blob: 08fca08b710a82cc2a7cb65848aa5b71d766771d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2013, Google Inc.
*
* (C) Copyright 2008 Semihalf
*
* (C) Copyright 2000-2006
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*/
#include <common.h>
#include <fdt_support.h>
#include <fdtdec.h>
#include <env.h>
#include <errno.h>
#include <image.h>
#include <lmb.h>
#include <log.h>
#include <malloc.h>
#include <asm/global_data.h>
#include <linux/libfdt.h>
#include <mapmem.h>
#include <asm/io.h>
#include <dm/ofnode.h>
#include <tee/optee.h>
/* adding a ramdisk needs 0x44 bytes in version 2008.10 */
#define FDT_RAMDISK_OVERHEAD 0x80
DECLARE_GLOBAL_DATA_PTR;
static void fdt_error(const char *msg)
{
puts("ERROR: ");
puts(msg);
puts(" - must RESET the board to recover.\n");
}
#if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
static const struct legacy_img_hdr *image_get_fdt(ulong fdt_addr)
{
const struct legacy_img_hdr *fdt_hdr = map_sysmem(fdt_addr, 0);
image_print_contents(fdt_hdr);
puts(" Verifying Checksum ... ");
if (!image_check_hcrc(fdt_hdr)) {
fdt_error("fdt header checksum invalid");
return NULL;
}
if (!image_check_dcrc(fdt_hdr)) {
fdt_error("fdt checksum invalid");
return NULL;
}
puts("OK\n");
if (!image_check_type(fdt_hdr, IH_TYPE_FLATDT)) {
fdt_error("uImage is not a fdt");
return NULL;
}
if (image_get_comp(fdt_hdr) != IH_COMP_NONE) {
fdt_error("uImage is compressed");
return NULL;
}
if (fdt_check_header((void *)image_get_data(fdt_hdr)) != 0) {
fdt_error("uImage data is not a fdt");
return NULL;
}
return fdt_hdr;
}
#endif
static void boot_fdt_reserve_region(struct lmb *lmb, uint64_t addr,
uint64_t size, enum lmb_flags flags)
{
long ret;
ret = lmb_reserve_flags(lmb, addr, size, flags);
if (ret >= 0) {
debug(" reserving fdt memory region: addr=%llx size=%llx flags=%x\n",
(unsigned long long)addr,
(unsigned long long)size, flags);
} else {
puts("ERROR: reserving fdt memory region failed ");
printf("(addr=%llx size=%llx flags=%x)\n",
(unsigned long long)addr,
(unsigned long long)size, flags);
}
}
/**
* boot_fdt_add_mem_rsv_regions - Mark the memreserve and reserved-memory
* sections as unusable
* @lmb: pointer to lmb handle, will be used for memory mgmt
* @fdt_blob: pointer to fdt blob base address
*
* Adds the and reserved-memorymemreserve regions in the dtb to the lmb block.
* Adding the memreserve regions prevents u-boot from using them to store the
* initrd or the fdt blob.
*/
void boot_fdt_add_mem_rsv_regions(struct lmb *lmb, void *fdt_blob)
{
uint64_t addr, size;
int i, total, ret;
int nodeoffset, subnode;
struct fdt_resource res;
enum lmb_flags flags;
if (fdt_check_header(fdt_blob) != 0)
return;
/* process memreserve sections */
total = fdt_num_mem_rsv(fdt_blob);
for (i = 0; i < total; i++) {
if (fdt_get_mem_rsv(fdt_blob, i, &addr, &size) != 0)
continue;
boot_fdt_reserve_region(lmb, addr, size, LMB_NONE);
}
/* process reserved-memory */
nodeoffset = fdt_subnode_offset(fdt_blob, 0, "reserved-memory");
if (nodeoffset >= 0) {
subnode = fdt_first_subnode(fdt_blob, nodeoffset);
while (subnode >= 0) {
/* check if this subnode has a reg property */
ret = fdt_get_resource(fdt_blob, subnode, "reg", 0,
&res);
if (!ret && fdtdec_get_is_enabled(fdt_blob, subnode)) {
flags = LMB_NONE;
if (fdtdec_get_bool(fdt_blob, subnode,
"no-map"))
flags = LMB_NOMAP;
addr = res.start;
size = res.end - res.start + 1;
boot_fdt_reserve_region(lmb, addr, size, flags);
}
subnode = fdt_next_subnode(fdt_blob, subnode);
}
}
}
/**
* boot_relocate_fdt - relocate flat device tree
* @lmb: pointer to lmb handle, will be used for memory mgmt
* @of_flat_tree: pointer to a char* variable, will hold fdt start address
* @of_size: pointer to a ulong variable, will hold fdt length
*
* boot_relocate_fdt() allocates a region of memory within the bootmap and
* relocates the of_flat_tree into that region, even if the fdt is already in
* the bootmap. It also expands the size of the fdt by CONFIG_SYS_FDT_PAD
* bytes.
