blob: ec5469850b703ccdad3979057a6a2f60cda002aa [file] [log] [blame]
/*
* Copyright (C) 2016 Socionext Inc.
* Author: Masahiro Yamada <yamada.masahiro@socionext.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <clk.h>
#include <fdtdec.h>
#include <mmc.h>
#include <dm.h>
#include <linux/compat.h>
#include <linux/dma-direction.h>
#include <linux/io.h>
#include <linux/sizes.h>
#include <power/regulator.h>
#include <asm/unaligned.h>
#include "matsushita-common.h"
DECLARE_GLOBAL_DATA_PTR;
static u64 matsu_sd_readq(struct matsu_sd_priv *priv, unsigned int reg)
{
return readq(priv->regbase + (reg << 1));
}
static void matsu_sd_writeq(struct matsu_sd_priv *priv,
u64 val, unsigned int reg)
{
writeq(val, priv->regbase + (reg << 1));
}
static u32 matsu_sd_readl(struct matsu_sd_priv *priv, unsigned int reg)
{
if (priv->caps & MATSU_SD_CAP_64BIT)
return readl(priv->regbase + (reg << 1));
else
return readl(priv->regbase + reg);
}
static void matsu_sd_writel(struct matsu_sd_priv *priv,
u32 val, unsigned int reg)
{
if (priv->caps & MATSU_SD_CAP_64BIT)
writel(val, priv->regbase + (reg << 1));
else
writel(val, priv->regbase + reg);
}
static dma_addr_t __dma_map_single(void *ptr, size_t size,
enum dma_data_direction dir)
{
unsigned long addr = (unsigned long)ptr;
if (dir == DMA_FROM_DEVICE)
invalidate_dcache_range(addr, addr + size);
else
flush_dcache_range(addr, addr + size);
return addr;
}
static void __dma_unmap_single(dma_addr_t addr, size_t size,
enum dma_data_direction dir)
{
if (dir != DMA_TO_DEVICE)
invalidate_dcache_range(addr, addr + size);
}
static int matsu_sd_check_error(struct udevice *dev)
{
struct matsu_sd_priv *priv = dev_get_priv(dev);
u32 info2 = matsu_sd_readl(priv, MATSU_SD_INFO2);
if (info2 & MATSU_SD_INFO2_ERR_RTO) {
/*
* TIMEOUT must be returned for unsupported command. Do not
* display error log since this might be a part of sequence to
* distinguish between SD and MMC.
*/
return -ETIMEDOUT;
}
if (info2 & MATSU_SD_INFO2_ERR_TO) {
dev_err(dev, "timeout error\n");
return -ETIMEDOUT;
}
if (info2 & (MATSU_SD_INFO2_ERR_END | MATSU_SD_INFO2_ERR_CRC |
MATSU_SD_INFO2_ERR_IDX)) {
dev_err(dev, "communication out of sync\n");
return -EILSEQ;
}
if (info2 & (MATSU_SD_INFO2_ERR_ILA | MATSU_SD_INFO2_ERR_ILR |
MATSU_SD_INFO2_ERR_ILW)) {
dev_err(dev, "illegal access\n");
return -EIO;
}
return 0;
}
static int matsu_sd_wait_for_irq(struct udevice *dev, unsigned int reg,
u32 flag)
{
struct matsu_sd_priv *priv = dev_get_priv(dev);
long wait = 1000000;
int ret;
while (!(matsu_sd_readl(priv, reg) & flag)) {
if (wait-- < 0) {
dev_err(dev, "timeout\n");
return -ETIMEDOUT;
}
ret = matsu_sd_check_error(dev);
if (ret)
return ret;
udelay(1);
}
return 0;
}
#define matsu_pio_read_fifo(__width, __suffix) \
static void matsu_pio_read_fifo_##__width(struct matsu_sd_priv *priv, \
char *pbuf, uint blksz) \
{ \
u##__width *buf = (u##__width *)pbuf; \
int i; \
\
if (likely(IS_ALIGNED((uintptr_t)buf, ((__width) / 8)))) { \
for (i = 0; i < blksz / ((__width) / 8); i++) { \
*buf++ = matsu_sd_read##__suffix(priv, \
MATSU_SD_BUF); \
} \
} else { \
for (i = 0; i < blksz / ((__width) / 8); i++) { \
u##__width data; \
data = matsu_sd_read##__suffix(priv, \
MATSU_SD_BUF); \
put_unaligned(data, buf++); \
} \
} \
}
matsu_pio_read_fifo(64, q)
matsu_pio_read_fifo(32, l)
static int matsu_sd_pio_read_one_block(struct udevice *dev, char *pbuf,
uint blocksize)
{
struct matsu_sd_priv *priv = dev_get_priv(dev);
int ret;
/* wait until the buffer is filled with data */
ret = matsu_sd_wait_for_irq(dev, MATSU_SD_INFO2,
MATSU_SD_INFO2_BRE);
if (ret)
return ret;
/*
* Clear the status flag _before_ read the buffer out because
* MATSU_SD_INFO2_BRE is edge-triggered, not level-triggered.
