| /* |
| * i.MX6 nand boot control block(bcb). |
| * |
| * Based on the common/imx-bbu-nand-fcb.c from barebox and imx kobs-ng |
| * |
| * Copyright (C) 2017 Jagan Teki <jagan@amarulasolutions.com> |
| * Copyright (C) 2016 Sergey Kubushyn <ksi@koi8.net> |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <common.h> |
| #include <nand.h> |
| |
| #include <asm/io.h> |
| #include <jffs2/jffs2.h> |
| #include <linux/bch.h> |
| #include <linux/mtd/mtd.h> |
| |
| #include <asm/mach-imx/imx-nandbcb.h> |
| #include <asm/mach-imx/imximage.cfg> |
| #include <mxs_nand.h> |
| #include <linux/mtd/mtd.h> |
| #include <nand.h> |
| |
| #define BF_VAL(v, bf) (((v) & bf##_MASK) >> bf##_OFFSET) |
| #define GETBIT(v, n) (((v) >> (n)) & 0x1) |
| |
| #if defined(CONFIG_MX6UL) || defined(CONFIG_MX6ULL) |
| static uint8_t reverse_bit(uint8_t b) |
| { |
| b = (b & 0xf0) >> 4 | (b & 0x0f) << 4; |
| b = (b & 0xcc) >> 2 | (b & 0x33) << 2; |
| b = (b & 0xaa) >> 1 | (b & 0x55) << 1; |
| |
| return b; |
| } |
| |
| static void encode_bch_ecc(void *buf, struct fcb_block *fcb, int eccbits) |
| { |
| int i, j, m = 13; |
| int blocksize = 128; |
| int numblocks = 8; |
| int ecc_buf_size = (m * eccbits + 7) / 8; |
| struct bch_control *bch = init_bch(m, eccbits, 0); |
| u8 *ecc_buf = kzalloc(ecc_buf_size, GFP_KERNEL); |
| u8 *tmp_buf = kzalloc(blocksize * numblocks, GFP_KERNEL); |
| u8 *psrc, *pdst; |
| |
| /* |
| * The blocks here are bit aligned. If eccbits is a multiple of 8, |
| * we just can copy bytes. Otherwiese we must move the blocks to |
| * the next free bit position. |
| */ |
| WARN_ON(eccbits % 8); |
| |
| memcpy(tmp_buf, fcb, sizeof(*fcb)); |
| |
| for (i = 0; i < numblocks; i++) { |
| memset(ecc_buf, 0, ecc_buf_size); |
| psrc = tmp_buf + i * blocksize; |
| pdst = buf + i * (blocksize + ecc_buf_size); |
| |
| /* copy data byte aligned to destination buf */ |
| memcpy(pdst, psrc, blocksize); |
| |
| /* |
| * imx-kobs use a modified encode_bch which reverse the |
| * bit order of the data before calculating bch. |
| * Do this in the buffer and use the bch lib here. |
| */ |
| for (j = 0; j < blocksize; j++) |
| psrc[j] = reverse_bit(psrc[j]); |
| |
| encode_bch(bch, psrc, blocksize, ecc_buf); |
| |
| /* reverse ecc bit */ |
| for (j = 0; j < ecc_buf_size; j++) |
| ecc_buf[j] = reverse_bit(ecc_buf[j]); |
| |
| /* Here eccbuf is byte aligned and we can just copy it */ |
| memcpy(pdst + blocksize, ecc_buf, ecc_buf_size); |
| } |
| |
| kfree(ecc_buf); |
| kfree(tmp_buf); |
| free_bch(bch); |
| } |
| #else |
| |
| static u8 calculate_parity_13_8(u8 d) |
| { |
| u8 p = 0; |
| |
| p |= (GETBIT(d, 6) ^ GETBIT(d, 5) ^ GETBIT(d, 3) ^ GETBIT(d, 2)) << 0; |
| p |= (GETBIT(d, 7) ^ GETBIT(d, 5) ^ GETBIT(d, 4) ^ GETBIT(d, 2) ^ |
| GETBIT(d, 1)) << 1; |
| p |= (GETBIT(d, 7) ^ GETBIT(d, 6) ^ GETBIT(d, 5) ^ GETBIT(d, 1) ^ |
| GETBIT(d, 0)) << 2; |
| p |= (GETBIT(d, 7) ^ GETBIT(d, 4) ^ GETBIT(d, 3) ^ GETBIT(d, 0)) << 3; |
| p |= (GETBIT(d, 6) ^ GETBIT(d, 4) ^ GETBIT(d, 3) ^ GETBIT(d, 2) ^ |
| GETBIT(d, 1) ^ GETBIT(d, 0)) << 4; |
