| /* |
| * (C) 2006 Denx |
| * Driver for NAND support, Rick Bronson |
| * borrowed heavily from: |
| * (c) 1999 Machine Vision Holdings, Inc. |
| * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> |
| * |
| * Added 16-bit nand support |
| * (C) 2004 Texas Instruments |
| */ |
| |
| #include <common.h> |
| #include <command.h> |
| #include <malloc.h> |
| #include <asm/io.h> |
| #include <watchdog.h> |
| #include <linux/mtd/nand_legacy.h> |
| #include <linux/mtd/nand_ids.h> |
| #include <jffs2/jffs2.h> |
| |
| #ifdef CONFIG_OMAP1510 |
| void archflashwp(void *archdata, int wp); |
| #endif |
| |
| #define ROUND_DOWN(value,boundary) ((value) & (~((boundary)-1))) |
| |
| #undef PSYCHO_DEBUG |
| #undef NAND_DEBUG |
| |
| /* ****************** WARNING ********************* |
| * When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will |
| * erase (or at least attempt to erase) blocks that are marked |
| * bad. This can be very handy if you are _sure_ that the block |
| * is OK, say because you marked a good block bad to test bad |
| * block handling and you are done testing, or if you have |
| * accidentally marked blocks bad. |
| * |
| * Erasing factory marked bad blocks is a _bad_ idea. If the |
| * erase succeeds there is no reliable way to find them again, |
| * and attempting to program or erase bad blocks can affect |
| * the data in _other_ (good) blocks. |
| */ |
| #define ALLOW_ERASE_BAD_DEBUG 0 |
| |
| #define CONFIG_MTD_NAND_ECC /* enable ECC */ |
| #define CONFIG_MTD_NAND_ECC_JFFS2 |
| |
| /* bits for nand_legacy_rw() `cmd'; or together as needed */ |
| #define NANDRW_READ 0x01 |
| #define NANDRW_WRITE 0x00 |
| #define NANDRW_JFFS2 0x02 |
| #define NANDRW_JFFS2_SKIP 0x04 |
| |
| |
| /* |
| * Exported variables etc. |
| */ |
| |
| /* Definition of the out of band configuration structure */ |
| struct nand_oob_config { |
| /* position of ECC bytes inside oob */ |
| int ecc_pos[6]; |
| /* position of bad blk flag inside oob -1 = inactive */ |
| int badblock_pos; |
| /* position of ECC valid flag inside oob -1 = inactive */ |
| int eccvalid_pos; |
| } oob_config = { {0}, 0, 0}; |
| |
| struct nand_chip nand_dev_desc[CONFIG_SYS_MAX_NAND_DEVICE] = {{0}}; |
| |
| int curr_device = -1; /* Current NAND Device */ |
| |
| |
| /* |
| * Exported functionss |
| */ |
| int nand_legacy_erase(struct nand_chip* nand, size_t ofs, |
| size_t len, int clean); |
| int nand_legacy_rw(struct nand_chip* nand, int cmd, |
| size_t start, size_t len, |
| size_t * retlen, u_char * buf); |
| void nand_print(struct nand_chip *nand); |
| void nand_print_bad(struct nand_chip *nand); |
| int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len, |
| size_t * retlen, u_char * buf); |
| int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len, |
| size_t * retlen, const u_char * buf); |
| |
| /* |
| * Internals |
| */ |
| static int NanD_WaitReady(struct nand_chip *nand, int ale_wait); |
| static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len, |
| size_t * retlen, u_char *buf, u_char *ecc_code); |
| static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len, |
| size_t * retlen, const u_char * buf, |
| u_char * ecc_code); |
| #ifdef CONFIG_MTD_NAND_ECC |
| static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc); |
| static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code); |
| #endif |
| |
| |
| /* |
| * |
| * Function definitions |
| * |
| */ |
| |
| /* returns 0 if block containing pos is OK: |
| * valid erase block and |
| * not marked bad, or no bad mark position is specified |
| * returns 1 if marked bad or otherwise invalid |
| */ |
