blob: fc22f540fe63be203947599a19dea47fcd4d1a26 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Designware master SPI core controller driver
*
* Copyright (C) 2014 Stefan Roese <sr@denx.de>
* Copyright (C) 2020 Sean Anderson <seanga2@gmail.com>
*
* Very loosely based on the Linux driver:
* drivers/spi/spi-dw.c, which is:
* Copyright (c) 2009, Intel Corporation.
*/
#define LOG_CATEGORY UCLASS_SPI
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <dm/device_compat.h>
#include <errno.h>
#include <fdtdec.h>
#include <log.h>
#include <malloc.h>
#include <reset.h>
#include <spi.h>
#include <spi-mem.h>
#include <asm/io.h>
#include <asm-generic/gpio.h>
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/compat.h>
#include <linux/iopoll.h>
#include <linux/sizes.h>
/* Register offsets */
#define DW_SPI_CTRLR0 0x00
#define DW_SPI_CTRLR1 0x04
#define DW_SPI_SSIENR 0x08
#define DW_SPI_MWCR 0x0c
#define DW_SPI_SER 0x10
#define DW_SPI_BAUDR 0x14
#define DW_SPI_TXFTLR 0x18
#define DW_SPI_RXFTLR 0x1c
#define DW_SPI_TXFLR 0x20
#define DW_SPI_RXFLR 0x24
#define DW_SPI_SR 0x28
#define DW_SPI_IMR 0x2c
#define DW_SPI_ISR 0x30
#define DW_SPI_RISR 0x34
#define DW_SPI_TXOICR 0x38
#define DW_SPI_RXOICR 0x3c
#define DW_SPI_RXUICR 0x40
#define DW_SPI_MSTICR 0x44
#define DW_SPI_ICR 0x48
#define DW_SPI_DMACR 0x4c
#define DW_SPI_DMATDLR 0x50
#define DW_SPI_DMARDLR 0x54
#define DW_SPI_IDR 0x58
#define DW_SPI_VERSION 0x5c
#define DW_SPI_DR 0x60
/* Bit fields in CTRLR0 */
/*
* Only present when SSI_MAX_XFER_SIZE=16. This is the default, and the only
* option before version 3.23a.
*/
#define CTRLR0_DFS_MASK GENMASK(3, 0)
#define CTRLR0_FRF_MASK GENMASK(5, 4)
#define CTRLR0_FRF_SPI 0x0
#define CTRLR0_FRF_SSP 0x1
#define CTRLR0_FRF_MICROWIRE 0x2
#define CTRLR0_FRF_RESV 0x3
#define CTRLR0_MODE_MASK GENMASK(7, 6)
#define CTRLR0_MODE_SCPH 0x1
#define CTRLR0_MODE_SCPOL 0x2
#define CTRLR0_TMOD_MASK GENMASK(9, 8)
#define CTRLR0_TMOD_TR 0x0 /* xmit & recv */
#define CTRLR0_TMOD_TO 0x1 /* xmit only */
#define CTRLR0_TMOD_RO 0x2 /* recv only */
#define CTRLR0_TMOD_EPROMREAD 0x3 /* eeprom read mode */
#define CTRLR0_SLVOE_OFFSET 10
#define CTRLR0_SRL_OFFSET 11
#define CTRLR0_CFS_MASK GENMASK(15, 12)
/* Only present when SSI_MAX_XFER_SIZE=32 */
#define CTRLR0_DFS_32_MASK GENMASK(20, 16)
/* The next field is only present on versions after 4.00a */
#define CTRLR0_SPI_FRF_MASK GENMASK(22, 21)
#define CTRLR0_SPI_FRF_BYTE 0x0
#define CTRLR0_SPI_FRF_DUAL 0x1
#define CTRLR0_SPI_FRF_QUAD 0x2
/* Bit fields in CTRLR0 based on DWC_ssi_databook.pdf v1.01a */
#define DWC_SSI_CTRLR0_DFS_MASK GENMASK(4, 0)
#define DWC_SSI_CTRLR0_FRF_MASK GENMASK(7, 6)
#define DWC_SSI_CTRLR0_MODE_MASK GENMASK(9, 8)
