blob: f09c50757d4ddaca54ad80bdad5f7a026a86e696 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2018 Xilinx
*
* Xilinx ZynqMP Generic Quad-SPI(QSPI) controller driver(master mode only)
*/
#include <common.h>
#include <cpu_func.h>
#include <log.h>
#include <asm/arch/sys_proto.h>
#include <asm/cache.h>
#include <asm/io.h>
#include <clk.h>
#include <dm.h>
#include <malloc.h>
#include <memalign.h>
#include <spi.h>
#include <ubi_uboot.h>
#include <wait_bit.h>
#include <dm/device_compat.h>
#include <linux/bitops.h>
#include <linux/err.h>
#define GQSPI_GFIFO_STRT_MODE_MASK BIT(29)
#define GQSPI_CONFIG_MODE_EN_MASK (3 << 30)
#define GQSPI_CONFIG_DMA_MODE (2 << 30)
#define GQSPI_CONFIG_CPHA_MASK BIT(2)
#define GQSPI_CONFIG_CPOL_MASK BIT(1)
/*
* QSPI Interrupt Registers bit Masks
*
* All the four interrupt registers (Status/Mask/Enable/Disable) have the same
* bit definitions.
*/
#define GQSPI_IXR_TXNFULL_MASK 0x00000004 /* QSPI TX FIFO Overflow */
#define GQSPI_IXR_TXFULL_MASK 0x00000008 /* QSPI TX FIFO is full */
#define GQSPI_IXR_RXNEMTY_MASK 0x00000010 /* QSPI RX FIFO Not Empty */
#define GQSPI_IXR_GFEMTY_MASK 0x00000080 /* QSPI Generic FIFO Empty */
#define GQSPI_IXR_ALL_MASK (GQSPI_IXR_TXNFULL_MASK | \
GQSPI_IXR_RXNEMTY_MASK)
/*
* QSPI Enable Register bit Masks
*
* This register is used to enable or disable the QSPI controller
*/
#define GQSPI_ENABLE_ENABLE_MASK 0x00000001 /* QSPI Enable Bit Mask */
#define GQSPI_GFIFO_LOW_BUS BIT(14)
#define GQSPI_GFIFO_CS_LOWER BIT(12)
#define GQSPI_GFIFO_UP_BUS BIT(15)
#define GQSPI_GFIFO_CS_UPPER BIT(13)
#define GQSPI_SPI_MODE_QSPI (3 << 10)
#define GQSPI_SPI_MODE_SPI BIT(10)
#define GQSPI_SPI_MODE_DUAL_SPI (2 << 10)
#define GQSPI_IMD_DATA_CS_ASSERT 5
#define GQSPI_IMD_DATA_CS_DEASSERT 5
#define GQSPI_GFIFO_TX BIT(16)
#define GQSPI_GFIFO_RX BIT(17)
#define GQSPI_GFIFO_STRIPE_MASK BIT(18)
#define GQSPI_GFIFO_IMD_MASK 0xFF
#define GQSPI_GFIFO_EXP_MASK BIT(9)
#define GQSPI_GFIFO_DATA_XFR_MASK BIT(8)
#define GQSPI_STRT_GEN_FIFO BIT(28)
#define GQSPI_GEN_FIFO_STRT_MOD BIT(29)
#define GQSPI_GFIFO_WP_HOLD BIT(19)
#define GQSPI_BAUD_DIV_MASK (7 << 3)
#define GQSPI_DFLT_BAUD_RATE_DIV BIT(3)
#define GQSPI_GFIFO_ALL_INT_MASK 0xFBE
#define GQSPI_DMA_DST_I_STS_DONE BIT(1)
#define GQSPI_DMA_DST_I_STS_MASK 0xFE
#define MODEBITS 0x6
#define GQSPI_GFIFO_SELECT BIT(0)
#define GQSPI_FIFO_THRESHOLD 1