| static int check_block (struct nand_chip *nand, unsigned long pos) |
| { |
| size_t retlen; |
| uint8_t oob_data; |
| uint16_t oob_data16[6]; |
| int page0 = pos & (-nand->erasesize); |
| int page1 = page0 + nand->oobblock; |
| int badpos = oob_config.badblock_pos; |
| |
| if (pos >= nand->totlen) |
| return 1; |
| |
| if (badpos < 0) |
| return 0; /* no way to check, assume OK */ |
| |
| if (nand->bus16) { |
| if (nand_read_oob(nand, (page0 + 0), 12, &retlen, (uint8_t *)oob_data16) |
| || (oob_data16[2] & 0xff00) != 0xff00) |
| return 1; |
| if (nand_read_oob(nand, (page1 + 0), 12, &retlen, (uint8_t *)oob_data16) |
| || (oob_data16[2] & 0xff00) != 0xff00) |
| return 1; |
| } else { |
| /* Note - bad block marker can be on first or second page */ |
| if (nand_read_oob(nand, page0 + badpos, 1, &retlen, (unsigned char *)&oob_data) |
| || oob_data != 0xff |
| || nand_read_oob (nand, page1 + badpos, 1, &retlen, (unsigned char *)&oob_data) |
| || oob_data != 0xff) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* print bad blocks in NAND flash */ |
| void nand_print_bad(struct nand_chip* nand) |
| { |
| unsigned long pos; |
| |
| for (pos = 0; pos < nand->totlen; pos += nand->erasesize) { |
| if (check_block(nand, pos)) |
| printf(" 0x%8.8lx\n", pos); |
| } |
| puts("\n"); |
| } |
| |
| /* cmd: 0: NANDRW_WRITE write, fail on bad block |
| * 1: NANDRW_READ read, fail on bad block |
| * 2: NANDRW_WRITE | NANDRW_JFFS2 write, skip bad blocks |
| * 3: NANDRW_READ | NANDRW_JFFS2 read, data all 0xff for bad blocks |
| * 7: NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP read, skip bad blocks |
| */ |
| int nand_legacy_rw (struct nand_chip* nand, int cmd, |
| size_t start, size_t len, |
| size_t * retlen, u_char * buf) |
| { |
| int ret = 0, n, total = 0; |
| char eccbuf[6]; |
| /* eblk (once set) is the start of the erase block containing the |
| * data being processed. |
| */ |
| unsigned long eblk = ~0; /* force mismatch on first pass */ |
| unsigned long erasesize = nand->erasesize; |
| |
| while (len) { |
| if ((start & (-erasesize)) != eblk) { |
| /* have crossed into new erase block, deal with |
| * it if it is sure marked bad. |
| */ |
| eblk = start & (-erasesize); /* start of block */ |
| if (check_block(nand, eblk)) { |
| if (cmd == (NANDRW_READ | NANDRW_JFFS2)) { |
| while (len > 0 && |
| start - eblk < erasesize) { |
| *(buf++) = 0xff; |
| ++start; |
| ++total; |
| --len; |
| } |
| continue; |
| } else if (cmd == (NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP)) { |
| start += erasesize; |
| continue; |
| } else if (cmd == (NANDRW_WRITE | NANDRW_JFFS2)) { |
| /* skip bad block */ |
| start += erasesize; |
| continue; |
| } else { |
| ret = 1; |
| break; |
| } |
| } |
| } |
| /* The ECC will not be calculated correctly if |
| less than 512 is written or read */ |
| /* Is request at least 512 bytes AND it starts on a proper boundry */ |
| if((start != ROUND_DOWN(start, 0x200)) || (len < 0x200)) |
| printf("Warning block writes should be at least 512 bytes and start on a 512 byte boundry\n"); |
| |
| if (cmd & NANDRW_READ) { |
| ret = nand_read_ecc(nand, start, |
| min(len, eblk + erasesize - start), |
| (size_t *)&n, (u_char*)buf, (u_char *)eccbuf); |
| } else { |
| ret = nand_write_ecc(nand, start, |
| min(len, eblk + erasesize - start), |
| (size_t *)&n, (u_char*)buf, (u_char *)eccbuf); |
| } |
| |
| if (ret) |
| break; |
| |
| start += n; |
| buf += n; |
| total += n; |
| len -= n; |
| } |
| if (retlen) |
| *retlen = total; |
| |
| return ret; |
| } |
| |
| void nand_print(struct nand_chip *nand) |
| { |
| if (nand->numchips > 1) { |