#define DWC_SSI_CTRLR0_TMOD_MASK GENMASK(11, 10)
#define DWC_SSI_CTRLR0_SRL_OFFSET 13
#define DWC_SSI_CTRLR0_SPI_FRF_MASK GENMASK(23, 22)
/* Bit fields in SR, 7 bits */
#define SR_MASK GENMASK(6, 0) /* cover 7 bits */
#define SR_BUSY BIT(0)
#define SR_TF_NOT_FULL BIT(1)
#define SR_TF_EMPT BIT(2)
#define SR_RF_NOT_EMPT BIT(3)
#define SR_RF_FULL BIT(4)
#define SR_TX_ERR BIT(5)
#define SR_DCOL BIT(6)
#define RX_TIMEOUT 1000 /* timeout in ms */
struct dw_spi_plat {
s32 frequency; /* Default clock frequency, -1 for none */
void __iomem *regs;
};
struct dw_spi_priv {
struct clk clk;
struct reset_ctl_bulk resets;
struct gpio_desc cs_gpio; /* External chip-select gpio */
u32 (*update_cr0)(struct dw_spi_priv *priv);
void __iomem *regs;
unsigned long bus_clk_rate;
unsigned int freq; /* Default frequency */
unsigned int mode;
const void *tx;
const void *tx_end;
void *rx;
void *rx_end;
u32 fifo_len; /* depth of the FIFO buffer */
u32 max_xfer; /* Maximum transfer size (in bits) */
int bits_per_word;
int len;
u8 cs; /* chip select pin */
u8 tmode; /* TR/TO/RO/EEPROM */
u8 type; /* SPI/SSP/MicroWire */
};
static inline u32 dw_read(struct dw_spi_priv *priv, u32 offset)
{
return __raw_readl(priv->regs + offset);
}
static inline void dw_write(struct dw_spi_priv *priv, u32 offset, u32 val)
{
__raw_writel(val, priv->regs + offset);
}
static u32 dw_spi_dw16_update_cr0(struct dw_spi_priv *priv)
{
return FIELD_PREP(CTRLR0_DFS_MASK, priv->bits_per_word - 1)
| FIELD_PREP(CTRLR0_FRF_MASK, priv->type)
| FIELD_PREP(CTRLR0_MODE_MASK, priv->mode)
| FIELD_PREP(CTRLR0_TMOD_MASK, priv->tmode);
}
static u32 dw_spi_dw32_update_cr0(struct dw_spi_priv *priv)
{
return FIELD_PREP(CTRLR0_DFS_32_MASK, priv->bits_per_word - 1)
| FIELD_PREP(CTRLR0_FRF_MASK, priv->type)
| FIELD_PREP(CTRLR0_MODE_MASK, priv->mode)
| FIELD_PREP(CTRLR0_TMOD_MASK, priv->tmode);
}
static u32 dw_spi_dwc_update_cr0(struct dw_spi_priv *priv)
{
return FIELD_PREP(DWC_SSI_CTRLR0_DFS_MASK, priv->bits_per_word - 1)
| FIELD_PREP(DWC_SSI_CTRLR0_FRF_MASK, priv->type)
| FIELD_PREP(DWC_SSI_CTRLR0_MODE_MASK, priv->mode)
| FIELD_PREP(DWC_SSI_CTRLR0_TMOD_MASK, priv->tmode);
}
static int dw_spi_apb_init(struct udevice *bus, struct dw_spi_priv *priv)
{
/* If we read zeros from DFS, then we need to use DFS_32 instead */
dw_write(priv, DW_SPI_SSIENR, 0);
dw_write(priv, DW_SPI_CTRLR0, 0xffffffff);
if (FIELD_GET(CTRLR0_DFS_MASK, dw_read(priv, DW_SPI_CTRLR0))) {
priv->max_xfer = 16;
priv->update_cr0 = dw_spi_dw16_update_cr0;
} else {
priv->max_xfer = 32;
priv->update_cr0 = dw_spi_dw32_update_cr0;
}
return 0;
}
static int dw_spi_dwc_init(struct udevice *bus, struct dw_spi_priv *priv)
{
priv->max_xfer = 32;
