| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * (C) Copyright 2010 |
| * Vipin Kumar, STMicroelectronics, vipin.kumar@st.com. |
| * |
| * (C) Copyright 2012 |
| * Amit Virdi, STMicroelectronics, amit.virdi@st.com. |
| */ |
| |
| #include <common.h> |
| #include <nand.h> |
| #include <asm/io.h> |
| #include <linux/bitops.h> |
| #include <linux/err.h> |
| #include <linux/mtd/nand_ecc.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/mtd/fsmc_nand.h> |
| #include <asm/arch/hardware.h> |
| |
| static u32 fsmc_version; |
| static struct fsmc_regs *const fsmc_regs_p = (struct fsmc_regs *) |
| CONFIG_SYS_FSMC_BASE; |
| |
| /* |
| * ECC4 and ECC1 have 13 bytes and 3 bytes of ecc respectively for 512 bytes of |
| * data. ECC4 can correct up to 8 bits in 512 bytes of data while ECC1 can |
| * correct 1 bit in 512 bytes |
| */ |
| |
| static struct nand_ecclayout fsmc_ecc4_lp_layout = { |
| .eccbytes = 104, |
| .eccpos = { 2, 3, 4, 5, 6, 7, 8, |
| 9, 10, 11, 12, 13, 14, |
| 18, 19, 20, 21, 22, 23, 24, |
| 25, 26, 27, 28, 29, 30, |
| 34, 35, 36, 37, 38, 39, 40, |
| 41, 42, 43, 44, 45, 46, |
| 50, 51, 52, 53, 54, 55, 56, |
| 57, 58, 59, 60, 61, 62, |
| 66, 67, 68, 69, 70, 71, 72, |
| 73, 74, 75, 76, 77, 78, |
| 82, 83, 84, 85, 86, 87, 88, |
| 89, 90, 91, 92, 93, 94, |
| 98, 99, 100, 101, 102, 103, 104, |
| 105, 106, 107, 108, 109, 110, |
| 114, 115, 116, 117, 118, 119, 120, |
| 121, 122, 123, 124, 125, 126 |
| }, |
| .oobfree = { |
| {.offset = 15, .length = 3}, |
| {.offset = 31, .length = 3}, |
| {.offset = 47, .length = 3}, |
| {.offset = 63, .length = 3}, |
| {.offset = 79, .length = 3}, |
| {.offset = 95, .length = 3}, |
| {.offset = 111, .length = 3}, |
| {.offset = 127, .length = 1} |
| } |
| }; |
| |
| /* |
| * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes |
| * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118 |
| * bytes are free for use. |
| */ |
| static struct nand_ecclayout fsmc_ecc4_224_layout = { |
| .eccbytes = 104, |
| .eccpos = { 2, 3, 4, 5, 6, 7, 8, |
| 9, 10, 11, 12, 13, 14, |
| 18, 19, 20, 21, 22, 23, 24, |
| 25, 26, 27, 28, 29, 30, |
| 34, 35, 36, 37, 38, 39, 40, |
| 41, 42, 43, 44, 45, 46, |
| 50, 51, 52, 53, 54, 55, 56, |
| 57, 58, 59, 60, 61, 62, |
| 66, 67, 68, 69, 70, 71, 72, |
| 73, 74, 75, 76, 77, 78, |
| 82, 83, 84, 85, 86, 87, 88, |
| 89, 90, 91, 92, 93, 94, |
| 98, 99, 100, 101, 102, 103, 104, |
| 105, 106, 107, 108, 109, 110, |
| 114, 115, 116, 117, 118, 119, 120, |
| 121, 122, 123, 124, 125, 126 |
| }, |
| .oobfree = { |
| {.offset = 15, .length = 3}, |
| {.offset = 31, .length = 3}, |
| {.offset = 47, .length = 3}, |
| {.offset = 63, .length = 3}, |
| {.offset = 79, .length = 3}, |
| {.offset = 95, .length = 3}, |
| {.offset = 111, .length = 3}, |
| {.offset = 127, .length = 97} |
| } |
| }; |
| |
| /* |
| * ECC placement definitions in oobfree type format |
| * There are 13 bytes of ecc for every 512 byte block and it has to be read |
| * consecutively and immediately after the 512 byte data block for hardware to |
| * generate the error bit offsets in 512 byte data |
| * Managing the ecc bytes in the following way makes it easier for software to |
| * read ecc bytes consecutive to data bytes. This way is similar to |
| * oobfree structure maintained already in u-boot nand driver |
| */ |
| static struct fsmc_eccplace fsmc_eccpl_lp = { |
| .eccplace = { |
| {.offset = 2, .length = 13}, |
