blob: 7ca8773b17e5a73ed6839989a2cfc060583b11af [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2007,2009-2014 Freescale Semiconductor, Inc.
* Copyright (C) 2021, Bin Meng <bmeng.cn@gmail.com>
*/
#include <common.h>
#include <command.h>
#include <cpu_func.h>
#include <dm.h>
#include <env.h>
#include <event.h>
#include <init.h>
#include <log.h>
#include <net.h>
#include <pci.h>
#include <time.h>
#include <dm/simple_bus.h>
#include <dm/uclass-internal.h>
#include <asm/global_data.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/fsl_pci.h>
#include <asm/io.h>
#include <linux/libfdt.h>
#include <fdt_support.h>
#include <netdev.h>
#include <fdtdec.h>
#include <errno.h>
#include <malloc.h>
#include <virtio_types.h>
#include <virtio.h>
DECLARE_GLOBAL_DATA_PTR;
/* Virtual address range for PCI region maps */
#define SYS_PCI_MAP_START 0x80000000
#define SYS_PCI_MAP_END 0xe0000000
static void *get_fdt_virt(void)
{
if (gd->flags & GD_FLG_RELOC)
return (void *)gd->fdt_blob;
else
return (void *)CFG_SYS_TMPVIRT;
}
static uint64_t get_fdt_phys(void)
{
return (uint64_t)(uintptr_t)gd->fdt_blob;
}
static void map_fdt_as(int esel)
{
u32 mas0, mas1, mas2, mas3, mas7;
uint64_t fdt_phys = get_fdt_phys();
unsigned long fdt_phys_tlb = fdt_phys & ~0xffffful;
unsigned long fdt_virt_tlb = (ulong)get_fdt_virt() & ~0xffffful;
mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(esel);
mas1 = MAS1_VALID | MAS1_TID(0) | MAS1_TS | MAS1_TSIZE(BOOKE_PAGESZ_1M);
mas2 = FSL_BOOKE_MAS2(fdt_virt_tlb, 0);
mas3 = FSL_BOOKE_MAS3(fdt_phys_tlb, 0, MAS3_SW|MAS3_SR);
mas7 = FSL_BOOKE_MAS7(fdt_phys_tlb);
write_tlb(mas0, mas1, mas2, mas3, mas7);
}
uint64_t get_phys_ccsrbar_addr_early(void)
{
void *fdt = get_fdt_virt();
uint64_t r;
int size, node;
u32 naddr;
const fdt32_t *prop;
/*
* To be able to read the FDT we need to create a temporary TLB
* map for it.
*/
map_fdt_as(10);
node = fdt_path_offset(fdt, "/soc");
naddr = fdt_address_cells(fdt, node);
prop = fdt_getprop(fdt, node, "ranges", &size);
r = fdt_translate_address(fdt, node, prop + naddr);
disable_tlb(10);
return r;
}
int checkboard(void)
{
return 0;
}
static int pci_map_region(phys_addr_t paddr, phys_size_t size, ulong *pmap_addr)
{
ulong map_addr;
if (!pmap_addr)
return 0;
map_addr = *pmap_addr;
/* Align map_addr */
map_addr += size - 1;
map_addr &= ~(size - 1);
if (map_addr + size >= SYS_PCI_MAP_END)
return -1;
/* Map virtual memory for range */
assert(!tlb_map_range(map_addr, paddr, size, TLB_MAP_IO));
*pmap_addr = map_addr + size;
return 0;
}
static void platform_bus_map_region(ulong map_addr, phys_addr_t paddr,
phys_size_t size)
{
/* Align map_addr */
map_addr += size - 1;
map_addr &= ~(size - 1);
/* Map virtual memory for range */
assert(!tlb_map_range(map_addr, paddr, size, TLB_MAP_IO));
}
int misc_init_r(void)
{
struct udevice *dev;
struct pci_region *io;
struct pci_region *mem;
struct pci_region *pre;
ulong map_addr;
int ret;
/* Ensure PCI is probed */
uclass_first_device(UCLASS_PCI, &dev);
pci_get_regions(dev, &io, &mem, &pre);
/* Start MMIO and PIO range maps above RAM */
map_addr = SYS_PCI_MAP_START;
/* Map MMIO range */
ret = pci_map_region(mem->phys_start, mem->size, &map_addr);
if (ret)
return ret;
/* Map PIO range */
ret = pci_map_region(io->phys_start, io->size, &map_addr);
if (ret)
return ret;
/*
* Make sure virtio bus is enumerated so that peripherals
* on the virtio bus can be discovered by their drivers.
*/
virtio_init();
/*
* U-Boot is relocated to RAM already, let's delete the temporary FDT
* virtual-physical mapping that was used in the pre-relocation phase.
*/
disable_tlb(find_tlb_idx((void *)CFG_SYS_TMPVIRT, 1));
/*
* Detect the presence of the platform bus node, and
* create a virtual memory mapping for it.
