blob: a12c8cd2ac5c3fbc8138e03357a843274c98401d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* QE UEC ethernet controller driver
*
* based on drivers/qe/uec.c from NXP
*
* Copyright (C) 2020 Heiko Schocher <hs@denx.de>
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <memalign.h>
#include <miiphy.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include "dm_qe_uec.h"
#define QE_UEC_DRIVER_NAME "ucc_geth"
/* Default UTBIPAR SMI address */
#ifndef CONFIG_UTBIPAR_INIT_TBIPA
#define CONFIG_UTBIPAR_INIT_TBIPA 0x1F
#endif
static int uec_mac_enable(struct uec_priv *uec, comm_dir_e mode)
{
uec_t *uec_regs;
u32 maccfg1;
uec_regs = uec->uec_regs;
maccfg1 = in_be32(&uec_regs->maccfg1);
if (mode & COMM_DIR_TX) {
maccfg1 |= MACCFG1_ENABLE_TX;
out_be32(&uec_regs->maccfg1, maccfg1);
uec->mac_tx_enabled = 1;
}
if (mode & COMM_DIR_RX) {
maccfg1 |= MACCFG1_ENABLE_RX;
out_be32(&uec_regs->maccfg1, maccfg1);
uec->mac_rx_enabled = 1;
}
return 0;
}
static int uec_mac_disable(struct uec_priv *uec, comm_dir_e mode)
{
uec_t *uec_regs;
u32 maccfg1;
uec_regs = uec->uec_regs;
maccfg1 = in_be32(&uec_regs->maccfg1);
if (mode & COMM_DIR_TX) {
maccfg1 &= ~MACCFG1_ENABLE_TX;
out_be32(&uec_regs->maccfg1, maccfg1);
uec->mac_tx_enabled = 0;
}
if (mode & COMM_DIR_RX) {
maccfg1 &= ~MACCFG1_ENABLE_RX;
out_be32(&uec_regs->maccfg1, maccfg1);
uec->mac_rx_enabled = 0;
}
return 0;
}
static int uec_restart_tx(struct uec_priv *uec)
{
struct uec_inf *ui = uec->uec_info;
u32 cecr_subblock;
cecr_subblock = ucc_fast_get_qe_cr_subblock(ui->uf_info.ucc_num);
qe_issue_cmd(QE_RESTART_TX, cecr_subblock,
(u8)QE_CR_PROTOCOL_ETHERNET, 0);
uec->grace_stopped_tx = 0;
return 0;
}
static int uec_restart_rx(struct uec_priv *uec)
{
struct uec_inf *ui = uec->uec_info;
u32 cecr_subblock;
cecr_subblock = ucc_fast_get_qe_cr_subblock(ui->uf_info.ucc_num);
qe_issue_cmd(QE_RESTART_RX, cecr_subblock,
(u8)QE_CR_PROTOCOL_ETHERNET, 0);
uec->grace_stopped_rx = 0;
return 0;
}
static int uec_open(struct uec_priv *uec, comm_dir_e mode)
{
struct ucc_fast_priv *uccf;
uccf = uec->uccf;
/* check if the UCC number is in range. */
if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
printf("%s: ucc_num out of range.\n", __func__);
return -EINVAL;
}
/* Enable MAC */
uec_mac_enable(uec, mode);
/* Enable UCC fast */
ucc_fast_enable(uccf, mode);
/* RISC microcode start */
if ((mode & COMM_DIR_TX) && uec->grace_stopped_tx)
uec_restart_tx(uec);
if ((mode & COMM_DIR_RX) && uec->grace_stopped_rx)
uec_restart_rx(uec);
return 0;
}
static int uec_set_mac_if_mode(struct uec_priv *uec)
{
struct uec_inf *uec_info = uec->uec_info;
phy_interface_t enet_if_mode;
uec_t *uec_regs;
u32 upsmr;
u32 maccfg2;
uec_regs = uec->uec_regs;
enet_if_mode = uec_info->enet_interface_type;
maccfg2 = in_be32(&uec_regs->maccfg2);
maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK;
upsmr = in_be32(&uec->uccf->uf_regs->upsmr);
upsmr &= ~(UPSMR_RPM | UPSMR_TBIM | UPSMR_R10M | UPSMR_RMM);
switch (uec_info->speed) {
case SPEED_10:
maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
switch (enet_if_mode) {
case PHY_INTERFACE_MODE_MII:
break;
case PHY_INTERFACE_MODE_RGMII:
upsmr |= (UPSMR_RPM | UPSMR_R10M);
break;
case PHY_INTERFACE_MODE_RMII:
upsmr |= (UPSMR_R10M | UPSMR_RMM);
break;
default:
return -EINVAL;
}
break;
case SPEED_100:
maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