#define SPI_XFER_ON_BOTH 0
#define SPI_XFER_ON_LOWER 1
#define SPI_XFER_ON_UPPER 2
#define GQSPI_DMA_ALIGN 0x4
#define GQSPI_MAX_BAUD_RATE_VAL 7
#define GQSPI_DFLT_BAUD_RATE_VAL 2
#define GQSPI_TIMEOUT 100000000
#define GQSPI_BAUD_DIV_SHIFT 2
#define GQSPI_LPBK_DLY_ADJ_LPBK_SHIFT 5
#define GQSPI_LPBK_DLY_ADJ_DLY_1 0x2
#define GQSPI_LPBK_DLY_ADJ_DLY_1_SHIFT 3
#define GQSPI_LPBK_DLY_ADJ_DLY_0 0x3
#define GQSPI_USE_DATA_DLY 0x1
#define GQSPI_USE_DATA_DLY_SHIFT 31
#define GQSPI_DATA_DLY_ADJ_VALUE 0x2
#define GQSPI_DATA_DLY_ADJ_SHIFT 28
#define TAP_DLY_BYPASS_LQSPI_RX_VALUE 0x1
#define TAP_DLY_BYPASS_LQSPI_RX_SHIFT 2
#define GQSPI_DATA_DLY_ADJ_OFST 0x000001F8
#define IOU_TAPDLY_BYPASS_OFST 0xFF180390
#define GQSPI_LPBK_DLY_ADJ_LPBK_MASK 0x00000020
#define GQSPI_FREQ_40MHZ 40000000
#define GQSPI_FREQ_100MHZ 100000000
#define GQSPI_FREQ_150MHZ 150000000
#define IOU_TAPDLY_BYPASS_MASK 0x7
#define GQSPI_REG_OFFSET 0x100
#define GQSPI_DMA_REG_OFFSET 0x800
/* QSPI register offsets */
struct zynqmp_qspi_regs {
u32 confr; /* 0x00 */
u32 isr; /* 0x04 */
u32 ier; /* 0x08 */
u32 idisr; /* 0x0C */
u32 imaskr; /* 0x10 */
u32 enbr; /* 0x14 */
u32 dr; /* 0x18 */
u32 txd0r; /* 0x1C */
u32 drxr; /* 0x20 */
u32 sicr; /* 0x24 */
u32 txftr; /* 0x28 */
u32 rxftr; /* 0x2C */
u32 gpior; /* 0x30 */
u32 reserved0; /* 0x34 */
u32 lpbkdly; /* 0x38 */
u32 reserved1; /* 0x3C */
u32 genfifo; /* 0x40 */
u32 gqspisel; /* 0x44 */
u32 reserved2; /* 0x48 */
u32 gqfifoctrl; /* 0x4C */
u32 gqfthr; /* 0x50 */
u32 gqpollcfg; /* 0x54 */
u32 gqpollto; /* 0x58 */
u32 gqxfersts; /* 0x5C */
u32 gqfifosnap; /* 0x60 */
u32 gqrxcpy; /* 0x64 */
u32 reserved3[36]; /* 0x68 */
u32 gqspidlyadj; /* 0xF8 */
};
struct zynqmp_qspi_dma_regs {
u32 dmadst; /* 0x00 */
u32 dmasize; /* 0x04 */
u32 dmasts; /* 0x08 */
u32 dmactrl; /* 0x0C */
u32 reserved0; /* 0x10 */
u32 dmaisr; /* 0x14 */
u32 dmaier; /* 0x18 */
u32 dmaidr; /* 0x1C */
u32 dmaimr; /* 0x20 */
u32 dmactrl2; /* 0x24 */
u32 dmadstmsb; /* 0x28 */
};
DECLARE_GLOBAL_DATA_PTR;
struct zynqmp_qspi_plat {
struct zynqmp_qspi_regs *regs;
struct zynqmp_qspi_dma_regs *dma_regs;
u32 frequency;
u32 speed_hz;
};
struct zynqmp_qspi_priv {
struct zynqmp_qspi_regs *regs;
struct zynqmp_qspi_dma_regs *dma_regs;
const void *tx_buf;
void *rx_buf;
unsigned int len;
int bytes_to_transfer;
int bytes_to_receive;
unsigned int is_inst;
unsigned int cs_change:1;
};