*
* of_flat_tree and of_size are set to final (after relocation) values
*
* returns:
* 0 - success
* 1 - failure
*/
int boot_relocate_fdt(struct lmb *lmb, char **of_flat_tree, ulong *of_size)
{
void *fdt_blob = *of_flat_tree;
void *of_start = NULL;
u64 start, size, usable;
char *fdt_high;
ulong mapsize, low;
ulong of_len = 0;
int bank;
int err;
int disable_relocation = 0;
/* nothing to do */
if (*of_size == 0)
return 0;
if (fdt_check_header(fdt_blob) != 0) {
fdt_error("image is not a fdt");
goto error;
}
/* position on a 4K boundary before the alloc_current */
/* Pad the FDT by a specified amount */
of_len = *of_size + CONFIG_SYS_FDT_PAD;
/* If fdt_high is set use it to select the relocation address */
fdt_high = env_get("fdt_high");
if (fdt_high) {
ulong desired_addr = hextoul(fdt_high, NULL);
ulong addr;
if (desired_addr == ~0UL) {
/* All ones means use fdt in place */
of_start = fdt_blob;
lmb_reserve(lmb, map_to_sysmem(of_start), of_len);
disable_relocation = 1;
} else if (desired_addr) {
addr = lmb_alloc_base(lmb, of_len, 0x1000,
desired_addr);
of_start = map_sysmem(addr, of_len);
if (of_start == NULL) {
puts("Failed using fdt_high value for Device Tree");
goto error;
}
} else {
addr = lmb_alloc(lmb, of_len, 0x1000);
of_start = map_sysmem(addr, of_len);
}
} else {
mapsize = env_get_bootm_mapsize();
low = env_get_bootm_low();
of_start = NULL;
for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
start = gd->bd->bi_dram[bank].start;
size = gd->bd->bi_dram[bank].size;
/* DRAM bank addresses are too low, skip it. */
if (start + size < low)
continue;
usable = min(size, (u64)mapsize);
/*
* At least part of this DRAM bank is usable, try
* using it for LMB allocation.
*/
of_start = map_sysmem((ulong)lmb_alloc_base(lmb,
of_len, 0x1000, start + usable), of_len);
/* Allocation succeeded, use this block. */
if (of_start != NULL)
break;
/*
* Reduce the mapping size in the next bank
* by the size of attempt in current bank.
*/
mapsize -= usable - max(start, (u64)low);
if (!mapsize)
break;
}
}
if (of_start == NULL) {
puts("device tree - allocation error\n");
goto error;
}
if (disable_relocation) {
/*
* We assume there is space after the existing fdt to use
* for padding
*/
fdt_set_totalsize(of_start, of_len);
printf(" Using Device Tree in place at %p, end %p\n",
of_start, of_start + of_len - 1);
} else {
debug("## device tree at %p ... %p (len=%ld [0x%lX])\n",
fdt_blob, fdt_blob + *of_size - 1, of_len, of_len);
printf(" Loading Device Tree to %p, end %p ... ",
of_start, of_start + of_len - 1);
err = fdt_open_into(fdt_blob, of_start, of_len);
if (err != 0) {
fdt_error("fdt move failed");
goto error;
}
puts("OK\n");
}
*of_flat_tree = of_start;
*of_size = of_len;
if (IS_ENABLED(CONFIG_CMD_FDT))
set_working_fdt_addr(map_to_sysmem(*of_flat_tree));
return 0;
error:
return 1;
}
/**
* select_fdt() - Select and locate the FDT to use
*
* @images: pointer to the bootm images structure
* @select: name of FDT to select, or NULL for any
* @arch: expected FDT architecture
* @fdt_addrp: pointer to a ulong variable, will hold FDT pointer
* Return: 0 if OK, -ENOPKG if no FDT (but an error should not be reported),
* other -ve value on other error
*/
static int select_fdt(struct bootm_headers *images, const char *select, u8 arch,
ulong *fdt_addrp)
{
const char *buf;
ulong fdt_addr;
#if CONFIG_IS_ENABLED(FIT)
const char *fit_uname_config = images->fit_uname_cfg;
const char *fit_uname_fdt = NULL;
ulong default_addr;
int fdt_noffset;
if (select) {
/*
* If the FDT blob comes from the FIT image and the
* FIT image address is omitted in the command line
* argument, try to use ramdisk or os FIT image
* address or default load address.