| |
| return p; |
| } |
| |
| static void encode_hamming_13_8(void *_src, void *_ecc, size_t size) |
| { |
| int i; |
| u8 *src = _src; |
| u8 *ecc = _ecc; |
| |
| for (i = 0; i < size; i++) |
| ecc[i] = calculate_parity_13_8(src[i]); |
| } |
| #endif |
| |
| static u32 calc_chksum(void *buf, size_t size) |
| { |
| u32 chksum = 0; |
| u8 *bp = buf; |
| size_t i; |
| |
| for (i = 0; i < size; i++) |
| chksum += bp[i]; |
| |
| return ~chksum; |
| } |
| |
| static void fill_fcb(struct fcb_block *fcb, struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct mxs_nand_info *nand_info = nand_get_controller_data(chip); |
| |
| fcb->fingerprint = FCB_FINGERPRINT; |
| fcb->version = FCB_VERSION_1; |
| fcb->pagesize = mtd->writesize; |
| fcb->oob_pagesize = mtd->writesize + mtd->oobsize; |
| fcb->sectors = mtd->erasesize / mtd->writesize; |
| |
| /* Divide ECC strength by two and save the value into FCB structure. */ |
| fcb->ecc_level = nand_info->bch_geometry.ecc_strength >> 1; |
| |
| fcb->ecc_type = fcb->ecc_level; |
| |
| /* Also hardcoded in kobs-ng */ |
| fcb->ecc_nr = 0x00000200; |
| fcb->ecc_size = 0x00000200; |
| fcb->datasetup = 80; |
| fcb->datahold = 60; |
| fcb->addr_setup = 25; |
| fcb->dsample_time = 6; |
| fcb->meta_size = 10; |
| |
| /* DBBT search area starts at second page on first block */ |
| fcb->dbbt_start = 1; |
| |
| fcb->bb_byte = nand_info->bch_geometry.block_mark_byte_offset; |
| fcb->bb_start_bit = nand_info->bch_geometry.block_mark_bit_offset; |
| |
| fcb->phy_offset = mtd->writesize; |
| |
| fcb->nr_blocks = mtd->writesize / fcb->ecc_nr - 1; |
| |
| fcb->checksum = calc_chksum((void *)fcb + 4, sizeof(*fcb) - 4); |
| } |
| |
| static int dbbt_fill_data(struct mtd_info *mtd, void *buf, int num_blocks) |
| { |
| int n, n_bad_blocks = 0; |
| u32 *bb = buf + 0x8; |
| u32 *n_bad_blocksp = buf + 0x4; |
| |
| for (n = 0; n < num_blocks; n++) { |
| loff_t offset = n * mtd->erasesize; |
| if (mtd_block_isbad(mtd, offset)) { |
| n_bad_blocks++; |
| *bb = n; |
| bb++; |
| } |
| } |
| |
| *n_bad_blocksp = n_bad_blocks; |
| |
| return n_bad_blocks; |
| } |
| |
| static int nandbcb_update(struct mtd_info *mtd, loff_t off, size_t size, |
| size_t maxsize, const u_char *buf) |
| { |
| nand_erase_options_t opts; |
| struct fcb_block *fcb; |
| struct dbbt_block *dbbt; |
| loff_t fw1_off; |
| void *fwbuf, *fcb_raw_page, *dbbt_page, *dbbt_data_page; |
| int nr_blks, nr_blks_fcb, fw1_blk; |
| size_t fwsize, dummy; |
| int i, ret; |
| |
| /* erase */ |
| memset(&opts, 0, sizeof(opts)); |
| opts.offset = off; |
| opts.length = maxsize - 1; |
| ret = nand_erase_opts(mtd, &opts); |
| if (ret) { |
| printf("%s: erase failed (ret = %d)\n", __func__, ret); |
| return ret; |
| } |
| |
| /* |
| * Reference documentation from i.MX6DQRM section 8.5.2.2 |
| * |
| * Nand Boot Control Block(BCB) contains two data structures, |
| * - Firmware Configuration Block(FCB) |
| * - Discovered Bad Block Table(DBBT) |
| * |
| * FCB contains, |
| * - nand timings |
| * - DBBT search page address, |