priv->update_cr0 = dw_spi_dwc_update_cr0;
return 0;
}
static int request_gpio_cs(struct udevice *bus)
{
#if CONFIG_IS_ENABLED(DM_GPIO) && !defined(CONFIG_SPL_BUILD)
struct dw_spi_priv *priv = dev_get_priv(bus);
int ret;
/* External chip select gpio line is optional */
ret = gpio_request_by_name(bus, "cs-gpios", 0, &priv->cs_gpio,
GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE);
if (ret == -ENOENT)
return 0;
if (ret < 0) {
dev_err(bus, "Couldn't request gpio! (error %d)\n", ret);
return ret;
}
if (dm_gpio_is_valid(&priv->cs_gpio)) {
dm_gpio_set_dir_flags(&priv->cs_gpio,
GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE);
}
dev_dbg(bus, "Using external gpio for CS management\n");
#endif
return 0;
}
static int dw_spi_of_to_plat(struct udevice *bus)
{
struct dw_spi_plat *plat = dev_get_plat(bus);
plat->regs = dev_read_addr_ptr(bus);
if (!plat->regs)
return -EINVAL;
/* Use 500KHz as a suitable default */
plat->frequency = dev_read_u32_default(bus, "spi-max-frequency",
500000);
if (dev_read_bool(bus, "spi-slave"))
return -EINVAL;
dev_info(bus, "max-frequency=%d\n", plat->frequency);
return request_gpio_cs(bus);
}
/* Restart the controller, disable all interrupts, clean rx fifo */
static void spi_hw_init(struct udevice *bus, struct dw_spi_priv *priv)
{
dw_write(priv, DW_SPI_SSIENR, 0);
dw_write(priv, DW_SPI_IMR, 0xff);
dw_write(priv, DW_SPI_SSIENR, 1);
/*
* Try to detect the FIFO depth if not set by interface driver,
* the depth could be from 2 to 256 from HW spec
*/
if (!priv->fifo_len) {
u32 fifo;
for (fifo = 1; fifo < 256; fifo++) {
dw_write(priv, DW_SPI_TXFTLR, fifo);
if (fifo != dw_read(priv, DW_SPI_TXFTLR))
break;
}
priv->fifo_len = (fifo == 1) ? 0 : fifo;
dw_write(priv, DW_SPI_TXFTLR, 0);
}
dev_dbg(bus, "fifo_len=%d\n", priv->fifo_len);
}
/*
* We define dw_spi_get_clk function as 'weak' as some targets
* (like SOCFPGA_GEN5 and SOCFPGA_ARRIA10) don't use standard clock API
* and implement dw_spi_get_clk their own way in their clock manager.
*/
__weak int dw_spi_get_clk(struct udevice *bus, ulong *rate)
{
struct dw_spi_priv *priv = dev_get_priv(bus);
int ret;
ret = clk_get_by_index(bus, 0, &priv->clk);
if (ret)
return ret;
ret = clk_enable(&priv->clk);
if (ret && ret != -ENOSYS && ret != -ENOTSUPP)
return ret;
*rate = clk_get_rate(&priv->clk);
if (!*rate)
goto err_rate;
dev_dbg(bus, "Got clock via device tree: %lu Hz\n", *rate);
return 0;
err_rate:
clk_disable(&priv->clk);
clk_free(&priv->clk);
return -EINVAL;
}
static int dw_spi_reset(struct udevice *bus)
{
int ret;
struct dw_spi_priv *priv = dev_get_priv(bus);
ret = reset_get_bulk(bus, &priv->resets);
if (ret) {
/*
* Return 0 if error due to !CONFIG_DM_RESET and reset
* DT property is not present.