*/
if (images->fit_uname_rd)
default_addr = (ulong)images->fit_hdr_rd;
else if (images->fit_uname_os)
default_addr = (ulong)images->fit_hdr_os;
else
default_addr = image_load_addr;
if (fit_parse_conf(select, default_addr, &fdt_addr,
&fit_uname_config)) {
debug("* fdt: config '%s' from image at 0x%08lx\n",
fit_uname_config, fdt_addr);
} else if (fit_parse_subimage(select, default_addr, &fdt_addr,
&fit_uname_fdt)) {
debug("* fdt: subimage '%s' from image at 0x%08lx\n",
fit_uname_fdt, fdt_addr);
} else
#endif
{
fdt_addr = hextoul(select, NULL);
debug("* fdt: cmdline image address = 0x%08lx\n",
fdt_addr);
}
#if CONFIG_IS_ENABLED(FIT)
} else {
/* use FIT configuration provided in first bootm
* command argument
*/
fdt_addr = map_to_sysmem(images->fit_hdr_os);
fdt_noffset = fit_get_node_from_config(images, FIT_FDT_PROP,
fdt_addr);
if (fdt_noffset == -ENOENT)
return -ENOPKG;
else if (fdt_noffset < 0)
return fdt_noffset;
}
#endif
debug("## Checking for 'FDT'/'FDT Image' at %08lx\n",
fdt_addr);
/*
* Check if there is an FDT image at the
* address provided in the second bootm argument
* check image type, for FIT images get a FIT node.
*/
buf = map_sysmem(fdt_addr, 0);
switch (genimg_get_format(buf)) {
#if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
case IMAGE_FORMAT_LEGACY: {
const struct legacy_img_hdr *fdt_hdr;
ulong load, load_end;
ulong image_start, image_data, image_end;
/* verify fdt_addr points to a valid image header */
printf("## Flattened Device Tree from Legacy Image at %08lx\n",
fdt_addr);
fdt_hdr = image_get_fdt(fdt_addr);
if (!fdt_hdr)
return -ENOPKG;
/*
* move image data to the load address,
* make sure we don't overwrite initial image
*/
image_start = (ulong)fdt_hdr;
image_data = (ulong)image_get_data(fdt_hdr);
image_end = image_get_image_end(fdt_hdr);
load = image_get_load(fdt_hdr);
load_end = load + image_get_data_size(fdt_hdr);
if (load == image_start ||
load == image_data) {
fdt_addr = load;
break;
}
if ((load < image_end) && (load_end > image_start)) {
fdt_error("fdt overwritten");
return -EFAULT;
}
debug(" Loading FDT from 0x%08lx to 0x%08lx\n",
image_data, load);
memmove((void *)load,
(void *)image_data,
image_get_data_size(fdt_hdr));
fdt_addr = load;
break;
}
#endif
case IMAGE_FORMAT_FIT:
/*
* This case will catch both: new uImage format
* (libfdt based) and raw FDT blob (also libfdt
* based).