static int zynqmp_qspi_of_to_plat(struct udevice *bus)
{
struct zynqmp_qspi_plat *plat = bus->plat;
debug("%s\n", __func__);
plat->regs = (struct zynqmp_qspi_regs *)(dev_read_addr(bus) +
GQSPI_REG_OFFSET);
plat->dma_regs = (struct zynqmp_qspi_dma_regs *)
(dev_read_addr(bus) + GQSPI_DMA_REG_OFFSET);
return 0;
}
static void zynqmp_qspi_init_hw(struct zynqmp_qspi_priv *priv)
{
u32 config_reg;
struct zynqmp_qspi_regs *regs = priv->regs;
writel(GQSPI_GFIFO_SELECT, &regs->gqspisel);
writel(GQSPI_GFIFO_ALL_INT_MASK, &regs->idisr);
writel(GQSPI_FIFO_THRESHOLD, &regs->txftr);
writel(GQSPI_FIFO_THRESHOLD, &regs->rxftr);
writel(GQSPI_GFIFO_ALL_INT_MASK, &regs->isr);
config_reg = readl(&regs->confr);
config_reg &= ~(GQSPI_GFIFO_STRT_MODE_MASK |
GQSPI_CONFIG_MODE_EN_MASK);
config_reg |= GQSPI_CONFIG_DMA_MODE |
GQSPI_GFIFO_WP_HOLD |
GQSPI_DFLT_BAUD_RATE_DIV;
writel(config_reg, &regs->confr);
writel(GQSPI_ENABLE_ENABLE_MASK, &regs->enbr);
}
static u32 zynqmp_qspi_bus_select(struct zynqmp_qspi_priv *priv)
{
u32 gqspi_fifo_reg = 0;
gqspi_fifo_reg = GQSPI_GFIFO_LOW_BUS |
GQSPI_GFIFO_CS_LOWER;
return gqspi_fifo_reg;
}
static void zynqmp_qspi_fill_gen_fifo(struct zynqmp_qspi_priv *priv,
u32 gqspi_fifo_reg)
{
struct zynqmp_qspi_regs *regs = priv->regs;
int ret = 0;
ret = wait_for_bit_le32(&regs->isr, GQSPI_IXR_GFEMTY_MASK, 1,
GQSPI_TIMEOUT, 1);
if (ret)
printf("%s Timeout\n", __func__);
writel(gqspi_fifo_reg, &regs->genfifo);
}
static void zynqmp_qspi_chipselect(struct zynqmp_qspi_priv *priv, int is_on)
{
u32 gqspi_fifo_reg = 0;
if (is_on) {
gqspi_fifo_reg = zynqmp_qspi_bus_select(priv);
gqspi_fifo_reg |= GQSPI_SPI_MODE_SPI |
GQSPI_IMD_DATA_CS_ASSERT;
} else {
gqspi_fifo_reg = GQSPI_GFIFO_LOW_BUS;
gqspi_fifo_reg |= GQSPI_IMD_DATA_CS_DEASSERT;
}
debug("GFIFO_CMD_CS: 0x%x\n", gqspi_fifo_reg);
zynqmp_qspi_fill_gen_fifo(priv, gqspi_fifo_reg);
}
void zynqmp_qspi_set_tapdelay(struct udevice *bus, u32 baudrateval)
{
struct zynqmp_qspi_plat *plat = bus->plat;
struct zynqmp_qspi_priv *priv = dev_get_priv(bus);
struct zynqmp_qspi_regs *regs = priv->regs;
u32 tapdlybypass = 0, lpbkdlyadj = 0, datadlyadj = 0, clk_rate;
u32 reqhz = 0;
clk_rate = plat->frequency;
reqhz = (clk_rate / (GQSPI_BAUD_DIV_SHIFT << baudrateval));
debug("%s, req_hz:%d, clk_rate:%d, baudrateval:%d\n",
__func__, reqhz, clk_rate, baudrateval);
if (reqhz < GQSPI_FREQ_40MHZ) {
