blob: d09fc59146ad47e81541d1eac4fba2e6ed751693 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* AM642: SoC specific initialization
*
* Copyright (C) 2020-2021 Texas Instruments Incorporated - https://www.ti.com/
* Keerthy <j-keerthy@ti.com>
* Dave Gerlach <d-gerlach@ti.com>
*/
#include <common.h>
#include <spl.h>
#include <asm/io.h>
#include <asm/arch/hardware.h>
#include <asm/arch/sysfw-loader.h>
#include <asm/arch/sys_proto.h>
#include "common.h"
#include <asm/arch/sys_proto.h>
#include <linux/soc/ti/ti_sci_protocol.h>
#include <dm.h>
#include <dm/uclass-internal.h>
#include <dm/pinctrl.h>
#include <mmc.h>
#if defined(CONFIG_SPL_BUILD)
static void ctrl_mmr_unlock(void)
{
/* Unlock all PADCFG_MMR1 module registers */
mmr_unlock(PADCFG_MMR1_BASE, 1);
/* Unlock all CTRL_MMR0 module registers */
mmr_unlock(CTRL_MMR0_BASE, 0);
mmr_unlock(CTRL_MMR0_BASE, 1);
mmr_unlock(CTRL_MMR0_BASE, 2);
mmr_unlock(CTRL_MMR0_BASE, 3);
mmr_unlock(CTRL_MMR0_BASE, 5);
mmr_unlock(CTRL_MMR0_BASE, 6);
}
/*
* This uninitialized global variable would normal end up in the .bss section,
* but the .bss is cleared between writing and reading this variable, so move
* it to the .data section.
*/
u32 bootindex __section(".data");
static struct rom_extended_boot_data bootdata __section(.data);
static void store_boot_info_from_rom(void)
{
bootindex = *(u32 *)(CONFIG_SYS_K3_BOOT_PARAM_TABLE_INDEX);
memcpy(&bootdata, (uintptr_t *)ROM_ENTENDED_BOOT_DATA_INFO,
sizeof(struct rom_extended_boot_data));
}
#if defined(CONFIG_K3_LOAD_SYSFW) && CONFIG_IS_ENABLED(DM_MMC)
void k3_mmc_stop_clock(void)
{
if (spl_boot_device() == BOOT_DEVICE_MMC1) {
struct mmc *mmc = find_mmc_device(0);
if (!mmc)
return;
mmc->saved_clock = mmc->clock;
mmc_set_clock(mmc, 0, true);
}
}
void k3_mmc_restart_clock(void)
{
if (spl_boot_device() == BOOT_DEVICE_MMC1) {
struct mmc *mmc = find_mmc_device(0);
if (!mmc)
return;
mmc_set_clock(mmc, mmc->saved_clock, false);
}
}
#else
void k3_mmc_stop_clock(void) {}
void k3_mmc_restart_clock(void) {}
#endif
void board_init_f(ulong dummy)
{
#if defined(CONFIG_K3_LOAD_SYSFW)
struct udevice *dev;
int ret;
#endif
#if defined(CONFIG_CPU_V7R)
setup_k3_mpu_regions();
#endif
/*
* Cannot delay this further as there is a chance that
* K3_BOOT_PARAM_TABLE_INDEX can be over written by SPL MALLOC section.
*/
store_boot_info_from_rom();
ctrl_mmr_unlock();
/* Init DM early */
spl_early_init();
preloader_console_init();
#if defined(CONFIG_K3_LOAD_SYSFW)
/*
* Process pinctrl for serial3 a.k.a. MAIN UART1 module and continue
* regardless of the result of pinctrl. Do this without probing the
* device, but instead by searching the device that would request the
* given sequence number if probed. The UART will be used by the system
* firmware (SYSFW) image for various purposes and SYSFW depends on us
* to initialize its pin settings.
*/
ret = uclass_find_device_by_seq(UCLASS_SERIAL, 3, &dev);
if (!ret)
pinctrl_select_state(dev, "default");
/*
* Load, start up, and configure system controller firmware.