switch (enet_if_mode) {
case PHY_INTERFACE_MODE_MII:
break;
case PHY_INTERFACE_MODE_RGMII:
upsmr |= UPSMR_RPM;
break;
case PHY_INTERFACE_MODE_RMII:
upsmr |= UPSMR_RMM;
break;
default:
return -EINVAL;
}
break;
case SPEED_1000:
maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
switch (enet_if_mode) {
case PHY_INTERFACE_MODE_GMII:
break;
case PHY_INTERFACE_MODE_TBI:
upsmr |= UPSMR_TBIM;
break;
case PHY_INTERFACE_MODE_RTBI:
upsmr |= (UPSMR_RPM | UPSMR_TBIM);
break;
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII:
upsmr |= UPSMR_RPM;
break;
case PHY_INTERFACE_MODE_SGMII:
upsmr |= UPSMR_SGMM;
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
out_be32(&uec_regs->maccfg2, maccfg2);
out_be32(&uec->uccf->uf_regs->upsmr, upsmr);
return 0;
}
static int qe_uec_start(struct udevice *dev)
{
struct qe_uec_priv *priv = dev_get_priv(dev);
struct uec_priv *uec = priv->uec;
struct phy_device *phydev = priv->phydev;
struct uec_inf *uec_info = uec->uec_info;
int err;
if (!phydev)
return -ENODEV;
/* Setup MAC interface mode */
genphy_update_link(phydev);
genphy_parse_link(phydev);
uec_info->speed = phydev->speed;
uec_set_mac_if_mode(uec);
err = uec_open(uec, COMM_DIR_RX_AND_TX);
if (err) {
printf("%s: cannot enable UEC device\n", dev->name);
return -EINVAL;
}
return (phydev->link ? 0 : -EINVAL);
}
static int qe_uec_send(struct udevice *dev, void *packet, int length)
{
struct qe_uec_priv *priv = dev_get_priv(dev);
struct uec_priv *uec = priv->uec;
struct ucc_fast_priv *uccf = uec->uccf;
struct buffer_descriptor *bd;
u16 status;
int i;
int result = 0;
uccf = uec->uccf;
bd = uec->tx_bd;
/* Find an empty TxBD */
for (i = 0; BD_STATUS(bd) & TX_BD_READY; i++) {
if (i > 0x100000) {
printf("%s: tx buffer not ready\n", dev->name);
return result;
}
}
/* Init TxBD */
BD_DATA_SET(bd, packet);
BD_LENGTH_SET(bd, length);
status = BD_STATUS(bd);
status &= BD_WRAP;
status |= (TX_BD_READY | TX_BD_LAST);
BD_STATUS_SET(bd, status);
/* Tell UCC to transmit the buffer */
ucc_fast_transmit_on_demand(uccf);
/* Wait for buffer to be transmitted */
for (i = 0; BD_STATUS(bd) & TX_BD_READY; i++) {
if (i > 0x100000) {
printf("%s: tx error\n", dev->name);
return result;
}
}
/* Ok, the buffer be transimitted */
BD_ADVANCE(bd, status, uec->p_tx_bd_ring);
uec->tx_bd = bd;
result = 1;
return result;
}
/*
* Receive frame:
* - wait for the next BD to get ready bit set
* - clean up the descriptor
* - move on and indicate to HW that the cleaned BD is available for Rx
*/
static int qe_uec_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct qe_uec_priv *priv = dev_get_priv(dev);
struct uec_priv *uec = priv->uec;
struct buffer_descriptor *bd;
u16 status;
u16 len = 0;
u8 *data;
*packetp = memalign(ARCH_DMA_MINALIGN, MAX_RXBUF_LEN);
if (*packetp == 0) {
printf("%s: error allocating packetp\n", __func__);
return -ENOMEM;
}
bd = uec->rx_bd;
status = BD_STATUS(bd);
while (!(status & RX_BD_EMPTY)) {
if (!(status & RX_BD_ERROR)) {
data = BD_DATA(bd);
len = BD_LENGTH(bd);
memcpy(*packetp, (char *)data, len);
} else {
printf("%s: Rx error\n", dev->name);
}
status &= BD_CLEAN;
BD_LENGTH_SET(bd, 0);
BD_STATUS_SET(bd, status | RX_BD_EMPTY);
BD_ADVANCE(bd, status, uec->p_rx_bd_ring);
status = BD_STATUS(bd);
}
uec->rx_bd = bd;
return len;
}
static int uec_graceful_stop_tx(struct uec_priv *uec)
{
ucc_fast_t *uf_regs;
u32 cecr_subblock;
u32 ucce;