zynqmp_mmio_read(IOU_TAPDLY_BYPASS_OFST, &tapdlybypass);
tapdlybypass |= (TAP_DLY_BYPASS_LQSPI_RX_VALUE <<
TAP_DLY_BYPASS_LQSPI_RX_SHIFT);
} else if (reqhz <= GQSPI_FREQ_100MHZ) {
zynqmp_mmio_read(IOU_TAPDLY_BYPASS_OFST, &tapdlybypass);
tapdlybypass |= (TAP_DLY_BYPASS_LQSPI_RX_VALUE <<
TAP_DLY_BYPASS_LQSPI_RX_SHIFT);
lpbkdlyadj = readl(&regs->lpbkdly);
lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_LPBK_MASK);
datadlyadj = readl(&regs->gqspidlyadj);
datadlyadj |= ((GQSPI_USE_DATA_DLY << GQSPI_USE_DATA_DLY_SHIFT)
| (GQSPI_DATA_DLY_ADJ_VALUE <<
GQSPI_DATA_DLY_ADJ_SHIFT));
} else if (reqhz <= GQSPI_FREQ_150MHZ) {
lpbkdlyadj = readl(&regs->lpbkdly);
lpbkdlyadj |= ((GQSPI_LPBK_DLY_ADJ_LPBK_MASK) |
GQSPI_LPBK_DLY_ADJ_DLY_0);
}
zynqmp_mmio_write(IOU_TAPDLY_BYPASS_OFST, IOU_TAPDLY_BYPASS_MASK,
tapdlybypass);
writel(lpbkdlyadj, &regs->lpbkdly);
writel(datadlyadj, &regs->gqspidlyadj);
}
static int zynqmp_qspi_set_speed(struct udevice *bus, uint speed)
{
struct zynqmp_qspi_plat *plat = bus->plat;
struct zynqmp_qspi_priv *priv = dev_get_priv(bus);
struct zynqmp_qspi_regs *regs = priv->regs;
u32 confr;
u8 baud_rate_val = 0;
debug("%s\n", __func__);
if (speed > plat->frequency)
speed = plat->frequency;
/* Set the clock frequency */
confr = readl(&regs->confr);
if (speed == 0) {
/* Set baudrate x8, if the freq is 0 */
baud_rate_val = GQSPI_DFLT_BAUD_RATE_VAL;
} else if (plat->speed_hz != speed) {
while ((baud_rate_val < 8) &&
((plat->frequency /
(2 << baud_rate_val)) > speed))
baud_rate_val++;
if (baud_rate_val > GQSPI_MAX_BAUD_RATE_VAL)
baud_rate_val = GQSPI_DFLT_BAUD_RATE_VAL;
plat->speed_hz = plat->frequency / (2 << baud_rate_val);
}
confr &= ~GQSPI_BAUD_DIV_MASK;
confr |= (baud_rate_val << 3);
writel(confr, &regs->confr);
zynqmp_qspi_set_tapdelay(bus, baud_rate_val);
debug("regs=%p, speed=%d\n", priv->regs, plat->speed_hz);
return 0;
}
static int zynqmp_qspi_probe(struct udevice *bus)
{
struct zynqmp_qspi_plat *plat = dev_get_plat(bus);
struct zynqmp_qspi_priv *priv = dev_get_priv(bus);
struct clk clk;
unsigned long clock;
int ret;
debug("%s: bus:%p, priv:%p\n", __func__, bus, priv);
priv->regs = plat->regs;
priv->dma_regs = plat->dma_regs;
ret = clk_get_by_index(bus, 0, &clk);
if (ret < 0) {
dev_err(bus, "failed to get clock\n");
return ret;
}
clock = clk_get_rate(&clk);
if (IS_ERR_VALUE(clock)) {
dev_err(bus, "failed to get rate\n");
return clock;