| printf("%s at 0x%lx,\n" |
| "\t %d chips %s, size %d MB, \n" |
| "\t total size %ld MB, sector size %ld kB\n", |
| nand->name, nand->IO_ADDR, nand->numchips, |
| nand->chips_name, 1 << (nand->chipshift - 20), |
| nand->totlen >> 20, nand->erasesize >> 10); |
| } |
| else { |
| printf("%s at 0x%lx (", nand->chips_name, nand->IO_ADDR); |
| print_size(nand->totlen, ", "); |
| print_size(nand->erasesize, " sector)\n"); |
| } |
| } |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| static int NanD_WaitReady(struct nand_chip *nand, int ale_wait) |
| { |
| /* This is inline, to optimise the common case, where it's ready instantly */ |
| int ret = 0; |
| |
| #ifdef NAND_NO_RB /* in config file, shorter delays currently wrap accesses */ |
| if(ale_wait) |
| NAND_WAIT_READY(nand); /* do the worst case 25us wait */ |
| else |
| udelay(10); |
| #else /* has functional r/b signal */ |
| NAND_WAIT_READY(nand); |
| #endif |
| return ret; |
| } |
| |
| /* NanD_Command: Send a flash command to the flash chip */ |
| |
| static inline int NanD_Command(struct nand_chip *nand, unsigned char command) |
| { |
| unsigned long nandptr = nand->IO_ADDR; |
| |
| /* Assert the CLE (Command Latch Enable) line to the flash chip */ |
| NAND_CTL_SETCLE(nandptr); |
| |
| /* Send the command */ |
| WRITE_NAND_COMMAND(command, nandptr); |
| |
| /* Lower the CLE line */ |
| NAND_CTL_CLRCLE(nandptr); |
| |
| #ifdef NAND_NO_RB |
| if(command == NAND_CMD_RESET){ |
| u_char ret_val; |
| NanD_Command(nand, NAND_CMD_STATUS); |
| do { |
| ret_val = READ_NAND(nandptr);/* wait till ready */ |
| } while((ret_val & 0x40) != 0x40); |
| } |
| #endif |
| return NanD_WaitReady(nand, 0); |
| } |
| |
| /* NanD_Address: Set the current address for the flash chip */ |
| |
| static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs) |
| { |
| unsigned long nandptr; |
| int i; |
| |
| nandptr = nand->IO_ADDR; |
| |
| /* Assert the ALE (Address Latch Enable) line to the flash chip */ |
| NAND_CTL_SETALE(nandptr); |
| |
| /* Send the address */ |
| /* Devices with 256-byte page are addressed as: |
| * Column (bits 0-7), Page (bits 8-15, 16-23, 24-31) |
| * there is no device on the market with page256 |
| * and more than 24 bits. |
| * Devices with 512-byte page are addressed as: |
| * Column (bits 0-7), Page (bits 9-16, 17-24, 25-31) |
| * 25-31 is sent only if the chip support it. |
| * bit 8 changes the read command to be sent |
| * (NAND_CMD_READ0 or NAND_CMD_READ1). |
| */ |
| |
| if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) |
| WRITE_NAND_ADDRESS(ofs, nandptr); |
| |
| ofs = ofs >> nand->page_shift; |
| |
| if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) { |
| for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8) { |
| WRITE_NAND_ADDRESS(ofs, nandptr); |
| } |
| } |
| |
| /* Lower the ALE line */ |
| NAND_CTL_CLRALE(nandptr); |
| |
| /* Wait for the chip to respond */ |
| return NanD_WaitReady(nand, 1); |
| } |
| |
| /* NanD_SelectChip: Select a given flash chip within the current floor */ |
| |
| static inline int NanD_SelectChip(struct nand_chip *nand, int chip) |
| { |
| /* Wait for it to be ready */ |
| return NanD_WaitReady(nand, 0); |
| } |
| |
| /* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */ |
| |
| static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip) |
| { |
| int mfr, id, i; |
| |
| NAND_ENABLE_CE(nand); /* set pin low */ |
| /* Reset the chip */ |
| if (NanD_Command(nand, NAND_CMD_RESET)) { |
| #ifdef NAND_DEBUG |
| printf("NanD_Command (reset) for %d,%d returned true\n", |
| floor, chip); |
| #endif |
| NAND_DISABLE_CE(nand); /* set pin high */ |
| return 0; |