uf_regs = uec->uccf->uf_regs;
/* Clear the grace stop event */
out_be32(&uf_regs->ucce, UCCE_GRA);
/* Issue host command */
cecr_subblock =
ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
(u8)QE_CR_PROTOCOL_ETHERNET, 0);
/* Wait for command to complete */
do {
ucce = in_be32(&uf_regs->ucce);
} while (!(ucce & UCCE_GRA));
uec->grace_stopped_tx = 1;
return 0;
}
static int uec_graceful_stop_rx(struct uec_priv *uec)
{
u32 cecr_subblock;
u8 ack;
if (!uec->p_rx_glbl_pram) {
printf("%s: No init rx global parameter\n", __func__);
return -EINVAL;
}
/* Clear acknowledge bit */
ack = uec->p_rx_glbl_pram->rxgstpack;
ack &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX;
uec->p_rx_glbl_pram->rxgstpack = ack;
/* Keep issuing cmd and checking ack bit until it is asserted */
do {
/* Issue host command */
cecr_subblock =
ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock,
(u8)QE_CR_PROTOCOL_ETHERNET, 0);
ack = uec->p_rx_glbl_pram->rxgstpack;
} while (!(ack & GRACEFUL_STOP_ACKNOWLEDGE_RX));
uec->grace_stopped_rx = 1;
return 0;
}
static int uec_stop(struct uec_priv *uec, comm_dir_e mode)
{
/* check if the UCC number is in range. */
if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
printf("%s: ucc_num out of range.\n", __func__);
return -EINVAL;
}
/* Stop any transmissions */
if ((mode & COMM_DIR_TX) && !uec->grace_stopped_tx)
uec_graceful_stop_tx(uec);
/* Stop any receptions */
if ((mode & COMM_DIR_RX) && !uec->grace_stopped_rx)
uec_graceful_stop_rx(uec);
/* Disable the UCC fast */
ucc_fast_disable(uec->uccf, mode);
/* Disable the MAC */
uec_mac_disable(uec, mode);
return 0;
}
static void qe_uec_stop(struct udevice *dev)
{
struct qe_uec_priv *priv = dev_get_priv(dev);
struct uec_priv *uec = priv->uec;
uec_stop(uec, COMM_DIR_RX_AND_TX);
}
static int qe_uec_set_hwaddr(struct udevice *dev)
{
struct qe_uec_priv *priv = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_plat(dev);
struct uec_priv *uec = priv->uec;
uec_t *uec_regs = uec->uec_regs;
uchar *mac = pdata->enetaddr;
u32 mac_addr1;
u32 mac_addr2;
/*
* if a station address of 0x12345678ABCD, perform a write to
* MACSTNADDR1 of 0xCDAB7856,
* MACSTNADDR2 of 0x34120000
*/
mac_addr1 = (mac[5] << 24) | (mac[4] << 16) |
(mac[3] << 8) | (mac[2]);
out_be32(&uec_regs->macstnaddr1, mac_addr1);
mac_addr2 = ((mac[1] << 24) | (mac[0] << 16)) & 0xffff0000;
out_be32(&uec_regs->macstnaddr2, mac_addr2);
return 0;
}
static int qe_uec_free_pkt(struct udevice *dev, uchar *packet, int length)
{
if (packet)
free(packet);
return 0;
}
static const struct eth_ops qe_uec_eth_ops = {
.start = qe_uec_start,
.send = qe_uec_send,
.recv = qe_uec_recv,
.free_pkt = qe_uec_free_pkt,
.stop = qe_uec_stop,
.write_hwaddr = qe_uec_set_hwaddr,
};
static int uec_convert_threads_num(enum uec_num_of_threads threads_num,
int *threads_num_ret)
{
int num_threads_numerica;
switch (threads_num) {
case UEC_NUM_OF_THREADS_1:
num_threads_numerica = 1;
break;
case UEC_NUM_OF_THREADS_2:
num_threads_numerica = 2;
break;
case UEC_NUM_OF_THREADS_4:
num_threads_numerica = 4;
break;
case UEC_NUM_OF_THREADS_6:
num_threads_numerica = 6;
break;
case UEC_NUM_OF_THREADS_8:
num_threads_numerica = 8;
break;
default:
printf("%s: Bad number of threads value.",
__func__);
return -EINVAL;
}
*threads_num_ret = num_threads_numerica;
return 0;
}
static void uec_init_tx_parameter(struct uec_priv *uec, int num_threads_tx)
