
}
#endif
#if defined(CONFIG_NVME)
case UCLASS_NVME: {
struct efi_device_path_nvme *dp =
dp_fill(buf, dev->parent);
u32 ns_id;
dp->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE;
dp->dp.sub_type = DEVICE_PATH_SUB_TYPE_MSG_NVME;
dp->dp.length = sizeof(*dp);
nvme_get_namespace_id(dev, &ns_id, dp->eui64);
memcpy(&dp->ns_id, &ns_id, sizeof(ns_id));
return &dp[1];
}
#endif
#if defined(CONFIG_USB)
case UCLASS_MASS_STORAGE: {
struct blk_desc *desc = dev_get_uclass_plat(dev);
struct efi_device_path_controller *dp =
dp_fill(buf, dev->parent);
dp->dp.type = DEVICE_PATH_TYPE_HARDWARE_DEVICE;
dp->dp.sub_type = DEVICE_PATH_SUB_TYPE_CONTROLLER;
dp->dp.length = sizeof(*dp);
dp->controller_number = desc->lun;
return &dp[1];
}
#endif
default:
debug("%s(%u) %s: unhandled parent class: %s (%u)\n",
__FILE__, __LINE__, __func__,
dev->name, dev->parent->uclass->uc_drv->id);
return dp_fill(buf, dev->parent);
}
#if defined(CONFIG_MMC)
case UCLASS_MMC: {
struct efi_device_path_sd_mmc_path *sddp =
dp_fill(buf, dev->parent);
struct mmc *mmc = mmc_get_mmc_dev(dev);
struct blk_desc *desc = mmc_get_blk_desc(mmc);
sddp->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE;
sddp->dp.sub_type = is_sd(desc) ?
DEVICE_PATH_SUB_TYPE_MSG_SD :
DEVICE_PATH_SUB_TYPE_MSG_MMC;
sddp->dp.length = sizeof(*sddp);
sddp->slot_number = dev_seq(dev);
return &sddp[1];
}
#endif
case UCLASS_MASS_STORAGE:
case UCLASS_USB_HUB: {
struct efi_device_path_usb *udp = dp_fill(buf, dev->parent);
switch (device_get_uclass_id(dev->parent)) {
case UCLASS_USB_HUB: {
struct usb_device *udev = dev_get_parent_priv(dev);
udp->parent_port_number = udev->portnr;
break;
}
default:
udp->parent_port_number = 0;
}
udp->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE;
udp->dp.sub_type = DEVICE_PATH_SUB_TYPE_MSG_USB;
udp->dp.length = sizeof(*udp);
udp->usb_interface = 0;
return &udp[1];
}
default:
/* If the uclass driver is missing, this will show NULL */
log_debug("unhandled device class: %s (%s)\n", dev->name,
dev_get_uclass_name(dev));
return dp_fill(buf, dev->parent);
}
}
static unsigned dp_part_size(struct blk_desc *desc, int part)
{
unsigned dpsize;
struct udevice *dev = desc->bdev;
dpsize = dp_size(dev);
if (part == 0) /* the actual disk, not a partition */
return dpsize;
if (desc->part_type == PART_TYPE_ISO)
dpsize += sizeof(struct efi_device_path_cdrom_path);
else
dpsize += sizeof(struct efi_device_path_hard_drive_path);
return dpsize;
}
/*
* Create a device node for a block device partition.