* This will determine whether or not ROM has already loaded
* system firmware and if so, will only perform needed config
* and not attempt to load firmware again.
*/
k3_sysfw_loader(is_rom_loaded_sysfw(&bootdata), k3_mmc_stop_clock,
k3_mmc_restart_clock);
#endif
/* Output System Firmware version info */
k3_sysfw_print_ver();
}
u32 spl_boot_mode(const u32 boot_device)
{
switch (boot_device) {
case BOOT_DEVICE_MMC1:
return MMCSD_MODE_EMMCBOOT;
case BOOT_DEVICE_MMC2:
return MMCSD_MODE_FS;
default:
return MMCSD_MODE_RAW;
}
}
static u32 __get_backup_bootmedia(u32 main_devstat)
{
u32 bkup_bootmode =
(main_devstat & MAIN_DEVSTAT_BACKUP_BOOTMODE_MASK) >>
MAIN_DEVSTAT_BACKUP_BOOTMODE_SHIFT;
u32 bkup_bootmode_cfg =
(main_devstat & MAIN_DEVSTAT_BACKUP_BOOTMODE_CFG_MASK) >>
MAIN_DEVSTAT_BACKUP_BOOTMODE_CFG_SHIFT;
switch (bkup_bootmode) {
case BACKUP_BOOT_DEVICE_UART:
return BOOT_DEVICE_UART;
case BACKUP_BOOT_DEVICE_USB:
return BOOT_DEVICE_USB;
case BACKUP_BOOT_DEVICE_ETHERNET:
return BOOT_DEVICE_ETHERNET;
case BACKUP_BOOT_DEVICE_MMC:
if (bkup_bootmode_cfg)
return BOOT_DEVICE_MMC2;
return BOOT_DEVICE_MMC1;
case BACKUP_BOOT_DEVICE_SPI:
return BOOT_DEVICE_SPI;
case BACKUP_BOOT_DEVICE_I2C:
return BOOT_DEVICE_I2C;
};
return BOOT_DEVICE_RAM;
}
static u32 __get_primary_bootmedia(u32 main_devstat)
{
u32 bootmode = (main_devstat & MAIN_DEVSTAT_PRIMARY_BOOTMODE_MASK) >>
MAIN_DEVSTAT_PRIMARY_BOOTMODE_SHIFT;
u32 bootmode_cfg =
(main_devstat & MAIN_DEVSTAT_PRIMARY_BOOTMODE_CFG_MASK) >>
MAIN_DEVSTAT_PRIMARY_BOOTMODE_CFG_SHIFT;
switch (bootmode) {
case BOOT_DEVICE_OSPI:
fallthrough;
case BOOT_DEVICE_QSPI:
fallthrough;
case BOOT_DEVICE_XSPI:
fallthrough;
case BOOT_DEVICE_SPI:
return BOOT_DEVICE_SPI;
case BOOT_DEVICE_ETHERNET_RGMII:
fallthrough;
case BOOT_DEVICE_ETHERNET_RMII:
return BOOT_DEVICE_ETHERNET;
case BOOT_DEVICE_EMMC:
return BOOT_DEVICE_MMC1;
case BOOT_DEVICE_MMC:
if ((bootmode_cfg & MAIN_DEVSTAT_PRIMARY_MMC_PORT_MASK) >>
MAIN_DEVSTAT_PRIMARY_MMC_PORT_SHIFT)
return BOOT_DEVICE_MMC2;
return BOOT_DEVICE_MMC1;
case BOOT_DEVICE_NOBOOT:
return BOOT_DEVICE_RAM;
}
return bootmode;
}
u32 spl_boot_device(void)
{
u32 devstat = readl(CTRLMMR_MAIN_DEVSTAT);
if (bootindex == K3_PRIMARY_BOOTMODE)
return __get_primary_bootmedia(devstat);
else
return __get_backup_bootmedia(devstat);
}
#endif