{
struct uec_inf *uec_info;
u32 end_bd;
u8 bmrx = 0;
int i;
uec_info = uec->uec_info;
/* Alloc global Tx parameter RAM page */
uec->tx_glbl_pram_offset =
qe_muram_alloc(sizeof(struct uec_tx_global_pram),
UEC_TX_GLOBAL_PRAM_ALIGNMENT);
uec->p_tx_glbl_pram = (struct uec_tx_global_pram *)
qe_muram_addr(uec->tx_glbl_pram_offset);
/* Zero the global Tx prameter RAM */
memset(uec->p_tx_glbl_pram, 0, sizeof(struct uec_tx_global_pram));
/* Init global Tx parameter RAM */
/* TEMODER, RMON statistics disable, one Tx queue */
out_be16(&uec->p_tx_glbl_pram->temoder, TEMODER_INIT_VALUE);
/* SQPTR */
uec->send_q_mem_reg_offset =
qe_muram_alloc(sizeof(struct uec_send_queue_qd),
UEC_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT);
uec->p_send_q_mem_reg = (struct uec_send_queue_mem_region *)
qe_muram_addr(uec->send_q_mem_reg_offset);
out_be32(&uec->p_tx_glbl_pram->sqptr, uec->send_q_mem_reg_offset);
/* Setup the table with TxBDs ring */
end_bd = (u32)uec->p_tx_bd_ring + (uec_info->tx_bd_ring_len - 1)
* SIZEOFBD;
out_be32(&uec->p_send_q_mem_reg->sqqd[0].bd_ring_base,
(u32)(uec->p_tx_bd_ring));
out_be32(&uec->p_send_q_mem_reg->sqqd[0].last_bd_completed_address,
end_bd);
/* Scheduler Base Pointer, we have only one Tx queue, no need it */
out_be32(&uec->p_tx_glbl_pram->schedulerbasepointer, 0);
/* TxRMON Base Pointer, TxRMON disable, we don't need it */
out_be32(&uec->p_tx_glbl_pram->txrmonbaseptr, 0);
/* TSTATE, global snooping, big endian, the CSB bus selected */
bmrx = BMR_INIT_VALUE;
out_be32(&uec->p_tx_glbl_pram->tstate, ((u32)(bmrx) << BMR_SHIFT));
/* IPH_Offset */
for (i = 0; i < MAX_IPH_OFFSET_ENTRY; i++)
out_8(&uec->p_tx_glbl_pram->iphoffset[i], 0);
/* VTAG table */
for (i = 0; i < UEC_TX_VTAG_TABLE_ENTRY_MAX; i++)
out_be32(&uec->p_tx_glbl_pram->vtagtable[i], 0);
/* TQPTR */
uec->thread_dat_tx_offset =
qe_muram_alloc(num_threads_tx *
sizeof(struct uec_thread_data_tx) +
32 * (num_threads_tx == 1),
UEC_THREAD_DATA_ALIGNMENT);
uec->p_thread_data_tx = (struct uec_thread_data_tx *)
qe_muram_addr(uec->thread_dat_tx_offset);
out_be32(&uec->p_tx_glbl_pram->tqptr, uec->thread_dat_tx_offset);
}
static void uec_init_rx_parameter(struct uec_priv *uec, int num_threads_rx)
{
u8 bmrx = 0;
int i;
struct uec_82xx_add_filtering_pram *p_af_pram;
/* Allocate global Rx parameter RAM page */
uec->rx_glbl_pram_offset =
qe_muram_alloc(sizeof(struct uec_rx_global_pram),
UEC_RX_GLOBAL_PRAM_ALIGNMENT);
uec->p_rx_glbl_pram = (struct uec_rx_global_pram *)
qe_muram_addr(uec->rx_glbl_pram_offset);
/* Zero Global Rx parameter RAM */
memset(uec->p_rx_glbl_pram, 0, sizeof(struct uec_rx_global_pram));
/* Init global Rx parameter RAM */
/*
* REMODER, Extended feature mode disable, VLAN disable,
* LossLess flow control disable, Receive firmware statisic disable,
* Extended address parsing mode disable, One Rx queues,
* Dynamic maximum/minimum frame length disable, IP checksum check
* disable, IP address alignment disable
*/
out_be32(&uec->p_rx_glbl_pram->remoder, REMODER_INIT_VALUE);
/* RQPTR */
uec->thread_dat_rx_offset =
qe_muram_alloc(num_threads_rx *
sizeof(struct uec_thread_data_rx),
UEC_THREAD_DATA_ALIGNMENT);
uec->p_thread_data_rx = (struct uec_thread_data_rx *)
qe_muram_addr(uec->thread_dat_rx_offset);
out_be32(&uec->p_rx_glbl_pram->rqptr, uec->thread_dat_rx_offset);
/* Type_or_Len */