*/
if (ret == -ENOENT || ret == -ENOTSUPP)
return 0;
dev_warn(bus, "Couldn't find/assert reset device (error %d)\n",
ret);
return ret;
}
ret = reset_deassert_bulk(&priv->resets);
if (ret) {
reset_release_bulk(&priv->resets);
dev_err(bus, "Failed to de-assert reset for SPI (error %d)\n",
ret);
return ret;
}
return 0;
}
typedef int (*dw_spi_init_t)(struct udevice *bus, struct dw_spi_priv *priv);
static int dw_spi_probe(struct udevice *bus)
{
dw_spi_init_t init = (dw_spi_init_t)dev_get_driver_data(bus);
struct dw_spi_plat *plat = dev_get_plat(bus);
struct dw_spi_priv *priv = dev_get_priv(bus);
int ret;
u32 version;
priv->regs = plat->regs;
priv->freq = plat->frequency;
ret = dw_spi_get_clk(bus, &priv->bus_clk_rate);
if (ret)
return ret;
ret = dw_spi_reset(bus);
if (ret)
return ret;
if (!init)
return -EINVAL;
ret = init(bus, priv);
if (ret)
return ret;
version = dw_read(priv, DW_SPI_VERSION);
dev_dbg(bus, "ssi_version_id=%c.%c%c%c ssi_max_xfer_size=%u\n",
version >> 24, version >> 16, version >> 8, version,
priv->max_xfer);
/* Currently only bits_per_word == 8 supported */
priv->bits_per_word = 8;
priv->tmode = 0; /* Tx & Rx */
/* Basic HW init */
spi_hw_init(bus, priv);
return 0;
}
/* Return the max entries we can fill into tx fifo */
static inline u32 tx_max(struct dw_spi_priv *priv)
{
u32 tx_left, tx_room, rxtx_gap;
tx_left = (priv->tx_end - priv->tx) / (priv->bits_per_word >> 3);
tx_room = priv->fifo_len - dw_read(priv, DW_SPI_TXFLR);
/*
* Another concern is about the tx/rx mismatch, we
* thought about using (priv->fifo_len - rxflr - txflr) as
* one maximum value for tx, but it doesn't cover the
* data which is out of tx/rx fifo and inside the
* shift registers. So a control from sw point of
* view is taken.
*/
rxtx_gap = ((priv->rx_end - priv->rx) - (priv->tx_end - priv->tx)) /
(priv->bits_per_word >> 3);
return min3(tx_left, tx_room, (u32)(priv->fifo_len - rxtx_gap));
}
/* Return the max entries we should read out of rx fifo */
static inline u32 rx_max(struct dw_spi_priv *priv)
{
u32 rx_left = (priv->rx_end - priv->rx) / (priv->bits_per_word >> 3);
return min_t(u32, rx_left, dw_read(priv, DW_SPI_RXFLR));
}
static void dw_writer(struct dw_spi_priv *priv)
{
u32 max = tx_max(priv);
u32 txw = 0xFFFFFFFF;
while (max--) {
/* Set the tx word if the transfer's original "tx" is not null */
if (priv->tx_end - priv->len) {
if (priv->bits_per_word == 8)
txw = *(u8 *)(priv->tx);
else
txw = *(u16 *)(priv->tx);
}
dw_write(priv, DW_SPI_DR, txw);
log_content("tx=0x%02x\n", txw);
priv->tx += priv->bits_per_word >> 3;
}
}
static void dw_reader(struct dw_spi_priv *priv)
{
u32 max = rx_max(priv);
u16 rxw;
while (max--) {
rxw = dw_read(priv, DW_SPI_DR);
log_content("rx=0x%02x\n", rxw);
/* Care about rx if the transfer's original "rx" is not null */
if (priv->rx_end - priv->len) {
if (priv->bits_per_word == 8)
*(u8 *)(priv->rx) = rxw;
else
*(u16 *)(priv->rx) = rxw;
}
priv->rx += priv->bits_per_word >> 3;
}
}
static int poll_transfer(struct dw_spi_priv *priv)
{
do {
dw_writer(priv);
dw_reader(priv);
} while (priv->rx_end > priv->rx);
return 0;
}
/*
* We define external_cs_manage function as 'weak' as some targets
* (like MSCC Ocelot) don't control the external CS pin using a GPIO
* controller. These SoCs use specific registers to control by
* software the SPI pins (and especially the CS).