*/
matsu_sd_writel(priv, 0, MATSU_SD_INFO2);
if (priv->caps & MATSU_SD_CAP_64BIT)
matsu_pio_read_fifo_64(priv, pbuf, blocksize);
else
matsu_pio_read_fifo_32(priv, pbuf, blocksize);
return 0;
}
#define matsu_pio_write_fifo(__width, __suffix) \
static void matsu_pio_write_fifo_##__width(struct matsu_sd_priv *priv, \
const char *pbuf, uint blksz)\
{ \
const u##__width *buf = (const u##__width *)pbuf; \
int i; \
\
if (likely(IS_ALIGNED((uintptr_t)buf, ((__width) / 8)))) { \
for (i = 0; i < blksz / ((__width) / 8); i++) { \
matsu_sd_write##__suffix(priv, *buf++, \
MATSU_SD_BUF); \
} \
} else { \
for (i = 0; i < blksz / ((__width) / 8); i++) { \
u##__width data = get_unaligned(buf++); \
matsu_sd_write##__suffix(priv, data, \
MATSU_SD_BUF); \
} \
} \
}
matsu_pio_write_fifo(64, q)
matsu_pio_write_fifo(32, l)
static int matsu_sd_pio_write_one_block(struct udevice *dev,
const char *pbuf, uint blocksize)
{
struct matsu_sd_priv *priv = dev_get_priv(dev);
int ret;
/* wait until the buffer becomes empty */
ret = matsu_sd_wait_for_irq(dev, MATSU_SD_INFO2,
MATSU_SD_INFO2_BWE);
if (ret)
return ret;
matsu_sd_writel(priv, 0, MATSU_SD_INFO2);
if (priv->caps & MATSU_SD_CAP_64BIT)
matsu_pio_write_fifo_64(priv, pbuf, blocksize);
else
matsu_pio_write_fifo_32(priv, pbuf, blocksize);
return 0;
}
static int matsu_sd_pio_xfer(struct udevice *dev, struct mmc_data *data)
{
const char *src = data->src;
char *dest = data->dest;
int i, ret;
for (i = 0; i < data->blocks; i++) {
if (data->flags & MMC_DATA_READ)
ret = matsu_sd_pio_read_one_block(dev, dest,
data->blocksize);
else
ret = matsu_sd_pio_write_one_block(dev, src,
data->blocksize);
if (ret)
return ret;
if (data->flags & MMC_DATA_READ)
dest += data->blocksize;
else
src += data->blocksize;
}
return 0;
}
static void matsu_sd_dma_start(struct matsu_sd_priv *priv,
dma_addr_t dma_addr)
{
u32 tmp;
matsu_sd_writel(priv, 0, MATSU_SD_DMA_INFO1);
matsu_sd_writel(priv, 0, MATSU_SD_DMA_INFO2);
/* enable DMA */
tmp = matsu_sd_readl(priv, MATSU_SD_EXTMODE);
tmp |= MATSU_SD_EXTMODE_DMA_EN;
matsu_sd_writel(priv, tmp, MATSU_SD_EXTMODE);
matsu_sd_writel(priv, dma_addr & U32_MAX, MATSU_SD_DMA_ADDR_L);
/* suppress the warning "right shift count >= width of type" */
dma_addr >>= min_t(int, 32, 8 * sizeof(dma_addr));
matsu_sd_writel(priv, dma_addr & U32_MAX, MATSU_SD_DMA_ADDR_H);
matsu_sd_writel(priv, MATSU_SD_DMA_CTL_START, MATSU_SD_DMA_CTL);
}
static int matsu_sd_dma_wait_for_irq(struct udevice *dev, u32 flag,
unsigned int blocks)
{
struct matsu_sd_priv *priv = dev_get_priv(dev);