| {.offset = 18, .length = 13}, |
| {.offset = 34, .length = 13}, |
| {.offset = 50, .length = 13}, |
| {.offset = 66, .length = 13}, |
| {.offset = 82, .length = 13}, |
| {.offset = 98, .length = 13}, |
| {.offset = 114, .length = 13} |
| } |
| }; |
| |
| static struct nand_ecclayout fsmc_ecc4_sp_layout = { |
| .eccbytes = 13, |
| .eccpos = { 0, 1, 2, 3, 6, 7, 8, |
| 9, 10, 11, 12, 13, 14 |
| }, |
| .oobfree = { |
| {.offset = 15, .length = 1}, |
| } |
| }; |
| |
| static struct fsmc_eccplace fsmc_eccpl_sp = { |
| .eccplace = { |
| {.offset = 0, .length = 4}, |
| {.offset = 6, .length = 9} |
| } |
| }; |
| |
| static struct nand_ecclayout fsmc_ecc1_layout = { |
| .eccbytes = 24, |
| .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52, |
| 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116}, |
| .oobfree = { |
| {.offset = 8, .length = 8}, |
| {.offset = 24, .length = 8}, |
| {.offset = 40, .length = 8}, |
| {.offset = 56, .length = 8}, |
| {.offset = 72, .length = 8}, |
| {.offset = 88, .length = 8}, |
| {.offset = 104, .length = 8}, |
| {.offset = 120, .length = 8} |
| } |
| }; |
| |
| /* Count the number of 0's in buff upto a max of max_bits */ |
| static int count_written_bits(uint8_t *buff, int size, int max_bits) |
| { |
| int k, written_bits = 0; |
| |
| for (k = 0; k < size; k++) { |
| written_bits += hweight8(~buff[k]); |
| if (written_bits > max_bits) |
| break; |
| } |
| |
| return written_bits; |
| } |
| |
| static void fsmc_nand_hwcontrol(struct mtd_info *mtd, int cmd, uint ctrl) |
| { |
| struct nand_chip *this = mtd_to_nand(mtd); |
| ulong IO_ADDR_W; |
| |
| if (ctrl & NAND_CTRL_CHANGE) { |
| IO_ADDR_W = (ulong)this->IO_ADDR_W; |
| |
| IO_ADDR_W &= ~(CONFIG_SYS_NAND_CLE | CONFIG_SYS_NAND_ALE); |
| if (ctrl & NAND_CLE) |
| IO_ADDR_W |= CONFIG_SYS_NAND_CLE; |
| if (ctrl & NAND_ALE) |
| IO_ADDR_W |= CONFIG_SYS_NAND_ALE; |
| |
| if (ctrl & NAND_NCE) { |
| writel(readl(&fsmc_regs_p->pc) | |
| FSMC_ENABLE, &fsmc_regs_p->pc); |
| } else { |
| writel(readl(&fsmc_regs_p->pc) & |
| ~FSMC_ENABLE, &fsmc_regs_p->pc); |
| } |
| this->IO_ADDR_W = (void *)IO_ADDR_W; |
| } |
| |
| if (cmd != NAND_CMD_NONE) |
| writeb(cmd, this->IO_ADDR_W); |
| } |
| |
| static int fsmc_bch8_correct_data(struct mtd_info *mtd, u_char *dat, |
| u_char *read_ecc, u_char *calc_ecc) |
| { |
| /* The calculated ecc is actually the correction index in data */ |
| u32 err_idx[8]; |
| u32 num_err, i; |
| u32 ecc1, ecc2, ecc3, ecc4; |
| |
| num_err = (readl(&fsmc_regs_p->sts) >> 10) & 0xF; |
| |
| if (likely(num_err == 0)) |
| return 0; |
| |
| if (unlikely(num_err > 8)) { |
| /* |
| * This is a temporary erase check. A newly erased page read |
| * would result in an ecc error because the oob data is also |
| * erased to FF and the calculated ecc for an FF data is not |
| * FF..FF. |
| * This is a workaround to skip performing correction in case |
| * data is FF..FF |
| * |
| * Logic: |
| * For every page, each bit written as 0 is counted until these |
| * number of bits are greater than 8 (the maximum correction |
| * capability of FSMC for each 512 + 13 bytes) |
| */ |
| |
| int bits_ecc = count_written_bits(read_ecc, 13, 8); |
| int bits_data = count_written_bits(dat, 512, 8); |
| |
| if ((bits_ecc + bits_data) <= 8) { |
| if (bits_data) |
| memset(dat, 0xff, 512); |
| return bits_data + bits_ecc; |
| } |
| |
| return -EBADMSG; |