out_be16(&uec->p_rx_glbl_pram->typeorlen, 3072);
/* RxRMON base pointer, we don't need it */
out_be32(&uec->p_rx_glbl_pram->rxrmonbaseptr, 0);
/* IntCoalescingPTR, we don't need it, no interrupt */
out_be32(&uec->p_rx_glbl_pram->intcoalescingptr, 0);
/* RSTATE, global snooping, big endian, the CSB bus selected */
bmrx = BMR_INIT_VALUE;
out_8(&uec->p_rx_glbl_pram->rstate, bmrx);
/* MRBLR */
out_be16(&uec->p_rx_glbl_pram->mrblr, MAX_RXBUF_LEN);
/* RBDQPTR */
uec->rx_bd_qs_tbl_offset =
qe_muram_alloc(sizeof(struct uec_rx_bd_queues_entry) +
sizeof(struct uec_rx_pref_bds),
UEC_RX_BD_QUEUES_ALIGNMENT);
uec->p_rx_bd_qs_tbl = (struct uec_rx_bd_queues_entry *)
qe_muram_addr(uec->rx_bd_qs_tbl_offset);
/* Zero it */
memset(uec->p_rx_bd_qs_tbl, 0, sizeof(struct uec_rx_bd_queues_entry) +
sizeof(struct uec_rx_pref_bds));
out_be32(&uec->p_rx_glbl_pram->rbdqptr, uec->rx_bd_qs_tbl_offset);
out_be32(&uec->p_rx_bd_qs_tbl->externalbdbaseptr,
(u32)uec->p_rx_bd_ring);
/* MFLR */
out_be16(&uec->p_rx_glbl_pram->mflr, MAX_FRAME_LEN);
/* MINFLR */
out_be16(&uec->p_rx_glbl_pram->minflr, MIN_FRAME_LEN);
/* MAXD1 */
out_be16(&uec->p_rx_glbl_pram->maxd1, MAX_DMA1_LEN);
/* MAXD2 */
out_be16(&uec->p_rx_glbl_pram->maxd2, MAX_DMA2_LEN);
/* ECAM_PTR */
out_be32(&uec->p_rx_glbl_pram->ecamptr, 0);
/* L2QT */
out_be32(&uec->p_rx_glbl_pram->l2qt, 0);
/* L3QT */
for (i = 0; i < 8; i++)
out_be32(&uec->p_rx_glbl_pram->l3qt[i], 0);
/* VLAN_TYPE */
out_be16(&uec->p_rx_glbl_pram->vlantype, 0x8100);
/* TCI */
out_be16(&uec->p_rx_glbl_pram->vlantci, 0);
/* Clear PQ2 style address filtering hash table */
p_af_pram = (struct uec_82xx_add_filtering_pram *)
uec->p_rx_glbl_pram->addressfiltering;
p_af_pram->iaddr_h = 0;
p_af_pram->iaddr_l = 0;
p_af_pram->gaddr_h = 0;
p_af_pram->gaddr_l = 0;
}
static int uec_issue_init_enet_rxtx_cmd(struct uec_priv *uec,
int thread_tx, int thread_rx)
{
struct uec_init_cmd_pram *p_init_enet_param;
u32 init_enet_param_offset;
struct uec_inf *uec_info;
struct ucc_fast_inf *uf_info;
int i;
int snum;
u32 off;
u32 entry_val;
u32 command;
u32 cecr_subblock;
uec_info = uec->uec_info;
uf_info = &uec_info->uf_info;
/* Allocate init enet command parameter */
uec->init_enet_param_offset =
qe_muram_alloc(sizeof(struct uec_init_cmd_pram), 4);
init_enet_param_offset = uec->init_enet_param_offset;
uec->p_init_enet_param = (struct uec_init_cmd_pram *)
qe_muram_addr(uec->init_enet_param_offset);
/* Zero init enet command struct */
memset((void *)uec->p_init_enet_param, 0,
sizeof(struct uec_init_cmd_pram));
/* Init the command struct */
p_init_enet_param = uec->p_init_enet_param;
p_init_enet_param->resinit0 = ENET_INIT_PARAM_MAGIC_RES_INIT0;
p_init_enet_param->resinit1 = ENET_INIT_PARAM_MAGIC_RES_INIT1;
p_init_enet_param->resinit2 = ENET_INIT_PARAM_MAGIC_RES_INIT2;
p_init_enet_param->resinit3 = ENET_INIT_PARAM_MAGIC_RES_INIT3;
p_init_enet_param->resinit4 = ENET_INIT_PARAM_MAGIC_RES_INIT4;
p_init_enet_param->largestexternallookupkeysize = 0;
p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_rx)
<< ENET_INIT_PARAM_RGF_SHIFT;
p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_tx)
<< ENET_INIT_PARAM_TGF_SHIFT;
/* Init Rx global parameter pointer */
p_init_enet_param->rgftgfrxglobal |= uec->rx_glbl_pram_offset |
(u32)uec_info->risc_rx;
/* Init Rx threads */
for (i = 0; i < (thread_rx + 1); i++) {
snum = qe_get_snum();
if (snum < 0) {