long wait = 1000000 + 10 * blocks;
while (!(matsu_sd_readl(priv, MATSU_SD_DMA_INFO1) & flag)) {
if (wait-- < 0) {
dev_err(dev, "timeout during DMA\n");
return -ETIMEDOUT;
}
udelay(10);
}
if (matsu_sd_readl(priv, MATSU_SD_DMA_INFO2)) {
dev_err(dev, "error during DMA\n");
return -EIO;
}
return 0;
}
static int matsu_sd_dma_xfer(struct udevice *dev, struct mmc_data *data)
{
struct matsu_sd_priv *priv = dev_get_priv(dev);
size_t len = data->blocks * data->blocksize;
void *buf;
enum dma_data_direction dir;
dma_addr_t dma_addr;
u32 poll_flag, tmp;
int ret;
tmp = matsu_sd_readl(priv, MATSU_SD_DMA_MODE);
if (data->flags & MMC_DATA_READ) {
buf = data->dest;
dir = DMA_FROM_DEVICE;
poll_flag = MATSU_SD_DMA_INFO1_END_RD2;
tmp |= MATSU_SD_DMA_MODE_DIR_RD;
} else {
buf = (void *)data->src;
dir = DMA_TO_DEVICE;
poll_flag = MATSU_SD_DMA_INFO1_END_WR;
tmp &= ~MATSU_SD_DMA_MODE_DIR_RD;
}
matsu_sd_writel(priv, tmp, MATSU_SD_DMA_MODE);
dma_addr = __dma_map_single(buf, len, dir);
matsu_sd_dma_start(priv, dma_addr);
ret = matsu_sd_dma_wait_for_irq(dev, poll_flag, data->blocks);
__dma_unmap_single(dma_addr, len, dir);
return ret;
}
/* check if the address is DMA'able */
static bool matsu_sd_addr_is_dmaable(unsigned long addr)
{
if (!IS_ALIGNED(addr, MATSU_SD_DMA_MINALIGN))
return false;
#if defined(CONFIG_ARCH_UNIPHIER) && !defined(CONFIG_ARM64) && \
defined(CONFIG_SPL_BUILD)
/*
* For UniPhier ARMv7 SoCs, the stack is allocated in the locked ways
* of L2, which is unreachable from the DMA engine.
*/
if (addr < CONFIG_SPL_STACK)
return false;
#endif
return true;
}
int matsu_sd_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct matsu_sd_priv *priv = dev_get_priv(dev);
int ret;
u32 tmp;
if (matsu_sd_readl(priv, MATSU_SD_INFO2) & MATSU_SD_INFO2_CBSY) {
dev_err(dev, "command busy\n");
return -EBUSY;
}
/* clear all status flags */
matsu_sd_writel(priv, 0, MATSU_SD_INFO1);
matsu_sd_writel(priv, 0, MATSU_SD_INFO2);
/* disable DMA once */
tmp = matsu_sd_readl(priv, MATSU_SD_EXTMODE);
tmp &= ~MATSU_SD_EXTMODE_DMA_EN;
matsu_sd_writel(priv, tmp, MATSU_SD_EXTMODE);
matsu_sd_writel(priv, cmd->cmdarg, MATSU_SD_ARG);
tmp = cmd->cmdidx;
if (data) {
matsu_sd_writel(priv, data->blocksize, MATSU_SD_SIZE);
matsu_sd_writel(priv, data->blocks, MATSU_SD_SECCNT);
/* Do not send CMD12 automatically */
tmp |= MATSU_SD_CMD_NOSTOP | MATSU_SD_CMD_DATA;
if (data->blocks > 1)
tmp |= MATSU_SD_CMD_MULTI;
if (data->flags & MMC_DATA_READ)
tmp |= MATSU_SD_CMD_RD;
}
/*
* Do not use the response type auto-detection on this hardware.