| } |
| |
| ecc1 = readl(&fsmc_regs_p->ecc1); |
| ecc2 = readl(&fsmc_regs_p->ecc2); |
| ecc3 = readl(&fsmc_regs_p->ecc3); |
| ecc4 = readl(&fsmc_regs_p->sts); |
| |
| err_idx[0] = (ecc1 >> 0) & 0x1FFF; |
| err_idx[1] = (ecc1 >> 13) & 0x1FFF; |
| err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F); |
| err_idx[3] = (ecc2 >> 7) & 0x1FFF; |
| err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF); |
| err_idx[5] = (ecc3 >> 1) & 0x1FFF; |
| err_idx[6] = (ecc3 >> 14) & 0x1FFF; |
| err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F); |
| |
| i = 0; |
| while (i < num_err) { |
| err_idx[i] ^= 3; |
| |
| if (err_idx[i] < 512 * 8) |
| __change_bit(err_idx[i], dat); |
| |
| i++; |
| } |
| |
| return num_err; |
| } |
| |
| static int fsmc_read_hwecc(struct mtd_info *mtd, |
| const u_char *data, u_char *ecc) |
| { |
| u_int ecc_tmp; |
| int timeout = CONFIG_SYS_HZ; |
| ulong start; |
| |
| switch (fsmc_version) { |
| case FSMC_VER8: |
| start = get_timer(0); |
| while (get_timer(start) < timeout) { |
| /* |
| * Busy waiting for ecc computation |
| * to finish for 512 bytes |
| */ |
| if (readl(&fsmc_regs_p->sts) & FSMC_CODE_RDY) |
| break; |
| } |
| |
| ecc_tmp = readl(&fsmc_regs_p->ecc1); |
| ecc[0] = (u_char) (ecc_tmp >> 0); |
| ecc[1] = (u_char) (ecc_tmp >> 8); |
| ecc[2] = (u_char) (ecc_tmp >> 16); |
| ecc[3] = (u_char) (ecc_tmp >> 24); |
| |
| ecc_tmp = readl(&fsmc_regs_p->ecc2); |
| ecc[4] = (u_char) (ecc_tmp >> 0); |
| ecc[5] = (u_char) (ecc_tmp >> 8); |
| ecc[6] = (u_char) (ecc_tmp >> 16); |
| ecc[7] = (u_char) (ecc_tmp >> 24); |
| |
| ecc_tmp = readl(&fsmc_regs_p->ecc3); |
| ecc[8] = (u_char) (ecc_tmp >> 0); |
| ecc[9] = (u_char) (ecc_tmp >> 8); |
| ecc[10] = (u_char) (ecc_tmp >> 16); |
| ecc[11] = (u_char) (ecc_tmp >> 24); |
| |
| ecc_tmp = readl(&fsmc_regs_p->sts); |
| ecc[12] = (u_char) (ecc_tmp >> 16); |
| break; |
| |
| default: |
| ecc_tmp = readl(&fsmc_regs_p->ecc1); |
| ecc[0] = (u_char) (ecc_tmp >> 0); |
| ecc[1] = (u_char) (ecc_tmp >> 8); |
| ecc[2] = (u_char) (ecc_tmp >> 16); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| void fsmc_enable_hwecc(struct mtd_info *mtd, int mode) |
| { |
| writel(readl(&fsmc_regs_p->pc) & ~FSMC_ECCPLEN_256, |
| &fsmc_regs_p->pc); |
| writel(readl(&fsmc_regs_p->pc) & ~FSMC_ECCEN, |
| &fsmc_regs_p->pc); |
| writel(readl(&fsmc_regs_p->pc) | FSMC_ECCEN, |
| &fsmc_regs_p->pc); |
| } |
| |
| /* |
| * fsmc_read_page_hwecc |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * @oob_required: caller expects OOB data read to chip->oob_poi |
| * @page: page number to read |
| * |
| * This routine is needed for fsmc verison 8 as reading from NAND chip has to be |
| * performed in a strict sequence as follows: |
| * data(512 byte) -> ecc(13 byte) |
| * After this read, fsmc hardware generates and reports error data bits(upto a |
| * max of 8 bits) |
| */ |
| static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int oob_required, int page) |
| { |
| struct fsmc_eccplace *fsmc_eccpl; |
| int i, j, s, stat, eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| int eccsteps = chip->ecc.steps; |
| uint8_t *p = buf; |
| uint8_t *ecc_calc = chip->buffers->ecccalc; |
| uint8_t *ecc_code = chip->buffers->ecccode; |
| int off, len, group = 0; |
| uint8_t oob[13] __attribute__ ((aligned (2))); |
| |
| /* Differentiate between small and large page ecc place definitions */ |