printf("%s can not get snum\n", __func__);
return -ENOMEM;
}
if (i == 0) {
off = 0;
} else {
off = qe_muram_alloc(sizeof(struct uec_thread_rx_pram),
UEC_THREAD_RX_PRAM_ALIGNMENT);
}
entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
off | (u32)uec_info->risc_rx;
p_init_enet_param->rxthread[i] = entry_val;
}
/* Init Tx global parameter pointer */
p_init_enet_param->txglobal = uec->tx_glbl_pram_offset |
(u32)uec_info->risc_tx;
/* Init Tx threads */
for (i = 0; i < thread_tx; i++) {
snum = qe_get_snum();
if (snum < 0) {
printf("%s can not get snum\n", __func__);
return -ENOMEM;
}
off = qe_muram_alloc(sizeof(struct uec_thread_tx_pram),
UEC_THREAD_TX_PRAM_ALIGNMENT);
entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
off | (u32)uec_info->risc_tx;
p_init_enet_param->txthread[i] = entry_val;
}
__asm__ __volatile__("sync");
/* Issue QE command */
command = QE_INIT_TX_RX;
cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
qe_issue_cmd(command, cecr_subblock, (u8)QE_CR_PROTOCOL_ETHERNET,
init_enet_param_offset);
return 0;
}
static int uec_startup(struct udevice *dev)
{
struct qe_uec_priv *priv = dev_get_priv(dev);
struct uec_priv *uec = priv->uec;
struct uec_inf *uec_info;
struct ucc_fast_inf *uf_info;
struct ucc_fast_priv *uccf;
ucc_fast_t *uf_regs;
uec_t *uec_regs;
int num_threads_tx;
int num_threads_rx;
u32 utbipar;
u32 length;
u32 align;
struct buffer_descriptor *bd;
u8 *buf;
int i;
uec_info = uec->uec_info;
uf_info = &uec_info->uf_info;
/* Check if Rx BD ring len is illegal */
if (uec_info->rx_bd_ring_len < UEC_RX_BD_RING_SIZE_MIN ||
uec_info->rx_bd_ring_len % UEC_RX_BD_RING_SIZE_ALIGNMENT) {
printf("%s: Rx BD ring len must be multiple of 4, and > 8.\n",
__func__);
return -EINVAL;
}
/* Check if Tx BD ring len is illegal */
if (uec_info->tx_bd_ring_len < UEC_TX_BD_RING_SIZE_MIN) {
printf("%s: Tx BD ring length must not be smaller than 2.\n",
__func__);
return -EINVAL;
}
/* Check if MRBLR is illegal */
if (MAX_RXBUF_LEN == 0 || (MAX_RXBUF_LEN % UEC_MRBLR_ALIGNMENT)) {
printf("%s: max rx buffer length must be mutliple of 128.\n",
__func__);
return -EINVAL;
}
/* Both Rx and Tx are stopped */
uec->grace_stopped_rx = 1;
uec->grace_stopped_tx = 1;
/* Init UCC fast */
if (ucc_fast_init(uf_info, &uccf)) {
printf("%s: failed to init ucc fast\n", __func__);
return -ENOMEM;
}
/* Save uccf */
uec->uccf = uccf;
/* Convert the Tx threads number */
if (uec_convert_threads_num(uec_info->num_threads_tx,
&num_threads_tx))
return -EINVAL;
/* Convert the Rx threads number */
if (uec_convert_threads_num(uec_info->num_threads_rx,
&num_threads_rx))
return -EINVAL;
uf_regs = uccf->uf_regs;
/* UEC register is following UCC fast registers */
uec_regs = (uec_t *)(&uf_regs->ucc_eth);
/* Save the UEC register pointer to UEC private struct */
uec->uec_regs = uec_regs;
/* Init UPSMR, enable hardware statistics (UCC) */
out_be32(&uec->uccf->uf_regs->upsmr, UPSMR_INIT_VALUE);
/* Init MACCFG1, flow control disable, disable Tx and Rx */
out_be32(&uec_regs->maccfg1, MACCFG1_INIT_VALUE);
/* Init MACCFG2, length check, MAC PAD and CRC enable */
out_be32(&uec_regs->maccfg2, MACCFG2_INIT_VALUE);
/* Setup UTBIPAR */
utbipar = in_be32(&uec_regs->utbipar);
utbipar &= ~UTBIPAR_PHY_ADDRESS_MASK;
/* Initialize UTBIPAR address to CONFIG_UTBIPAR_INIT_TBIPA for ALL UEC.
* This frees up the remaining SMI addresses for use.