*/
for (ret = uclass_find_first_device(UCLASS_SIMPLE_BUS, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
if (device_is_compatible(dev, "qemu,platform")) {
struct simple_bus_plat *plat = dev_get_uclass_plat(dev);
platform_bus_map_region(CONFIG_PLATFORM_BUS_MAP_ADDR,
plat->target, plat->size);
break;
}
}
return 0;
}
static int last_stage_init(void)
{
void *fdt = get_fdt_virt();
int len = 0;
const uint64_t *prop;
int chosen;
chosen = fdt_path_offset(fdt, "/chosen");
if (chosen < 0) {
printf("Couldn't find /chosen node in fdt\n");
return -EIO;
}
/* -kernel boot */
prop = fdt_getprop(fdt, chosen, "qemu,boot-kernel", &len);
if (prop && (len >= 8))
env_set_hex("qemu_kernel_addr", *prop);
return 0;
}
EVENT_SPY_SIMPLE(EVT_LAST_STAGE_INIT, last_stage_init);
static uint64_t get_linear_ram_size(void)
{
void *fdt = get_fdt_virt();
const void *prop;
int memory;
int len;
memory = fdt_path_offset(fdt, "/memory");
prop = fdt_getprop(fdt, memory, "reg", &len);
if (prop && len >= 16)
return *(uint64_t *)(prop+8);
panic("Couldn't determine RAM size");
}
phys_size_t fsl_ddr_sdram_size(void)
{
return get_linear_ram_size();
}
void init_tlbs(void)
{
phys_size_t ram_size;
/*
* Create a temporary AS=1 map for the fdt
*
* We use ESEL=0 here to overwrite the previous AS=0 map for ourselves
* which was only 4k big. This way we don't have to clear any other maps.
*/
map_fdt_as(0);
/* Fetch RAM size from the fdt */
ram_size = get_linear_ram_size();
/* And remove our fdt map again */
disable_tlb(0);
/* Create an internal map of manually created TLB maps */
init_used_tlb_cams();
/* Create a dynamic AS=0 CCSRBAR mapping */
assert(!tlb_map_range(CFG_SYS_CCSRBAR, CFG_SYS_CCSRBAR_PHYS,
1024 * 1024, TLB_MAP_IO));
/* Create a RAM map that spans all accessible RAM */
setup_ddr_tlbs(ram_size >> 20);
/* Create a map for the TLB */
assert(!tlb_map_range((ulong)get_fdt_virt(), get_fdt_phys(),
1024 * 1024, TLB_MAP_RAM));
}
static uint32_t get_cpu_freq(void)
{
void *fdt = get_fdt_virt();
int cpus_node = fdt_path_offset(fdt, "/cpus");
int cpu_node = fdt_first_subnode(fdt, cpus_node);
const char *prop = "clock-frequency";
return fdt_getprop_u32_default_node(fdt, cpu_node, 0, prop, 0);
}
void get_sys_info(sys_info_t *sys_info)
{
int freq = get_cpu_freq();
memset(sys_info, 0, sizeof(sys_info_t));
sys_info->freq_systembus = freq;
sys_info->freq_ddrbus = freq;
sys_info->freq_processor[0] = freq;
}
int get_clocks(void)
{
sys_info_t sys_info;
get_sys_info(&sys_info);
gd->cpu_clk = sys_info.freq_processor[0];
gd->bus_clk = sys_info.freq_systembus;
gd->mem_clk = sys_info.freq_ddrbus;
gd->arch.lbc_clk = sys_info.freq_ddrbus;
return 0;
}
unsigned long get_tbclk(void)
{
void *fdt = get_fdt_virt();
int cpus_node = fdt_path_offset(fdt, "/cpus");
int cpu_node = fdt_first_subnode(fdt, cpus_node);
const char *prop = "timebase-frequency";
return fdt_getprop_u32_default_node(fdt, cpu_node, 0, prop, 0);
}
/********************************************
* get_bus_freq
* return system bus freq in Hz
*********************************************/
ulong get_bus_freq(ulong dummy)
{
sys_info_t sys_info;
get_sys_info(&sys_info);
return sys_info.freq_systembus;
}
/*
* Return the number of cores on this SOC.
*/
int cpu_numcores(void)
{
/*
* The QEMU u-boot target only needs to drive the first core,
* spinning and device tree nodes get driven by QEMU itself
*/
return 1;
}
/*
* Return a 32-bit mask indicating which cores are present on this SOC.
*/
u32 cpu_mask(void)
{
return (1 << cpu_numcores()) - 1;
}
/**
* Return the virtual address of FDT that was passed by QEMU
*
* Return: virtual address of FDT received from QEMU in r3 register
*/
void *board_fdt_blob_setup(int *err)
{
*err = 0;
return get_fdt_virt();
}
/* See CFG_SYS_NS16550_CLK in arch/powerpc/include/asm/config.h */
int get_serial_clock(void)
{
return get_bus_freq(0);
}