| if (mtd->writesize == 512) |
| fsmc_eccpl = &fsmc_eccpl_sp; |
| else |
| fsmc_eccpl = &fsmc_eccpl_lp; |
| |
| for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { |
| |
| chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page); |
| chip->ecc.hwctl(mtd, NAND_ECC_READ); |
| chip->read_buf(mtd, p, eccsize); |
| |
| for (j = 0; j < eccbytes;) { |
| off = fsmc_eccpl->eccplace[group].offset; |
| len = fsmc_eccpl->eccplace[group].length; |
| group++; |
| |
| /* |
| * length is intentionally kept a higher multiple of 2 |
| * to read at least 13 bytes even in case of 16 bit NAND |
| * devices |
| */ |
| if (chip->options & NAND_BUSWIDTH_16) |
| len = roundup(len, 2); |
| chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page); |
| chip->read_buf(mtd, oob + j, len); |
| j += len; |
| } |
| |
| memcpy(&ecc_code[i], oob, 13); |
| chip->ecc.calculate(mtd, p, &ecc_calc[i]); |
| |
| stat = chip->ecc.correct(mtd, p, &ecc_code[i], |
| &ecc_calc[i]); |
| if (stat < 0) |
| mtd->ecc_stats.failed++; |
| else |
| mtd->ecc_stats.corrected += stat; |
| } |
| |
| return 0; |
| } |
| |
| int fsmc_nand_init(struct nand_chip *nand) |
| { |
| static int chip_nr; |
| struct mtd_info *mtd; |
| u32 peripid2 = readl(&fsmc_regs_p->peripid2); |
| |
| fsmc_version = (peripid2 >> FSMC_REVISION_SHFT) & |
| FSMC_REVISION_MSK; |
| |
| writel(readl(&fsmc_regs_p->ctrl) | FSMC_WP, &fsmc_regs_p->ctrl); |
| |
| #if defined(CONFIG_SYS_FSMC_NAND_16BIT) |
| writel(FSMC_DEVWID_16 | FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON, |
| &fsmc_regs_p->pc); |
| #elif defined(CONFIG_SYS_FSMC_NAND_8BIT) |
| writel(FSMC_DEVWID_8 | FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON, |
| &fsmc_regs_p->pc); |
| #else |
| #error Please define CONFIG_SYS_FSMC_NAND_16BIT or CONFIG_SYS_FSMC_NAND_8BIT |
| #endif |
| writel(readl(&fsmc_regs_p->pc) | FSMC_TCLR_1 | FSMC_TAR_1, |
| &fsmc_regs_p->pc); |
| writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0, |
| &fsmc_regs_p->comm); |
| writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0, |
| &fsmc_regs_p->attrib); |
| |
| nand->options = 0; |
| #if defined(CONFIG_SYS_FSMC_NAND_16BIT) |
| nand->options |= NAND_BUSWIDTH_16; |
| #endif |
| nand->ecc.mode = NAND_ECC_HW; |
| nand->ecc.size = 512; |
| nand->ecc.calculate = fsmc_read_hwecc; |
| nand->ecc.hwctl = fsmc_enable_hwecc; |
| nand->cmd_ctrl = fsmc_nand_hwcontrol; |
| nand->IO_ADDR_R = nand->IO_ADDR_W = |
| (void __iomem *)CFG_SYS_NAND_BASE; |
| nand->badblockbits = 7; |
| |
| mtd = nand_to_mtd(nand); |
| |
| switch (fsmc_version) { |
| case FSMC_VER8: |
| nand->ecc.bytes = 13; |
| nand->ecc.strength = 8; |
| nand->ecc.correct = fsmc_bch8_correct_data; |
| nand->ecc.read_page = fsmc_read_page_hwecc; |
| if (mtd->writesize == 512) |
| nand->ecc.layout = &fsmc_ecc4_sp_layout; |
| else { |
| if (mtd->oobsize == 224) |
| nand->ecc.layout = &fsmc_ecc4_224_layout; |
| else |
| nand->ecc.layout = &fsmc_ecc4_lp_layout; |
| } |
| |
| break; |
| default: |
| nand->ecc.bytes = 3; |
| nand->ecc.strength = 1; |
| nand->ecc.layout = &fsmc_ecc1_layout; |
| nand->ecc.correct = nand_correct_data; |
| break; |
| } |
| |
| /* Detect NAND chips */ |
| if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL)) |
| return -ENXIO; |
| |
| if (nand_scan_tail(mtd)) |
| return -ENXIO; |
| |
| if (nand_register(chip_nr++, mtd)) |
| return -ENXIO; |
| |
| return 0; |
| } |