| * - start page address of primary firmware |
| * - start page address of secondary firmware |
| * |
| * setup fcb: |
| * - number of blocks = mtd partition size / mtd erasesize |
| * - two firmware blocks, primary and secondary |
| * - first 4 block for FCB/DBBT |
| * - rest split in half for primary and secondary firmware |
| * - same firmware will write two times |
| */ |
| nr_blks_fcb = 2; |
| nr_blks = maxsize / mtd->erasesize; |
| fw1_blk = nr_blks_fcb; |
| |
| /* write fw */ |
| fwsize = ALIGN(size + FLASH_OFFSET_STANDARD + mtd->writesize, |
| mtd->writesize); |
| fwbuf = kzalloc(fwsize, GFP_KERNEL); |
| if (!fwbuf) { |
| debug("failed to allocate fwbuf\n"); |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| memcpy(fwbuf + FLASH_OFFSET_STANDARD, buf, size); |
| fw1_off = fw1_blk * mtd->erasesize; |
| ret = nand_write_skip_bad(mtd, fw1_off, &fwsize, NULL, maxsize, |
| (u_char *)fwbuf, WITH_WR_VERIFY); |
| printf("NAND fw write: 0x%llx offset, 0x%x bytes written: %s\n", |
| fw1_off, fwsize, ret ? "ERROR" : "OK"); |
| if (ret) |
| goto fwbuf_err; |
| |
| /* fill fcb */ |
| fcb = kzalloc(sizeof(*fcb), GFP_KERNEL); |
| if (!fcb) { |
| debug("failed to allocate fcb\n"); |
| ret = -ENOMEM; |
| goto fwbuf_err; |
| } |
| |
| fcb->fw1_start = (fw1_blk * mtd->erasesize) / mtd->writesize; |
| fcb->fw1_pages = size / mtd->writesize + 1; |
| fill_fcb(fcb, mtd); |
| |
| /* fill dbbt */ |
| dbbt_page = kzalloc(mtd->writesize, GFP_KERNEL); |
| if (!dbbt_page) { |
| debug("failed to allocate dbbt_page\n"); |
| ret = -ENOMEM; |
| goto fcb_err; |
| } |
| |
| dbbt_data_page = kzalloc(mtd->writesize, GFP_KERNEL); |
| if (!dbbt_data_page) { |
| debug("failed to allocate dbbt_data_page\n"); |
| ret = -ENOMEM; |
| goto dbbt_page_err; |
| } |
| |
| dbbt = dbbt_page; |
| dbbt->checksum = 0; |
| dbbt->fingerprint = DBBT_FINGERPRINT2; |
| dbbt->version = DBBT_VERSION_1; |
| ret = dbbt_fill_data(mtd, dbbt_data_page, nr_blks); |
| if (ret < 0) |
| goto dbbt_data_page_err; |
| else if (ret > 0) |
| dbbt->dbbtpages = 1; |
| |
| /* write fcb/dbbt */ |
| fcb_raw_page = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); |
| if (!fcb_raw_page) { |
| debug("failed to allocate fcb_raw_page\n"); |
| ret = -ENOMEM; |
| goto dbbt_data_page_err; |
| } |
| |
| #if defined(CONFIG_MX6UL) || defined(CONFIG_MX6ULL) |
| /* 40 bit BCH, for i.MX6UL(L) */ |
| encode_bch_ecc(fcb_raw_page + 32, fcb, 40); |
| #else |
| memcpy(fcb_raw_page + 12, fcb, sizeof(struct fcb_block)); |
| encode_hamming_13_8(fcb_raw_page + 12, fcb_raw_page + 12 + 512, 512); |
| #endif |
| /* |
| * Set the first and second byte of OOB data to 0xFF, not 0x00. These |
| * bytes are used as the Manufacturers Bad Block Marker (MBBM). Since |
| * the FCB is mostly written to the first page in a block, a scan for |
| * factory bad blocks will detect these blocks as bad, e.g. when |
| * function nand_scan_bbt() is executed to build a new bad block table. |
| */ |
| memset(fcb_raw_page + mtd->writesize, 0xFF, 2); |
| |
| for (i = 0; i < nr_blks_fcb; i++) { |