* CMD8, for example, has different response types on SD and eMMC,
* while this controller always assumes the response type for SD.
* Set the response type manually.
*/
switch (cmd->resp_type) {
case MMC_RSP_NONE:
tmp |= MATSU_SD_CMD_RSP_NONE;
break;
case MMC_RSP_R1:
tmp |= MATSU_SD_CMD_RSP_R1;
break;
case MMC_RSP_R1b:
tmp |= MATSU_SD_CMD_RSP_R1B;
break;
case MMC_RSP_R2:
tmp |= MATSU_SD_CMD_RSP_R2;
break;
case MMC_RSP_R3:
tmp |= MATSU_SD_CMD_RSP_R3;
break;
default:
dev_err(dev, "unknown response type\n");
return -EINVAL;
}
dev_dbg(dev, "sending CMD%d (SD_CMD=%08x, SD_ARG=%08x)\n",
cmd->cmdidx, tmp, cmd->cmdarg);
matsu_sd_writel(priv, tmp, MATSU_SD_CMD);
ret = matsu_sd_wait_for_irq(dev, MATSU_SD_INFO1,
MATSU_SD_INFO1_RSP);
if (ret)
return ret;
if (cmd->resp_type & MMC_RSP_136) {
u32 rsp_127_104 = matsu_sd_readl(priv, MATSU_SD_RSP76);
u32 rsp_103_72 = matsu_sd_readl(priv, MATSU_SD_RSP54);
u32 rsp_71_40 = matsu_sd_readl(priv, MATSU_SD_RSP32);
u32 rsp_39_8 = matsu_sd_readl(priv, MATSU_SD_RSP10);
cmd->response[0] = ((rsp_127_104 & 0x00ffffff) << 8) |
((rsp_103_72 & 0xff000000) >> 24);
cmd->response[1] = ((rsp_103_72 & 0x00ffffff) << 8) |
((rsp_71_40 & 0xff000000) >> 24);
cmd->response[2] = ((rsp_71_40 & 0x00ffffff) << 8) |
((rsp_39_8 & 0xff000000) >> 24);
cmd->response[3] = (rsp_39_8 & 0xffffff) << 8;
} else {
/* bit 39-8 */
cmd->response[0] = matsu_sd_readl(priv, MATSU_SD_RSP10);
}
if (data) {
/* use DMA if the HW supports it and the buffer is aligned */
if (priv->caps & MATSU_SD_CAP_DMA_INTERNAL &&
matsu_sd_addr_is_dmaable((long)data->src))
ret = matsu_sd_dma_xfer(dev, data);
else
ret = matsu_sd_pio_xfer(dev, data);
ret = matsu_sd_wait_for_irq(dev, MATSU_SD_INFO1,
MATSU_SD_INFO1_CMP);
if (ret)
return ret;
}
return ret;
}
static int matsu_sd_set_bus_width(struct matsu_sd_priv *priv,
struct mmc *mmc)
{
u32 val, tmp;
switch (mmc->bus_width) {
case 1:
val = MATSU_SD_OPTION_WIDTH_1;
break;
case 4:
val = MATSU_SD_OPTION_WIDTH_4;
break;
case 8:
val = MATSU_SD_OPTION_WIDTH_8;
break;
default:
return -EINVAL;
}
tmp = matsu_sd_readl(priv, MATSU_SD_OPTION);
tmp &= ~MATSU_SD_OPTION_WIDTH_MASK;
tmp |= val;
matsu_sd_writel(priv, tmp, MATSU_SD_OPTION);
return 0;
}
static void matsu_sd_set_ddr_mode(struct matsu_sd_priv *priv,
struct mmc *mmc)
{
u32 tmp;
tmp = matsu_sd_readl(priv, MATSU_SD_IF_MODE);
if (mmc->ddr_mode)
tmp |= MATSU_SD_IF_MODE_DDR;
else