*
* @buf buffer to which the device path is written
* @desc block device descriptor
* @part partition number, 0 identifies a block device
*
* Return: pointer to position after the node
*/
static void *dp_part_node(void *buf, struct blk_desc *desc, int part)
{
struct disk_partition info;
int ret;
ret = part_get_info(desc, part, &info);
if (ret < 0)
return buf;
if (desc->part_type == PART_TYPE_ISO) {
struct efi_device_path_cdrom_path *cddp = buf;
cddp->boot_entry = part;
cddp->dp.type = DEVICE_PATH_TYPE_MEDIA_DEVICE;
cddp->dp.sub_type = DEVICE_PATH_SUB_TYPE_CDROM_PATH;
cddp->dp.length = sizeof(*cddp);
cddp->partition_start = info.start;
cddp->partition_size = info.size;
buf = &cddp[1];
} else {
struct efi_device_path_hard_drive_path *hddp = buf;
hddp->dp.type = DEVICE_PATH_TYPE_MEDIA_DEVICE;
hddp->dp.sub_type = DEVICE_PATH_SUB_TYPE_HARD_DRIVE_PATH;
hddp->dp.length = sizeof(*hddp);
hddp->partition_number = part;
hddp->partition_start = info.start;
hddp->partition_end = info.size;
if (desc->part_type == PART_TYPE_EFI)
hddp->partmap_type = 2;
else
hddp->partmap_type = 1;
switch (desc->sig_type) {
case SIG_TYPE_NONE:
default:
hddp->signature_type = 0;
memset(hddp->partition_signature, 0,
sizeof(hddp->partition_signature));
break;
case SIG_TYPE_MBR:
hddp->signature_type = 1;
memset(hddp->partition_signature, 0,
sizeof(hddp->partition_signature));
memcpy(hddp->partition_signature, &desc->mbr_sig,
sizeof(desc->mbr_sig));
break;
case SIG_TYPE_GUID:
hddp->signature_type = 2;
#if CONFIG_IS_ENABLED(PARTITION_UUIDS)
/* info.uuid exists only with PARTITION_UUIDS */
if (uuid_str_to_bin(info.uuid,
hddp->partition_signature,
UUID_STR_FORMAT_GUID)) {
log_warning(
"Partition %d: invalid GUID %s\n",
part, info.uuid);
}
#endif
break;
}
buf = &hddp[1];
}
return buf;
}
/*
* Create a device path for a block device or one of its partitions.
*
* @buf buffer to which the device path is written
* @desc block device descriptor
* @part partition number, 0 identifies a block device
*/
static void *dp_part_fill(void *buf, struct blk_desc *desc, int part)
{
struct udevice *dev = desc->bdev;
buf = dp_fill(buf, dev);
if (part == 0) /* the actual disk, not a partition */
return buf;
return dp_part_node(buf, desc, part);
}
/* Construct a device-path from a partition on a block device: */
struct efi_device_path *efi_dp_from_part(struct blk_desc *desc, int part)
{
void *buf, *start;
start = buf = efi_alloc(dp_part_size(desc, part) + sizeof(END));
if (!buf)
return NULL;
buf = dp_part_fill(buf, desc, part);
*((struct efi_device_path *)buf) = END;
return start;
}
/*
* Create a device node for a block device partition.
*
* @buf buffer to which the device path is written
* @desc block device descriptor
* @part partition number, 0 identifies a block device
*/
struct efi_device_path *efi_dp_part_node(struct blk_desc *desc, int part)
{
efi_uintn_t dpsize;
void *buf;
if (desc->part_type == PART_TYPE_ISO)
dpsize = sizeof(struct efi_device_path_cdrom_path);
else
dpsize = sizeof(struct efi_device_path_hard_drive_path);
buf = efi_alloc(dpsize);
if (buf)
dp_part_node(buf, desc, part);
return buf;
}
/**
* path_to_uefi() - convert UTF-8 path to an UEFI style path
*
* Convert UTF-8 path to a UEFI style path (i.e. with backslashes as path
* separators and UTF-16).
*
* @src: source buffer
* @uefi: target buffer, possibly unaligned
*/
static void path_to_uefi(void *uefi, const char *src)
{
u16 *pos = uefi;
/*
* efi_set_bootdev() calls this routine indirectly before the UEFI
* subsystem is initialized. So we cannot assume unaligned access to be
* enabled.
*/
allow_unaligned();
while (*src) {
s32 code = utf8_get(&src);
if (code < 0)
code = '?';
else if (code == '/')
code = '\\';
utf16_put(code, &pos);
}
*pos = 0;
}
/**
* efi_dp_from_file() - append file path node to device path.