| } |
| |
| /* Read the NAND chip ID: 1. Send ReadID command */ |
| if (NanD_Command(nand, NAND_CMD_READID)) { |
| #ifdef NAND_DEBUG |
| printf("NanD_Command (ReadID) for %d,%d returned true\n", |
| floor, chip); |
| #endif |
| NAND_DISABLE_CE(nand); /* set pin high */ |
| return 0; |
| } |
| |
| /* Read the NAND chip ID: 2. Send address byte zero */ |
| NanD_Address(nand, ADDR_COLUMN, 0); |
| |
| /* Read the manufacturer and device id codes from the device */ |
| |
| mfr = READ_NAND(nand->IO_ADDR); |
| |
| id = READ_NAND(nand->IO_ADDR); |
| |
| NAND_DISABLE_CE(nand); /* set pin high */ |
| |
| #ifdef NAND_DEBUG |
| printf("NanD_Command (ReadID) got %x %x\n", mfr, id); |
| #endif |
| if (mfr == 0xff || mfr == 0) { |
| /* No response - return failure */ |
| return 0; |
| } |
| |
| /* Check it's the same as the first chip we identified. |
| * M-Systems say that any given nand_chip device should only |
| * contain _one_ type of flash part, although that's not a |
| * hardware restriction. */ |
| if (nand->mfr) { |
| if (nand->mfr == mfr && nand->id == id) { |
| return 1; /* This is another the same the first */ |
| } else { |
| printf("Flash chip at floor %d, chip %d is different:\n", |
| floor, chip); |
| } |
| } |
| |
| /* Print and store the manufacturer and ID codes. */ |
| for (i = 0; nand_flash_ids[i].name != NULL; i++) { |
| if (mfr == nand_flash_ids[i].manufacture_id && |
| id == nand_flash_ids[i].model_id) { |
| #ifdef NAND_DEBUG |
| printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, " |
| "Chip ID: 0x%2.2X (%s)\n", mfr, id, |
| nand_flash_ids[i].name); |
| #endif |
| if (!nand->mfr) { |
| nand->mfr = mfr; |
| nand->id = id; |
| nand->chipshift = |
| nand_flash_ids[i].chipshift; |
| nand->page256 = nand_flash_ids[i].page256; |
| nand->eccsize = 256; |
| if (nand->page256) { |
| nand->oobblock = 256; |
| nand->oobsize = 8; |
| nand->page_shift = 8; |
| } else { |
| nand->oobblock = 512; |
| nand->oobsize = 16; |
| nand->page_shift = 9; |
| } |
| nand->pageadrlen = nand_flash_ids[i].pageadrlen; |
| nand->erasesize = nand_flash_ids[i].erasesize; |
| nand->chips_name = nand_flash_ids[i].name; |
| nand->bus16 = nand_flash_ids[i].bus16; |
| return 1; |
| } |
| return 0; |
| } |
| } |
| |
| |
| #ifdef NAND_DEBUG |
| /* We haven't fully identified the chip. Print as much as we know. */ |
| printf("Unknown flash chip found: %2.2X %2.2X\n", |
| id, mfr); |
| #endif |
| |
| return 0; |
| } |
| |
| /* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */ |
| |
| static void NanD_ScanChips(struct nand_chip *nand) |
| { |
| int floor, chip; |
| int numchips[NAND_MAX_FLOORS]; |
| int maxchips = NAND_MAX_CHIPS; |
| int ret = 1; |
| |
| nand->numchips = 0; |
| nand->mfr = 0; |
| nand->id = 0; |
| |
| |
| /* For each floor, find the number of valid chips it contains */ |
| for (floor = 0; floor < NAND_MAX_FLOORS; floor++) { |
| ret = 1; |
| numchips[floor] = 0; |
| for (chip = 0; chip < maxchips && ret != 0; chip++) { |
| |
| ret = NanD_IdentChip(nand, floor, chip); |
| if (ret) { |
| numchips[floor]++; |
| nand->numchips++; |
| } |
| } |
| } |
| |
| /* If there are none at all that we recognise, bail */ |
| if (!nand->numchips) { |
| #ifdef NAND_DEBUG |
| puts ("No NAND flash chips recognised.\n"); |
| #endif |
| return; |
| } |
| |
| /* Allocate an array to hold the information for each chip */ |
| nand->chips = malloc(sizeof(struct Nand) * nand->numchips); |
| if (!nand->chips) { |
| puts ("No memory for allocating chip info structures\n"); |
| return; |
| } |
| |
| ret = 0; |
| |
| /* Fill out the chip array with {floor, chipno} for each |