*/
__weak void external_cs_manage(struct udevice *dev, bool on)
{
#if CONFIG_IS_ENABLED(DM_GPIO) && !defined(CONFIG_SPL_BUILD)
struct dw_spi_priv *priv = dev_get_priv(dev->parent);
if (!dm_gpio_is_valid(&priv->cs_gpio))
return;
dm_gpio_set_value(&priv->cs_gpio, on ? 1 : 0);
#endif
}
static int dw_spi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct udevice *bus = dev->parent;
struct dw_spi_priv *priv = dev_get_priv(bus);
const u8 *tx = dout;
u8 *rx = din;
int ret = 0;
u32 cr0 = 0;
u32 val;
u32 cs;
/* spi core configured to do 8 bit transfers */
if (bitlen % 8) {
dev_err(dev, "Non byte aligned SPI transfer.\n");
return -1;
}
/* Start the transaction if necessary. */
if (flags & SPI_XFER_BEGIN)
external_cs_manage(dev, false);
if (rx && tx)
priv->tmode = CTRLR0_TMOD_TR;
else if (rx)
priv->tmode = CTRLR0_TMOD_RO;
else
/*
* In transmit only mode (CTRL0_TMOD_TO) input FIFO never gets
* any data which breaks our logic in poll_transfer() above.
*/
priv->tmode = CTRLR0_TMOD_TR;
cr0 = priv->update_cr0(priv);
priv->len = bitlen >> 3;
priv->tx = (void *)tx;
priv->tx_end = priv->tx + priv->len;
priv->rx = rx;
priv->rx_end = priv->rx + priv->len;
/* Disable controller before writing control registers */
dw_write(priv, DW_SPI_SSIENR, 0);
dev_dbg(dev, "cr0=%08x rx=%p tx=%p len=%d [bytes]\n", cr0, rx, tx,
priv->len);
/* Reprogram cr0 only if changed */
if (dw_read(priv, DW_SPI_CTRLR0) != cr0)
dw_write(priv, DW_SPI_CTRLR0, cr0);
/*
* Configure the desired SS (slave select 0...3) in the controller
* The DW SPI controller will activate and deactivate this CS
* automatically. So no cs_activate() etc is needed in this driver.
*/
cs = spi_chip_select(dev);
dw_write(priv, DW_SPI_SER, 1 << cs);
/* Enable controller after writing control registers */
dw_write(priv, DW_SPI_SSIENR, 1);
/* Start transfer in a polling loop */
ret = poll_transfer(priv);
/*
* Wait for current transmit operation to complete.
* Otherwise if some data still exists in Tx FIFO it can be
* silently flushed, i.e. dropped on disabling of the controller,
* which happens when writing 0 to DW_SPI_SSIENR which happens
* in the beginning of new transfer.