*/
utbipar |= CONFIG_UTBIPAR_INIT_TBIPA << UTBIPAR_PHY_ADDRESS_SHIFT;
out_be32(&uec_regs->utbipar, utbipar);
/* Allocate Tx BDs */
length = ((uec_info->tx_bd_ring_len * SIZEOFBD) /
UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) *
UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
if ((uec_info->tx_bd_ring_len * SIZEOFBD) %
UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT)
length += UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
align = UEC_TX_BD_RING_ALIGNMENT;
uec->tx_bd_ring_offset = (u32)malloc((u32)(length + align));
if (uec->tx_bd_ring_offset != 0)
uec->p_tx_bd_ring = (u8 *)((uec->tx_bd_ring_offset + align)
& ~(align - 1));
/* Zero all of Tx BDs */
memset((void *)(uec->tx_bd_ring_offset), 0, length + align);
/* Allocate Rx BDs */
length = uec_info->rx_bd_ring_len * SIZEOFBD;
align = UEC_RX_BD_RING_ALIGNMENT;
uec->rx_bd_ring_offset = (u32)(malloc((u32)(length + align)));
if (uec->rx_bd_ring_offset != 0)
uec->p_rx_bd_ring = (u8 *)((uec->rx_bd_ring_offset + align)
& ~(align - 1));
/* Zero all of Rx BDs */
memset((void *)(uec->rx_bd_ring_offset), 0, length + align);
/* Allocate Rx buffer */
length = uec_info->rx_bd_ring_len * MAX_RXBUF_LEN;
align = UEC_RX_DATA_BUF_ALIGNMENT;
uec->rx_buf_offset = (u32)malloc(length + align);
if (uec->rx_buf_offset != 0)
uec->p_rx_buf = (u8 *)((uec->rx_buf_offset + align)
& ~(align - 1));
/* Zero all of the Rx buffer */
memset((void *)(uec->rx_buf_offset), 0, length + align);
/* Init TxBD ring */
bd = (struct buffer_descriptor *)uec->p_tx_bd_ring;
uec->tx_bd = bd;
for (i = 0; i < uec_info->tx_bd_ring_len; i++) {
BD_DATA_CLEAR(bd);
BD_STATUS_SET(bd, 0);
BD_LENGTH_SET(bd, 0);
bd++;
}
BD_STATUS_SET((--bd), TX_BD_WRAP);
/* Init RxBD ring */
bd = (struct buffer_descriptor *)uec->p_rx_bd_ring;
uec->rx_bd = bd;
buf = uec->p_rx_buf;
for (i = 0; i < uec_info->rx_bd_ring_len; i++) {
BD_DATA_SET(bd, buf);
BD_LENGTH_SET(bd, 0);
BD_STATUS_SET(bd, RX_BD_EMPTY);
buf += MAX_RXBUF_LEN;
bd++;
}
BD_STATUS_SET((--bd), RX_BD_WRAP | RX_BD_EMPTY);
/* Init global Tx parameter RAM */
uec_init_tx_parameter(uec, num_threads_tx);
/* Init global Rx parameter RAM */
uec_init_rx_parameter(uec, num_threads_rx);
/* Init ethernet Tx and Rx parameter command */
if (uec_issue_init_enet_rxtx_cmd(uec, num_threads_tx,
num_threads_rx)) {
printf("%s issue init enet cmd failed\n", __func__);
return -ENOMEM;
}
return 0;
}
/* Convert a string to a QE clock source enum
*
* This function takes a string, typically from a property in the device
* tree, and returns the corresponding "enum qe_clock" value.
*/
enum qe_clock qe_clock_source(const char *source)
{
unsigned int i;
if (strcasecmp(source, "none") == 0)
return QE_CLK_NONE;
if (strncasecmp(source, "brg", 3) == 0) {
i = dectoul(source + 3, NULL);
if (i >= 1 && i <= 16)
return (QE_BRG1 - 1) + i;
else
return QE_CLK_DUMMY;
}
if (strncasecmp(source, "clk", 3) == 0) {
i = dectoul(source + 3, NULL);
if (i >= 1 && i <= 24)
return (QE_CLK1 - 1) + i;
else
return QE_CLK_DUMMY;
}
return QE_CLK_DUMMY;
}
static void qe_uec_set_eth_type(struct udevice *dev)
{
struct qe_uec_priv *priv = dev_get_priv(dev);
struct uec_priv *uec = priv->uec;
struct uec_inf *uec_info = uec->uec_info;
struct ucc_fast_inf *uf_info = &uec_info->uf_info;
switch (uec_info->enet_interface_type) {
case PHY_INTERFACE_MODE_GMII:
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
case PHY_INTERFACE_MODE_TBI:
case PHY_INTERFACE_MODE_RTBI:
case PHY_INTERFACE_MODE_SGMII:
uf_info->eth_type = GIGA_ETH;
break;
default:
uf_info->eth_type = FAST_ETH;
break;
}
}
static int qe_uec_set_uec_info(struct udevice *dev)
{
struct qe_uec_priv *priv = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_plat(dev);
struct uec_priv *uec = priv->uec;
struct uec_inf *uec_info;
struct ucc_fast_inf *uf_info;
const char *s;
int ret;
u32 val;
uec_info = (struct uec_inf *)malloc(sizeof(struct uec_inf));
if (!uec_info)
return -ENOMEM;
uf_info = &uec_info->uf_info;
ret = dev_read_u32(dev, "cell-index", &val);
if (ret) {
ret = dev_read_u32(dev, "device-id", &val);
if (ret) {
pr_err("no cell-index nor device-id found!");
goto out;
}
}
uf_info->ucc_num = val - 1;
if (uf_info->ucc_num < 0 || uf_info->ucc_num > 7) {
ret = -ENODEV;
goto out;
}
ret = dev_read_string_index(dev, "rx-clock-name", 0, &s);
if (!ret) {
uf_info->rx_clock = qe_clock_source(s);
if (uf_info->rx_clock < QE_CLK_NONE ||
uf_info->rx_clock > QE_CLK24) {
pr_err("invalid rx-clock-name property\n");
ret = -EINVAL;
goto out;
}
} else {
ret = dev_read_u32(dev, "rx-clock", &val);
if (ret) {
/*
* If both rx-clock-name and rx-clock are missing,
* we want to tell people to use rx-clock-name.