*/
#if CONFIG_IS_ENABLED(FIT)
/* check FDT blob vs FIT blob */
if (!fit_check_format(buf, IMAGE_SIZE_INVAL)) {
ulong load, len;
fdt_noffset = boot_get_fdt_fit(images, fdt_addr,
&fit_uname_fdt,
&fit_uname_config,
arch, &load, &len);
if (fdt_noffset < 0)
return -ENOENT;
images->fit_hdr_fdt = map_sysmem(fdt_addr, 0);
images->fit_uname_fdt = fit_uname_fdt;
images->fit_noffset_fdt = fdt_noffset;
fdt_addr = load;
break;
} else
#endif
{
/*
* FDT blob
*/
debug("* fdt: raw FDT blob\n");
printf("## Flattened Device Tree blob at %08lx\n",
(long)fdt_addr);
}
break;
default:
puts("ERROR: Did not find a cmdline Flattened Device Tree\n");
return -ENOENT;
}
*fdt_addrp = fdt_addr;
return 0;
}
int boot_get_fdt(void *buf, const char *select, uint arch,
struct bootm_headers *images, char **of_flat_tree,
ulong *of_size)
{
char *fdt_blob = NULL;
ulong fdt_addr;
*of_flat_tree = NULL;
*of_size = 0;
if (select || genimg_has_config(images)) {
int ret;
ret = select_fdt(images, select, arch, &fdt_addr);
if (ret == -ENOPKG)
goto no_fdt;
else if (ret)
return 1;
printf(" Booting using the fdt blob at %#08lx\n", fdt_addr);
fdt_blob = map_sysmem(fdt_addr, 0);
} else if (images->legacy_hdr_valid &&
image_check_type(&images->legacy_hdr_os_copy,
IH_TYPE_MULTI)) {
ulong fdt_data, fdt_len;
/*
* Now check if we have a legacy multi-component image,
* get second entry data start address and len.
*/
printf("## Flattened Device Tree from multi component Image at %08lX\n",
(ulong)images->legacy_hdr_os);
image_multi_getimg(images->legacy_hdr_os, 2, &fdt_data,
&fdt_len);
if (fdt_len) {
fdt_blob = (char *)fdt_data;
printf(" Booting using the fdt at 0x%p\n", fdt_blob);
if (fdt_check_header(fdt_blob) != 0) {
fdt_error("image is not a fdt");
goto error;
}
if (fdt_totalsize(fdt_blob) != fdt_len) {
fdt_error("fdt size != image size");
goto error;
}
} else {
debug("## No Flattened Device Tree\n");
goto no_fdt;
}
#ifdef CONFIG_ANDROID_BOOT_IMAGE
} else if (genimg_get_format(buf) == IMAGE_FORMAT_ANDROID) {
void *hdr = buf;
ulong fdt_data, fdt_len;
u32 fdt_size, dtb_idx;
/*
* Firstly check if this android boot image has dtb field.
*/
dtb_idx = (u32)env_get_ulong("adtb_idx", 10, 0);
if (android_image_get_dtb_by_index((ulong)hdr, 0,
dtb_idx, &fdt_addr, &fdt_size)) {
fdt_blob = (char *)map_sysmem(fdt_addr, 0);
if (fdt_check_header(fdt_blob))
goto no_fdt;
debug("## Using FDT in Android image dtb area with idx %u\n", dtb_idx);
} else if (!android_image_get_second(hdr, &fdt_data, &fdt_len) &&
!fdt_check_header((char *)fdt_data)) {
fdt_blob = (char *)fdt_data;
if (fdt_totalsize(fdt_blob) != fdt_len)
goto error;
debug("## Using FDT in Android image second area\n");
} else {
fdt_addr = env_get_hex("fdtaddr", 0);
if (!fdt_addr)
goto no_fdt;
fdt_blob = map_sysmem(fdt_addr, 0);
if (fdt_check_header(fdt_blob))
goto no_fdt;
debug("## Using FDT at ${fdtaddr}=Ox%lx\n", fdt_addr);
}
#endif
} else {
debug("## No Flattened Device Tree\n");
goto no_fdt;
}
*of_flat_tree = fdt_blob;
*of_size = fdt_totalsize(fdt_blob);
debug(" of_flat_tree at 0x%08lx size 0x%08lx\n",
(ulong)*of_flat_tree, *of_size);
return 0;
no_fdt:
debug("Continuing to boot without FDT\n");
return 0;
error:
return 1;
}
/*
* Verify the device tree.