*/
if (readl_poll_timeout(priv->regs + DW_SPI_SR, val,
(val & SR_TF_EMPT) && !(val & SR_BUSY),
RX_TIMEOUT * 1000)) {
ret = -ETIMEDOUT;
}
/* Stop the transaction if necessary */
if (flags & SPI_XFER_END)
external_cs_manage(dev, true);
return ret;
}
/*
* This function is necessary for reading SPI flash with the native CS
* c.f. https://lkml.org/lkml/2015/12/23/132
*/
static int dw_spi_exec_op(struct spi_slave *slave, const struct spi_mem_op *op)
{
bool read = op->data.dir == SPI_MEM_DATA_IN;
int pos, i, ret = 0;
struct udevice *bus = slave->dev->parent;
struct dw_spi_priv *priv = dev_get_priv(bus);
u8 op_len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
u8 op_buf[op_len];
u32 cr0;
if (read)
priv->tmode = CTRLR0_TMOD_EPROMREAD;
else
priv->tmode = CTRLR0_TMOD_TO;
cr0 = priv->update_cr0(priv);
dev_dbg(bus, "cr0=%08x buf=%p len=%u [bytes]\n", cr0, op->data.buf.in,
op->data.nbytes);
dw_write(priv, DW_SPI_SSIENR, 0);
dw_write(priv, DW_SPI_CTRLR0, cr0);
if (read)
dw_write(priv, DW_SPI_CTRLR1, op->data.nbytes - 1);
dw_write(priv, DW_SPI_SSIENR, 1);
/* From spi_mem_exec_op */
pos = 0;
op_buf[pos++] = op->cmd.opcode;
if (op->addr.nbytes) {
for (i = 0; i < op->addr.nbytes; i++)
op_buf[pos + i] = op->addr.val >>
(8 * (op->addr.nbytes - i - 1));
pos += op->addr.nbytes;
}
if (op->dummy.nbytes)
memset(op_buf + pos, 0xff, op->dummy.nbytes);
external_cs_manage(slave->dev, false);
priv->tx = &op_buf;
priv->tx_end = priv->tx + op_len;
priv->rx = NULL;
priv->rx_end = NULL;
while (priv->tx != priv->tx_end)
dw_writer(priv);
/*
* XXX: The following are tight loops! Enabling debug messages may cause
* them to fail because we are not reading/writing the fifo fast enough.
*/
if (read) {
priv->rx = op->data.buf.in;
priv->rx_end = priv->rx + op->data.nbytes;
dw_write(priv, DW_SPI_SER, 1 << spi_chip_select(slave->dev));
while (priv->rx != priv->rx_end)
dw_reader(priv);
} else {
u32 val;
priv->tx = op->data.buf.out;
priv->tx_end = priv->tx + op->data.nbytes;
/* Fill up the write fifo before starting the transfer */
dw_writer(priv);
dw_write(priv, DW_SPI_SER, 1 << spi_chip_select(slave->dev));
while (priv->tx != priv->tx_end)
dw_writer(priv);
if (readl_poll_timeout(priv->regs + DW_SPI_SR, val,
(val & SR_TF_EMPT) && !(val & SR_BUSY),
RX_TIMEOUT * 1000)) {
ret = -ETIMEDOUT;
}
}
dw_write(priv, DW_SPI_SER, 0);
external_cs_manage(slave->dev, true);
dev_dbg(bus, "%u bytes xfered\n", op->data.nbytes);
return ret;
}
/* The size of ctrl1 limits data transfers to 64K */
static int dw_spi_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op)
{
op->data.nbytes = min(op->data.nbytes, (unsigned int)SZ_64K);
return 0;
}
static const struct spi_controller_mem_ops dw_spi_mem_ops = {
.exec_op = dw_spi_exec_op,
.adjust_op_size = dw_spi_adjust_op_size,
};
static int dw_spi_set_speed(struct udevice *bus, uint speed)
{
struct dw_spi_plat *plat = dev_get_plat(bus);
struct dw_spi_priv *priv = dev_get_priv(bus);
u16 clk_div;
if (speed > plat->frequency)
speed = plat->frequency;
/* Disable controller before writing control registers */
dw_write(priv, DW_SPI_SSIENR, 0);
/* clk_div doesn't support odd number */
clk_div = priv->bus_clk_rate / speed;
clk_div = (clk_div + 1) & 0xfffe;
dw_write(priv, DW_SPI_BAUDR, clk_div);
/* Enable controller after writing control registers */
dw_write(priv, DW_SPI_SSIENR, 1);
priv->freq = speed;
dev_dbg(bus, "speed=%d clk_div=%d\n", priv->freq, clk_div);
return 0;
}
static int dw_spi_set_mode(struct udevice *bus, uint mode)
{
struct dw_spi_priv *priv = dev_get_priv(bus);
/*
* Can't set mode yet. Since this depends on if rx, tx, or
* rx & tx is requested. So we have to defer this to the
* real transfer function.