*/
pr_err("missing rx-clock-name property\n");
goto out;
}
if (val < QE_CLK_NONE || val > QE_CLK24) {
pr_err("invalid rx-clock property\n");
ret = -EINVAL;
goto out;
}
uf_info->rx_clock = val;
}
ret = dev_read_string_index(dev, "tx-clock-name", 0, &s);
if (!ret) {
uf_info->tx_clock = qe_clock_source(s);
if (uf_info->tx_clock < QE_CLK_NONE ||
uf_info->tx_clock > QE_CLK24) {
pr_err("invalid tx-clock-name property\n");
ret = -EINVAL;
goto out;
}
} else {
ret = dev_read_u32(dev, "tx-clock", &val);
if (ret) {
pr_err("missing tx-clock-name property\n");
goto out;
}
if (val < QE_CLK_NONE || val > QE_CLK24) {
pr_err("invalid tx-clock property\n");
ret = -EINVAL;
goto out;
}
uf_info->tx_clock = val;
}
uec_info->num_threads_tx = UEC_NUM_OF_THREADS_1;
uec_info->num_threads_rx = UEC_NUM_OF_THREADS_1;
uec_info->risc_tx = QE_RISC_ALLOCATION_RISC1_AND_RISC2;
uec_info->risc_rx = QE_RISC_ALLOCATION_RISC1_AND_RISC2;
uec_info->tx_bd_ring_len = 16;
uec_info->rx_bd_ring_len = 16;
#if (MAX_QE_RISC == 4)
uec_info->risc_tx = QE_RISC_ALLOCATION_FOUR_RISCS;
uec_info->risc_rx = QE_RISC_ALLOCATION_FOUR_RISCS;
#endif
uec_info->enet_interface_type = pdata->phy_interface;
uec->uec_info = uec_info;
qe_uec_set_eth_type(dev);
return 0;
out:
free(uec_info);
return ret;
}
static int qe_uec_probe(struct udevice *dev)
{
struct qe_uec_priv *priv = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_plat(dev);
struct uec_priv *uec;
int ret;
/* Allocate the UEC private struct */
uec = (struct uec_priv *)malloc(sizeof(struct uec_priv));
if (!uec)
return -ENOMEM;
memset(uec, 0, sizeof(struct uec_priv));
priv->uec = uec;
uec->uec_regs = (uec_t *)pdata->iobase;
/* setup uec info struct */
ret = qe_uec_set_uec_info(dev);
if (ret) {
free(uec);
return ret;
}
ret = uec_startup(dev);
if (ret) {
free(uec->uec_info);
free(uec);
return ret;
}
priv->phydev = dm_eth_phy_connect(dev);
return 0;
}
/*
* Remove the driver from an interface:
* - free up allocated memory
*/
static int qe_uec_remove(struct udevice *dev)
{
struct qe_uec_priv *priv = dev_get_priv(dev);
free(priv->uec);
return 0;
}
static int qe_uec_of_to_plat(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_plat(dev);
const char *phy_mode;
pdata->iobase = (phys_addr_t)devfdt_get_addr(dev);
pdata->phy_interface = -1;
phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev),
"phy-connection-type", NULL);
if (phy_mode)
pdata->phy_interface = phy_get_interface_by_name(phy_mode);
if (pdata->phy_interface == -1) {
debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
return -EINVAL;
}
return 0;
}
static const struct udevice_id qe_uec_ids[] = {
{ .compatible = QE_UEC_DRIVER_NAME },
{ }
};
U_BOOT_DRIVER(eth_qe_uec) = {
.name = QE_UEC_DRIVER_NAME,
.id = UCLASS_ETH,
.of_match = qe_uec_ids,
.of_to_plat = qe_uec_of_to_plat,
.probe = qe_uec_probe,
.remove = qe_uec_remove,
.ops = &qe_uec_eth_ops,
.priv_auto = sizeof(struct qe_uec_priv),
.plat_auto = sizeof(struct eth_pdata),
};