*
* @dp: device path or NULL
* @path: file path or NULL
* Return: device path or NULL in case of an error
*/
struct efi_device_path *efi_dp_from_file(const struct efi_device_path *dp,
const char *path)
{
struct efi_device_path_file_path *fp;
void *buf, *pos;
size_t dpsize, fpsize;
dpsize = efi_dp_size(dp);
fpsize = sizeof(struct efi_device_path) +
2 * (utf8_utf16_strlen(path) + 1);
if (fpsize > U16_MAX)
return NULL;
buf = efi_alloc(dpsize + fpsize + sizeof(END));
if (!buf)
return NULL;
memcpy(buf, dp, dpsize);
pos = buf + dpsize;
/* add file-path: */
if (*path) {
fp = pos;
fp->dp.type = DEVICE_PATH_TYPE_MEDIA_DEVICE;
fp->dp.sub_type = DEVICE_PATH_SUB_TYPE_FILE_PATH;
fp->dp.length = (u16)fpsize;
path_to_uefi(fp->str, path);
pos += fpsize;
}
memcpy(pos, &END, sizeof(END));
return buf;
}
struct efi_device_path *efi_dp_from_uart(void)
{
void *buf, *pos;
struct efi_device_path_uart *uart;
size_t dpsize = sizeof(ROOT) + sizeof(*uart) + sizeof(END);
buf = efi_alloc(dpsize);
if (!buf)
return NULL;
pos = buf;
memcpy(pos, &ROOT, sizeof(ROOT));
pos += sizeof(ROOT);
uart = pos;
uart->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE;
uart->dp.sub_type = DEVICE_PATH_SUB_TYPE_MSG_UART;
uart->dp.length = sizeof(*uart);
pos += sizeof(*uart);
memcpy(pos, &END, sizeof(END));
return buf;
}
struct efi_device_path __maybe_unused *efi_dp_from_eth(void)
{
void *buf, *start;
unsigned dpsize = 0;
assert(eth_get_dev());
dpsize += dp_size(eth_get_dev());
start = buf = efi_alloc(dpsize + sizeof(END));
if (!buf)
return NULL;
buf = dp_fill(buf, eth_get_dev());
*((struct efi_device_path *)buf) = END;
return start;
}
/* Construct a device-path for memory-mapped image */
struct efi_device_path *efi_dp_from_mem(uint32_t memory_type,
uint64_t start_address,
uint64_t end_address)
{
struct efi_device_path_memory *mdp;
void *buf, *start;
start = buf = efi_alloc(sizeof(*mdp) + sizeof(END));
if (!buf)
return NULL;
mdp = buf;
mdp->dp.type = DEVICE_PATH_TYPE_HARDWARE_DEVICE;
mdp->dp.sub_type = DEVICE_PATH_SUB_TYPE_MEMORY;
mdp->dp.length = sizeof(*mdp);
mdp->memory_type = memory_type;
mdp->start_address = start_address;
mdp->end_address = end_address;
buf = &mdp[1];
*((struct efi_device_path *)buf) = END;
return start;
}
/**
* efi_dp_split_file_path() - split of relative file path from device path
*
* Given a device path indicating a file on a device, separate the device
* path in two: the device path of the actual device and the file path
* relative to this device.
*
* @full_path: device path including device and file path
* @device_path: path of the device
* @file_path: relative path of the file or NULL if there is none
* Return: status code
*/
efi_status_t efi_dp_split_file_path(struct efi_device_path *full_path,
struct efi_device_path **device_path,
struct efi_device_path **file_path)
{
struct efi_device_path *p, *dp, *fp = NULL;
*device_path = NULL;
*file_path = NULL;
dp = efi_dp_dup(full_path);
if (!dp)
return EFI_OUT_OF_RESOURCES;
p = dp;
while (!EFI_DP_TYPE(p, MEDIA_DEVICE, FILE_PATH)) {
p = efi_dp_next(p);
if (!p)
goto out;
}
fp = efi_dp_dup(p);
if (!fp)
return EFI_OUT_OF_RESOURCES;
p->type = DEVICE_PATH_TYPE_END;
p->sub_type = DEVICE_PATH_SUB_TYPE_END;
p->length = sizeof(*p);
out:
*device_path = dp;
*file_path = fp;
return EFI_SUCCESS;
}
/**
* efi_dp_from_name() - convert U-Boot device and file path to device path
*
* @dev: U-Boot device, e.g. 'mmc'
* @devnr: U-Boot device number, e.g. 1 for 'mmc:1'
* @path: file path relative to U-Boot device, may be NULL
* @device: pointer to receive device path of the device