tmp &= ~MATSU_SD_IF_MODE_DDR;
matsu_sd_writel(priv, tmp, MATSU_SD_IF_MODE);
}
static void matsu_sd_set_clk_rate(struct matsu_sd_priv *priv,
struct mmc *mmc)
{
unsigned int divisor;
u32 val, tmp;
if (!mmc->clock)
return;
divisor = DIV_ROUND_UP(priv->mclk, mmc->clock);
if (divisor <= 1)
val = MATSU_SD_CLKCTL_DIV1;
else if (divisor <= 2)
val = MATSU_SD_CLKCTL_DIV2;
else if (divisor <= 4)
val = MATSU_SD_CLKCTL_DIV4;
else if (divisor <= 8)
val = MATSU_SD_CLKCTL_DIV8;
else if (divisor <= 16)
val = MATSU_SD_CLKCTL_DIV16;
else if (divisor <= 32)
val = MATSU_SD_CLKCTL_DIV32;
else if (divisor <= 64)
val = MATSU_SD_CLKCTL_DIV64;
else if (divisor <= 128)
val = MATSU_SD_CLKCTL_DIV128;
else if (divisor <= 256)
val = MATSU_SD_CLKCTL_DIV256;
else if (divisor <= 512 || !(priv->caps & MATSU_SD_CAP_DIV1024))
val = MATSU_SD_CLKCTL_DIV512;
else
val = MATSU_SD_CLKCTL_DIV1024;
tmp = matsu_sd_readl(priv, MATSU_SD_CLKCTL);
if (tmp & MATSU_SD_CLKCTL_SCLKEN &&
(tmp & MATSU_SD_CLKCTL_DIV_MASK) == val)
return;
/* stop the clock before changing its rate to avoid a glitch signal */
tmp &= ~MATSU_SD_CLKCTL_SCLKEN;
matsu_sd_writel(priv, tmp, MATSU_SD_CLKCTL);
tmp &= ~MATSU_SD_CLKCTL_DIV_MASK;
tmp |= val | MATSU_SD_CLKCTL_OFFEN;
matsu_sd_writel(priv, tmp, MATSU_SD_CLKCTL);
tmp |= MATSU_SD_CLKCTL_SCLKEN;
matsu_sd_writel(priv, tmp, MATSU_SD_CLKCTL);
udelay(1000);
}
int matsu_sd_set_ios(struct udevice *dev)
{
struct matsu_sd_priv *priv = dev_get_priv(dev);
struct mmc *mmc = mmc_get_mmc_dev(dev);
int ret;
dev_dbg(dev, "clock %uHz, DDRmode %d, width %u\n",
mmc->clock, mmc->ddr_mode, mmc->bus_width);
ret = matsu_sd_set_bus_width(priv, mmc);
if (ret)
return ret;
matsu_sd_set_ddr_mode(priv, mmc);
matsu_sd_set_clk_rate(priv, mmc);
return 0;
}
int matsu_sd_get_cd(struct udevice *dev)
{
struct matsu_sd_priv *priv = dev_get_priv(dev);
if (priv->caps & MATSU_SD_CAP_NONREMOVABLE)
return 1;
return !!(matsu_sd_readl(priv, MATSU_SD_INFO1) &
MATSU_SD_INFO1_CD);
}
static void matsu_sd_host_init(struct matsu_sd_priv *priv)
{
u32 tmp;
/* soft reset of the host */
tmp = matsu_sd_readl(priv, MATSU_SD_SOFT_RST);
tmp &= ~MATSU_SD_SOFT_RST_RSTX;
matsu_sd_writel(priv, tmp, MATSU_SD_SOFT_RST);
tmp |= MATSU_SD_SOFT_RST_RSTX;
matsu_sd_writel(priv, tmp, MATSU_SD_SOFT_RST);
/* FIXME: implement eMMC hw_reset */
matsu_sd_writel(priv, MATSU_SD_STOP_SEC, MATSU_SD_STOP);
/*
* Connected to 32bit AXI.