}
debug("%s: CLK %ld\n", __func__, clock);
ret = clk_enable(&clk);
if (ret && ret != -ENOSYS) {
dev_err(bus, "failed to enable clock\n");
return ret;
}
plat->frequency = clock;
plat->speed_hz = plat->frequency / 2;
/* init the zynq spi hw */
zynqmp_qspi_init_hw(priv);
return 0;
}
static int zynqmp_qspi_set_mode(struct udevice *bus, uint mode)
{
struct zynqmp_qspi_priv *priv = dev_get_priv(bus);
struct zynqmp_qspi_regs *regs = priv->regs;
u32 confr;
debug("%s\n", __func__);
/* Set the SPI Clock phase and polarities */
confr = readl(&regs->confr);
confr &= ~(GQSPI_CONFIG_CPHA_MASK |
GQSPI_CONFIG_CPOL_MASK);
if (mode & SPI_CPHA)
confr |= GQSPI_CONFIG_CPHA_MASK;
if (mode & SPI_CPOL)
confr |= GQSPI_CONFIG_CPOL_MASK;
writel(confr, &regs->confr);
return 0;
}
static int zynqmp_qspi_fill_tx_fifo(struct zynqmp_qspi_priv *priv, u32 size)
{
u32 data;
int ret = 0;
struct zynqmp_qspi_regs *regs = priv->regs;
u32 *buf = (u32 *)priv->tx_buf;
u32 len = size;
debug("TxFIFO: 0x%x, size: 0x%x\n", readl(&regs->isr),
size);
while (size) {
ret = wait_for_bit_le32(&regs->isr, GQSPI_IXR_TXNFULL_MASK, 1,
GQSPI_TIMEOUT, 1);
if (ret) {
printf("%s: Timeout\n", __func__);
return ret;
}
if (size >= 4) {
writel(*buf, &regs->txd0r);
buf++;
size -= 4;
} else {
switch (size) {
case 1:
data = *((u8 *)buf);
buf += 1;
data |= GENMASK(31, 8);
break;
case 2:
data = *((u16 *)buf);
buf += 2;
data |= GENMASK(31, 16);
break;
case 3:
data = *((u16 *)buf);
buf += 2;
data |= (*((u8 *)buf) << 16);
buf += 1;
data |= GENMASK(31, 24);
break;
}
writel(data, &regs->txd0r);
size = 0;
}
}
priv->tx_buf += len;
return 0;
}
static void zynqmp_qspi_genfifo_cmd(struct zynqmp_qspi_priv *priv)
{
u32 gen_fifo_cmd;
u32 bytecount = 0;
while (priv->len) {
gen_fifo_cmd = zynqmp_qspi_bus_select(priv);
gen_fifo_cmd |= GQSPI_GFIFO_TX | GQSPI_SPI_MODE_SPI;
gen_fifo_cmd |= *(u8 *)priv->tx_buf;
bytecount++;
priv->len--;
priv->tx_buf = (u8 *)priv->tx_buf + 1;
debug("GFIFO_CMD_Cmd = 0x%x\n", gen_fifo_cmd);
zynqmp_qspi_fill_gen_fifo(priv, gen_fifo_cmd);
}
}
static u32 zynqmp_qspi_calc_exp(struct zynqmp_qspi_priv *priv,
u32 *gen_fifo_cmd)
{
u32 expval = 8;
u32 len;
while (1) {
if (priv->len > 255) {
if (priv->len & (1 << expval)) {
*gen_fifo_cmd &= ~GQSPI_GFIFO_IMD_MASK;
*gen_fifo_cmd |= GQSPI_GFIFO_EXP_MASK;
*gen_fifo_cmd |= expval;
priv->len -= (1 << expval);
return expval;
}
expval++;
} else {