| if (mtd_block_isbad(mtd, off)) { |
| printf("Block %d is bad, skipped\n", i); |
| continue; |
| } |
| |
| /* raw write */ |
| mtd_oob_ops_t ops = { |
| .datbuf = (u8 *)fcb_raw_page, |
| .oobbuf = ((u8 *)fcb_raw_page) + mtd->writesize, |
| .len = mtd->writesize, |
| .ooblen = mtd->oobsize, |
| .mode = MTD_OPS_RAW |
| }; |
| |
| ret = mtd_write_oob(mtd, mtd->erasesize * i, &ops); |
| if (ret) |
| goto fcb_raw_page_err; |
| debug("NAND fcb write: 0x%x offset, 0x%x bytes written: %s\n", |
| mtd->erasesize * i, ops.len, ret ? "ERROR" : "OK"); |
| |
| ret = mtd_write(mtd, mtd->erasesize * i + mtd->writesize, |
| mtd->writesize, &dummy, dbbt_page); |
| if (ret) |
| goto fcb_raw_page_err; |
| debug("NAND dbbt write: 0x%x offset, 0x%x bytes written: %s\n", |
| mtd->erasesize * i + mtd->writesize, dummy, |
| ret ? "ERROR" : "OK"); |
| |
| /* dbbtpages == 0 if no bad blocks */ |
| if (dbbt->dbbtpages > 0) { |
| loff_t to = (mtd->erasesize * i + mtd->writesize * 5); |
| |
| ret = mtd_write(mtd, to, mtd->writesize, &dummy, |
| dbbt_data_page); |
| if (ret) |
| goto fcb_raw_page_err; |
| } |
| } |
| |
| fcb_raw_page_err: |
| kfree(fcb_raw_page); |
| dbbt_data_page_err: |
| kfree(dbbt_data_page); |
| dbbt_page_err: |
| kfree(dbbt_page); |
| fcb_err: |
| kfree(fcb); |
| fwbuf_err: |
| kfree(fwbuf); |
| err: |
| return ret; |
| } |
| |
| static int do_nandbcb_update(int argc, char * const argv[]) |
| { |
| struct mtd_info *mtd; |
| loff_t addr, offset, size, maxsize; |
| char *endp; |
| u_char *buf; |
| int dev; |
| int ret; |
| |
| if (argc != 4) |
| return CMD_RET_USAGE; |
| |
| dev = nand_curr_device; |
| if (dev < 0) { |
| printf("failed to get nand_curr_device, run nand device"); |
| return CMD_RET_FAILURE; |
| } |
| |
| addr = simple_strtoul(argv[1], &endp, 16); |
| if (*argv[1] == 0 || *endp != 0) |
| return CMD_RET_FAILURE; |
| |
| mtd = get_nand_dev_by_index(dev); |
| if (mtd_arg_off_size(argc - 2, argv + 2, &dev, &offset, &size, |
| &maxsize, MTD_DEV_TYPE_NAND, mtd->size)) |
| return CMD_RET_FAILURE; |
| |
| buf = map_physmem(addr, size, MAP_WRBACK); |
| if (!buf) { |
| puts("failed to map physical memory\n"); |
| return CMD_RET_FAILURE; |
| } |
| |
| ret = nandbcb_update(mtd, offset, size, maxsize, buf); |
| |
| return ret == 0 ? CMD_RET_SUCCESS : CMD_RET_FAILURE; |
| } |
| |
| static int do_nandbcb(cmd_tbl_t *cmdtp, int flag, int argc, |
| char * const argv[]) |
| { |
| const char *cmd; |
| int ret = 0; |
| |
| if (argc < 5) |
| goto usage; |
| |
| cmd = argv[1]; |
| --argc; |
| ++argv; |
| |
| if (strcmp(cmd, "update") == 0) { |
| ret = do_nandbcb_update(argc, argv); |
| goto done; |
| } |
| |
| done: |
| if (ret != -1) |
| return ret; |
| usage: |
| return CMD_RET_USAGE; |
| } |
| |
| #ifdef CONFIG_SYS_LONGHELP |
| static char nandbcb_help_text[] = |
| "update addr off|partition len - update 'len' bytes starting at\n" |
| " 'off|part' to memory address 'addr', skipping bad blocks"; |
| #endif |
| |
| U_BOOT_CMD(nandbcb, 5, 1, do_nandbcb, |
| "i.MX6 Nand BCB", |
| nandbcb_help_text |
| ); |