* This register dropped backward compatibility at version 0x10.
* Write an appropriate value depending on the IP version.
*/
matsu_sd_writel(priv, priv->version >= 0x10 ? 0x00000101 : 0x00000000,
MATSU_SD_HOST_MODE);
if (priv->caps & MATSU_SD_CAP_DMA_INTERNAL) {
tmp = matsu_sd_readl(priv, MATSU_SD_DMA_MODE);
tmp |= MATSU_SD_DMA_MODE_ADDR_INC;
matsu_sd_writel(priv, tmp, MATSU_SD_DMA_MODE);
}
}
int matsu_sd_bind(struct udevice *dev)
{
struct matsu_sd_plat *plat = dev_get_platdata(dev);
return mmc_bind(dev, &plat->mmc, &plat->cfg);
}
int matsu_sd_probe(struct udevice *dev)
{
struct matsu_sd_plat *plat = dev_get_platdata(dev);
struct matsu_sd_priv *priv = dev_get_priv(dev);
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
const u32 quirks = dev_get_driver_data(dev);
fdt_addr_t base;
struct clk clk;
int ret;
#ifdef CONFIG_DM_REGULATOR
struct udevice *vqmmc_dev;
#endif
base = devfdt_get_addr(dev);
if (base == FDT_ADDR_T_NONE)
return -EINVAL;
priv->regbase = devm_ioremap(dev, base, SZ_2K);
if (!priv->regbase)
return -ENOMEM;
#ifdef CONFIG_DM_REGULATOR
ret = device_get_supply_regulator(dev, "vqmmc-supply", &vqmmc_dev);
if (!ret) {
/* Set the regulator to 3.3V until we support 1.8V modes */
regulator_set_value(vqmmc_dev, 3300000);
regulator_set_enable(vqmmc_dev, true);
}
#endif
ret = clk_get_by_index(dev, 0, &clk);
if (ret < 0) {
dev_err(dev, "failed to get host clock\n");
return ret;
}
/* set to max rate */
priv->mclk = clk_set_rate(&clk, ULONG_MAX);
if (IS_ERR_VALUE(priv->mclk)) {
dev_err(dev, "failed to set rate for host clock\n");
clk_free(&clk);
return priv->mclk;
}
ret = clk_enable(&clk);
clk_free(&clk);
if (ret) {
dev_err(dev, "failed to enable host clock\n");
return ret;
}
plat->cfg.name = dev->name;
plat->cfg.host_caps = MMC_MODE_HS_52MHz | MMC_MODE_HS;
switch (fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev), "bus-width",
1)) {
case 8:
plat->cfg.host_caps |= MMC_MODE_8BIT;
break;
case 4:
plat->cfg.host_caps |= MMC_MODE_4BIT;
break;
case 1:
break;
default:
dev_err(dev, "Invalid \"bus-width\" value\n");
return -EINVAL;
}
if (quirks) {
priv->caps = quirks;
} else {
priv->version = matsu_sd_readl(priv, MATSU_SD_VERSION) &
MATSU_SD_VERSION_IP;
dev_dbg(dev, "version %x\n", priv->version);
if (priv->version >= 0x10) {
priv->caps |= MATSU_SD_CAP_DMA_INTERNAL;
priv->caps |= MATSU_SD_CAP_DIV1024;
}
}
if (fdt_get_property(gd->fdt_blob, dev_of_offset(dev), "non-removable",
NULL))
priv->caps |= MATSU_SD_CAP_NONREMOVABLE;
matsu_sd_host_init(priv);
plat->cfg.voltages = MMC_VDD_165_195 | MMC_VDD_32_33 | MMC_VDD_33_34;
plat->cfg.f_min = priv->mclk /
(priv->caps & MATSU_SD_CAP_DIV1024 ? 1024 : 512);
plat->cfg.f_max = priv->mclk;
plat->cfg.b_max = U32_MAX; /* max value of MATSU_SD_SECCNT */
upriv->mmc = &plat->mmc;
return 0;
}