*gen_fifo_cmd &= ~(GQSPI_GFIFO_IMD_MASK |
GQSPI_GFIFO_EXP_MASK);
*gen_fifo_cmd |= (u8)priv->len;
len = (u8)priv->len;
priv->len = 0;
return len;
}
}
}
static int zynqmp_qspi_genfifo_fill_tx(struct zynqmp_qspi_priv *priv)
{
u32 gen_fifo_cmd;
u32 len;
int ret = 0;
gen_fifo_cmd = zynqmp_qspi_bus_select(priv);
gen_fifo_cmd |= GQSPI_GFIFO_TX |
GQSPI_GFIFO_DATA_XFR_MASK;
gen_fifo_cmd |= GQSPI_SPI_MODE_SPI;
while (priv->len) {
len = zynqmp_qspi_calc_exp(priv, &gen_fifo_cmd);
zynqmp_qspi_fill_gen_fifo(priv, gen_fifo_cmd);
debug("GFIFO_CMD_TX:0x%x\n", gen_fifo_cmd);
if (gen_fifo_cmd & GQSPI_GFIFO_EXP_MASK)
ret = zynqmp_qspi_fill_tx_fifo(priv,
1 << len);
else
ret = zynqmp_qspi_fill_tx_fifo(priv,
len);
if (ret)
return ret;
}
return ret;
}
static int zynqmp_qspi_start_dma(struct zynqmp_qspi_priv *priv,
u32 gen_fifo_cmd, u32 *buf)
{
u32 addr;
u32 size, len;
u32 actuallen = priv->len;
int ret = 0;
struct zynqmp_qspi_dma_regs *dma_regs = priv->dma_regs;
writel((unsigned long)buf, &dma_regs->dmadst);
writel(roundup(priv->len, ARCH_DMA_MINALIGN), &dma_regs->dmasize);
writel(GQSPI_DMA_DST_I_STS_MASK, &dma_regs->dmaier);
addr = (unsigned long)buf;
size = roundup(priv->len, ARCH_DMA_MINALIGN);
flush_dcache_range(addr, addr + size);
while (priv->len) {
len = zynqmp_qspi_calc_exp(priv, &gen_fifo_cmd);
if (!(gen_fifo_cmd & GQSPI_GFIFO_EXP_MASK) &&
(len % ARCH_DMA_MINALIGN)) {
gen_fifo_cmd &= ~GENMASK(7, 0);
gen_fifo_cmd |= roundup(len, ARCH_DMA_MINALIGN);
}
zynqmp_qspi_fill_gen_fifo(priv, gen_fifo_cmd);
debug("GFIFO_CMD_RX:0x%x\n", gen_fifo_cmd);
}
ret = wait_for_bit_le32(&dma_regs->dmaisr, GQSPI_DMA_DST_I_STS_DONE,
1, GQSPI_TIMEOUT, 1);
if (ret) {
printf("DMA Timeout:0x%x\n", readl(&dma_regs->dmaisr));
return -ETIMEDOUT;
}
writel(GQSPI_DMA_DST_I_STS_DONE, &dma_regs->dmaisr);
debug("buf:0x%lx, rxbuf:0x%lx, *buf:0x%x len: 0x%x\n",
(unsigned long)buf, (unsigned long)priv->rx_buf, *buf,
actuallen);
if (buf != priv->rx_buf)
memcpy(priv->rx_buf, buf, actuallen);
return 0;
}
static int zynqmp_qspi_genfifo_fill_rx(struct zynqmp_qspi_priv *priv)
{
u32 gen_fifo_cmd;
u32 *buf;
u32 actuallen = priv->len;
gen_fifo_cmd = zynqmp_qspi_bus_select(priv);
gen_fifo_cmd |= GQSPI_GFIFO_RX |
GQSPI_GFIFO_DATA_XFR_MASK;
gen_fifo_cmd |= GQSPI_SPI_MODE_SPI;
/*
* Check if receive buffer is aligned to 4 byte and length
* is multiples of four byte as we are using dma to receive.