*/
priv->mode = mode;
dev_dbg(bus, "mode=%d\n", priv->mode);
return 0;
}
static int dw_spi_remove(struct udevice *bus)
{
struct dw_spi_priv *priv = dev_get_priv(bus);
int ret;
ret = reset_release_bulk(&priv->resets);
if (ret)
return ret;
#if CONFIG_IS_ENABLED(CLK)
ret = clk_disable(&priv->clk);
if (ret)
return ret;
ret = clk_free(&priv->clk);
if (ret)
return ret;
#endif
return 0;
}
static const struct dm_spi_ops dw_spi_ops = {
.xfer = dw_spi_xfer,
.mem_ops = &dw_spi_mem_ops,
.set_speed = dw_spi_set_speed,
.set_mode = dw_spi_set_mode,
/*
* cs_info is not needed, since we require all chip selects to be
* in the device tree explicitly
*/
};
static const struct udevice_id dw_spi_ids[] = {
/* Generic compatible strings */
{ .compatible = "snps,dw-apb-ssi", .data = (ulong)dw_spi_apb_init },
{ .compatible = "snps,dw-apb-ssi-3.20a", .data = (ulong)dw_spi_apb_init },
{ .compatible = "snps,dw-apb-ssi-3.22a", .data = (ulong)dw_spi_apb_init },
/* First version with SSI_MAX_XFER_SIZE */
{ .compatible = "snps,dw-apb-ssi-3.23a", .data = (ulong)dw_spi_apb_init },
/* First version with Dual/Quad SPI; unused by this driver */
{ .compatible = "snps,dw-apb-ssi-4.00a", .data = (ulong)dw_spi_apb_init },
{ .compatible = "snps,dw-apb-ssi-4.01", .data = (ulong)dw_spi_apb_init },
{ .compatible = "snps,dwc-ssi-1.01a", .data = (ulong)dw_spi_dwc_init },
/* Compatible strings for specific SoCs */
/*
* Both the Cyclone V and Arria V share a device tree and have the same
* version of this device. This compatible string is used for those
* devices, and is not used for sofpgas in general.
*/
{ .compatible = "altr,socfpga-spi", .data = (ulong)dw_spi_apb_init },
{ .compatible = "altr,socfpga-arria10-spi", .data = (ulong)dw_spi_apb_init },
{ .compatible = "canaan,kendryte-k210-spi", .data = (ulong)dw_spi_apb_init },
{ .compatible = "canaan,kendryte-k210-ssi", .data = (ulong)dw_spi_dwc_init },
{ .compatible = "intel,stratix10-spi", .data = (ulong)dw_spi_apb_init },
{ .compatible = "intel,agilex-spi", .data = (ulong)dw_spi_apb_init },
{ .compatible = "mscc,ocelot-spi", .data = (ulong)dw_spi_apb_init },
{ .compatible = "mscc,jaguar2-spi", .data = (ulong)dw_spi_apb_init },
{ .compatible = "snps,axs10x-spi", .data = (ulong)dw_spi_apb_init },
{ .compatible = "snps,hsdk-spi", .data = (ulong)dw_spi_apb_init },
{ }
};
U_BOOT_DRIVER(dw_spi) = {
.name = "dw_spi",
.id = UCLASS_SPI,
.of_match = dw_spi_ids,
.ops = &dw_spi_ops,
.of_to_plat = dw_spi_of_to_plat,
.plat_auto = sizeof(struct dw_spi_plat),
.priv_auto = sizeof(struct dw_spi_priv),
.probe = dw_spi_probe,
.remove = dw_spi_remove,
};