*
* This function is called after all device tree fix-ups have been enacted,
* so that the final device tree can be verified. The definition of "verified"
* is up to the specific implementation. However, it generally means that the
* addresses of some of the devices in the device tree are compared with the
* actual addresses at which U-Boot has placed them.
*
* Returns 1 on success, 0 on failure. If 0 is returned, U-Boot will halt the
* boot process.
*/
__weak int ft_verify_fdt(void *fdt)
{
return 1;
}
__weak int arch_fixup_fdt(void *blob)
{
return 0;
}
int image_setup_libfdt(struct bootm_headers *images, void *blob,
int of_size, struct lmb *lmb)
{
ulong *initrd_start = &images->initrd_start;
ulong *initrd_end = &images->initrd_end;
int ret = -EPERM;
int fdt_ret;
if (fdt_root(blob) < 0) {
printf("ERROR: root node setup failed\n");
goto err;
}
if (fdt_chosen(blob) < 0) {
printf("ERROR: /chosen node create failed\n");
goto err;
}
if (arch_fixup_fdt(blob) < 0) {
printf("ERROR: arch-specific fdt fixup failed\n");
goto err;
}
fdt_ret = optee_copy_fdt_nodes(blob);
if (fdt_ret) {
printf("ERROR: transfer of optee nodes to new fdt failed: %s\n",
fdt_strerror(fdt_ret));
goto err;
}
/* Store name of configuration node as u-boot,bootconf in /chosen node */
if (images->fit_uname_cfg)
fdt_find_and_setprop(blob, "/chosen", "u-boot,bootconf",
images->fit_uname_cfg,
strlen(images->fit_uname_cfg) + 1, 1);
/* Update ethernet nodes */
fdt_fixup_ethernet(blob);
#if IS_ENABLED(CONFIG_CMD_PSTORE)
/* Append PStore configuration */
fdt_fixup_pstore(blob);
#endif
if (IS_ENABLED(CONFIG_OF_BOARD_SETUP)) {
const char *skip_board_fixup;
skip_board_fixup = env_get("skip_board_fixup");
if (skip_board_fixup && ((int)simple_strtol(skip_board_fixup, NULL, 10) == 1)) {
printf("skip board fdt fixup\n");
} else {
fdt_ret = ft_board_setup(blob, gd->bd);
if (fdt_ret) {
printf("ERROR: board-specific fdt fixup failed: %s\n",
fdt_strerror(fdt_ret));
goto err;
}
}
}
if (IS_ENABLED(CONFIG_OF_SYSTEM_SETUP)) {
fdt_ret = ft_system_setup(blob, gd->bd);
if (fdt_ret) {
printf("ERROR: system-specific fdt fixup failed: %s\n",
fdt_strerror(fdt_ret));
goto err;
}
}
if (!of_live_active() && CONFIG_IS_ENABLED(EVENT)) {
struct event_ft_fixup fixup;
fixup.tree = oftree_from_fdt(blob);
fixup.images = images;
if (oftree_valid(fixup.tree)) {
ret = event_notify(EVT_FT_FIXUP, &fixup, sizeof(fixup));
if (ret) {
printf("ERROR: fdt fixup event failed: %d\n",
ret);
goto err;
}
}
}
/* Delete the old LMB reservation */
if (lmb)
lmb_free(lmb, (phys_addr_t)(u32)(uintptr_t)blob,
(phys_size_t)fdt_totalsize(blob));
ret = fdt_shrink_to_minimum(blob, 0);
if (ret < 0)
goto err;
of_size = ret;
if (*initrd_start && *initrd_end) {
of_size += FDT_RAMDISK_OVERHEAD;
fdt_set_totalsize(blob, of_size);
}
/* Create a new LMB reservation */
if (lmb)
lmb_reserve(lmb, (ulong)blob, of_size);
fdt_initrd(blob, *initrd_start, *initrd_end);
if (!ft_verify_fdt(blob))
goto err;
#if defined(CONFIG_ARCH_KEYSTONE)
if (IS_ENABLED(CONFIG_OF_BOARD_SETUP))
ft_board_setup_ex(blob, gd->bd);
#endif
return 0;
err:
printf(" - must RESET the board to recover.\n\n");
return ret;
}