*/
if (!((unsigned long)priv->rx_buf & (GQSPI_DMA_ALIGN - 1)) &&
!(actuallen % GQSPI_DMA_ALIGN)) {
buf = (u32 *)priv->rx_buf;
return zynqmp_qspi_start_dma(priv, gen_fifo_cmd, buf);
}
ALLOC_CACHE_ALIGN_BUFFER(u8, tmp, roundup(priv->len,
GQSPI_DMA_ALIGN));
buf = (u32 *)tmp;
return zynqmp_qspi_start_dma(priv, gen_fifo_cmd, buf);
}
static int zynqmp_qspi_start_transfer(struct zynqmp_qspi_priv *priv)
{
int ret = 0;
if (priv->is_inst) {
if (priv->tx_buf)
zynqmp_qspi_genfifo_cmd(priv);
else
return -EINVAL;
} else {
if (priv->tx_buf)
ret = zynqmp_qspi_genfifo_fill_tx(priv);
else if (priv->rx_buf)
ret = zynqmp_qspi_genfifo_fill_rx(priv);
else
return -EINVAL;
}
return ret;
}
static int zynqmp_qspi_transfer(struct zynqmp_qspi_priv *priv)
{
static unsigned int cs_change = 1;
int status = 0;
debug("%s\n", __func__);
while (1) {
/* Select the chip if required */
if (cs_change)
zynqmp_qspi_chipselect(priv, 1);
cs_change = priv->cs_change;
if (!priv->tx_buf && !priv->rx_buf && priv->len) {
status = -EINVAL;
break;
}
/* Request the transfer */
if (priv->len) {
status = zynqmp_qspi_start_transfer(priv);
priv->is_inst = 0;
if (status < 0)
break;
}
if (cs_change)
/* Deselect the chip */
zynqmp_qspi_chipselect(priv, 0);
break;
}
return status;
}
static int zynqmp_qspi_claim_bus(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct zynqmp_qspi_priv *priv = dev_get_priv(bus);
struct zynqmp_qspi_regs *regs = priv->regs;
writel(GQSPI_ENABLE_ENABLE_MASK, &regs->enbr);
return 0;
}
static int zynqmp_qspi_release_bus(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct zynqmp_qspi_priv *priv = dev_get_priv(bus);
struct zynqmp_qspi_regs *regs = priv->regs;
writel(~GQSPI_ENABLE_ENABLE_MASK, &regs->enbr);
return 0;
}
int zynqmp_qspi_xfer(struct udevice *dev, unsigned int bitlen, const void *dout,
void *din, unsigned long flags)
{
struct udevice *bus = dev->parent;
struct zynqmp_qspi_priv *priv = dev_get_priv(bus);
debug("%s: priv: 0x%08lx bitlen: %d dout: 0x%08lx ", __func__,
(unsigned long)priv, bitlen, (unsigned long)dout);
debug("din: 0x%08lx flags: 0x%lx\n", (unsigned long)din, flags);
priv->tx_buf = dout;
priv->rx_buf = din;
priv->len = bitlen / 8;
/*
* Assume that the beginning of a transfer with bits to
* transmit must contain a device command.
*/
if (dout && flags & SPI_XFER_BEGIN)
priv->is_inst = 1;
else
priv->is_inst = 0;
if (flags & SPI_XFER_END)
priv->cs_change = 1;
else
priv->cs_change = 0;
zynqmp_qspi_transfer(priv);
return 0;
}
static const struct dm_spi_ops zynqmp_qspi_ops = {
.claim_bus = zynqmp_qspi_claim_bus,
.release_bus = zynqmp_qspi_release_bus,
.xfer = zynqmp_qspi_xfer,
.set_speed = zynqmp_qspi_set_speed,
.set_mode = zynqmp_qspi_set_mode,
};
static const struct udevice_id zynqmp_qspi_ids[] = {
{ .compatible = "xlnx,zynqmp-qspi-1.0" },
{ .compatible = "xlnx,versal-qspi-1.0" },
{ }
};
U_BOOT_DRIVER(zynqmp_qspi) = {
.name = "zynqmp_qspi",
.id = UCLASS_SPI,
.of_match = zynqmp_qspi_ids,
.ops = &zynqmp_qspi_ops,
.of_to_plat = zynqmp_qspi_of_to_plat,
.plat_auto = sizeof(struct zynqmp_qspi_plat),
.priv_auto = sizeof(struct zynqmp_qspi_priv),
.probe = zynqmp_qspi_probe,
};