* @file: pointer to receive device path for the file
* Return: status code
*/
efi_status_t efi_dp_from_name(const char *dev, const char *devnr,
const char *path,
struct efi_device_path **device,
struct efi_device_path **file)
{
struct blk_desc *desc = NULL;
struct efi_device_path *dp;
struct disk_partition fs_partition;
size_t image_size;
void *image_addr;
int part = 0;
if (path && !file)
return EFI_INVALID_PARAMETER;
if (!strcmp(dev, "Mem") || !strcmp(dev, "hostfs")) {
/* loadm command and semihosting */
efi_get_image_parameters(&image_addr, &image_size);
dp = efi_dp_from_mem(EFI_RESERVED_MEMORY_TYPE,
(uintptr_t)image_addr, image_size);
} else if (IS_ENABLED(CONFIG_NETDEVICES) && !strcmp(dev, "Net")) {
dp = efi_dp_from_eth();
} else if (!strcmp(dev, "Uart")) {
dp = efi_dp_from_uart();
} else {
part = blk_get_device_part_str(dev, devnr, &desc, &fs_partition,
1);
if (part < 0 || !desc)
return EFI_INVALID_PARAMETER;
dp = efi_dp_from_part(desc, part);
}
if (device)
*device = dp;
if (!path)
return EFI_SUCCESS;
*file = efi_dp_from_file(dp, path);
if (!*file)
return EFI_OUT_OF_RESOURCES;
return EFI_SUCCESS;
}
/**
* efi_dp_check_length() - check length of a device path
*
* @dp: pointer to device path
* @maxlen: maximum length of the device path
* Return:
* * length of the device path if it is less or equal @maxlen
* * -1 if the device path is longer then @maxlen
* * -1 if a device path node has a length of less than 4
* * -EINVAL if maxlen exceeds SSIZE_MAX
*/
ssize_t efi_dp_check_length(const struct efi_device_path *dp,
const size_t maxlen)
{
ssize_t ret = 0;
u16 len;
if (maxlen > SSIZE_MAX)
return -EINVAL;
for (;;) {
len = dp->length;
if (len < 4)
return -1;
ret += len;
if (ret > maxlen)
return -1;
if (dp->type == DEVICE_PATH_TYPE_END &&
dp->sub_type == DEVICE_PATH_SUB_TYPE_END)
return ret;
dp = (const struct efi_device_path *)((const u8 *)dp + len);
}
}
/**
* efi_dp_from_lo() - Get the instance of a VenMedia node in a
* multi-instance device path that matches
* a specific GUID. This kind of device paths
* is found in Boot#### options describing an
* initrd location
*
* @lo: EFI_LOAD_OPTION containing a valid device path
* @guid: guid to search for
*
* Return:
* device path including the VenMedia node or NULL.
* Caller must free the returned value.
*/
struct
efi_device_path *efi_dp_from_lo(struct efi_load_option *lo,
const efi_guid_t *guid)
{
struct efi_device_path *fp = lo->file_path;
struct efi_device_path_vendor *vendor;
int lo_len = lo->file_path_length;
for (; lo_len >= sizeof(struct efi_device_path);
lo_len -= fp->length, fp = (void *)fp + fp->length) {
if (lo_len < 0 || efi_dp_check_length(fp, lo_len) < 0)
break;
if (fp->type != DEVICE_PATH_TYPE_MEDIA_DEVICE ||
fp->sub_type != DEVICE_PATH_SUB_TYPE_VENDOR_PATH)
continue;
vendor = (struct efi_device_path_vendor *)fp;
if (!guidcmp(&vendor->guid, guid))
return efi_dp_dup(efi_dp_next(fp));
}
log_debug("VenMedia(%pUl) not found in %ls\n", &guid, lo->label);
return NULL;
}
/**
* search_gpt_dp_node() - search gpt device path node
*
* @device_path: device path
*
* Return: pointer to the gpt device path node
*/
struct efi_device_path *search_gpt_dp_node(struct efi_device_path *device_path)
{
struct efi_device_path *dp = device_path;
while (dp) {
if (dp->type == DEVICE_PATH_TYPE_MEDIA_DEVICE &&
dp->sub_type == DEVICE_PATH_SUB_TYPE_HARD_DRIVE_PATH) {
struct efi_device_path_hard_drive_path *hd_dp =
(struct efi_device_path_hard_drive_path *)dp;
if (hd_dp->partmap_type == PART_FORMAT_GPT &&
hd_dp->signature_type == SIG_TYPE_GUID)
return dp;
}
dp = efi_dp_next(dp);
}
return NULL;
}