| * detected chip in the device. */ |
| for (floor = 0; floor < NAND_MAX_FLOORS; floor++) { |
| for (chip = 0; chip < numchips[floor]; chip++) { |
| nand->chips[ret].floor = floor; |
| nand->chips[ret].chip = chip; |
| nand->chips[ret].curadr = 0; |
| nand->chips[ret].curmode = 0x50; |
| ret++; |
| } |
| } |
| |
| /* Calculate and print the total size of the device */ |
| nand->totlen = nand->numchips * (1 << nand->chipshift); |
| |
| #ifdef NAND_DEBUG |
| printf("%d flash chips found. Total nand_chip size: %ld MB\n", |
| nand->numchips, nand->totlen >> 20); |
| #endif |
| } |
| |
| /* we need to be fast here, 1 us per read translates to 1 second per meg */ |
| static void NanD_ReadBuf (struct nand_chip *nand, u_char * data_buf, int cntr) |
| { |
| unsigned long nandptr = nand->IO_ADDR; |
| |
| NanD_Command (nand, NAND_CMD_READ0); |
| |
| if (nand->bus16) { |
| u16 val; |
| |
| while (cntr >= 16) { |
| val = READ_NAND (nandptr); |
| *data_buf++ = val & 0xff; |
| *data_buf++ = val >> 8; |
| val = READ_NAND (nandptr); |
| *data_buf++ = val & 0xff; |
| *data_buf++ = val >> 8; |
| val = READ_NAND (nandptr); |
| *data_buf++ = val & 0xff; |
| *data_buf++ = val >> 8; |
| val = READ_NAND (nandptr); |
| *data_buf++ = val & 0xff; |
| *data_buf++ = val >> 8; |
| val = READ_NAND (nandptr); |
| *data_buf++ = val & 0xff; |
| *data_buf++ = val >> 8; |
| val = READ_NAND (nandptr); |
| *data_buf++ = val & 0xff; |
| *data_buf++ = val >> 8; |
| val = READ_NAND (nandptr); |
| *data_buf++ = val & 0xff; |
| *data_buf++ = val >> 8; |
| val = READ_NAND (nandptr); |
| *data_buf++ = val & 0xff; |
| *data_buf++ = val >> 8; |
| cntr -= 16; |
| } |
| |
| while (cntr > 0) { |
| val = READ_NAND (nandptr); |
| *data_buf++ = val & 0xff; |
| *data_buf++ = val >> 8; |
| cntr -= 2; |
| } |
| } else { |
| while (cntr >= 16) { |
| *data_buf++ = READ_NAND (nandptr); |
| *data_buf++ = READ_NAND (nandptr); |
| *data_buf++ = READ_NAND (nandptr); |
| *data_buf++ = READ_NAND (nandptr); |
| *data_buf++ = READ_NAND (nandptr); |
| *data_buf++ = READ_NAND (nandptr); |
| *data_buf++ = READ_NAND (nandptr); |
| *data_buf++ = READ_NAND (nandptr); |
| *data_buf++ = READ_NAND (nandptr); |
| *data_buf++ = READ_NAND (nandptr); |
| *data_buf++ = READ_NAND (nandptr); |
| *data_buf++ = READ_NAND (nandptr); |
| *data_buf++ = READ_NAND (nandptr); |
| *data_buf++ = READ_NAND (nandptr); |
| *data_buf++ = READ_NAND (nandptr); |
| *data_buf++ = READ_NAND (nandptr); |
| cntr -= 16; |
| } |
| |
| while (cntr > 0) { |
| *data_buf++ = READ_NAND (nandptr); |
| cntr--; |
| } |
| } |
| } |
| |
| /* |
| * NAND read with ECC |
| */ |
| static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len, |
| size_t * retlen, u_char *buf, u_char *ecc_code) |
| { |
| int col, page; |
| int ecc_status = 0; |
| #ifdef CONFIG_MTD_NAND_ECC |
| int j; |
| int ecc_failed = 0; |
| u_char *data_poi; |
| u_char ecc_calc[6]; |
| #endif |
| |
| /* Do not allow reads past end of device */ |
| if ((start + len) > nand->totlen) { |
| printf ("%s: Attempt read beyond end of device %x %x %x\n", |
| __FUNCTION__, (uint) start, (uint) len, (uint) nand->totlen); |
| *retlen = 0; |
| return -1; |
| } |
| |
| /* First we calculate the starting page */ |
| /*page = shr(start, nand->page_shift);*/ |
| page = start >> nand->page_shift; |
| |
| /* Get raw starting column */ |
| col = start & (nand->oobblock - 1); |
| |
| /* Initialize return value */ |
| *retlen = 0; |
| |
| /* Select the NAND device */ |
| NAND_ENABLE_CE(nand); /* set pin low */ |
| |
| /* Loop until all data read */ |
| while (*retlen < len) { |
| |
| #ifdef CONFIG_MTD_NAND_ECC |
| /* Do we have this page in cache ? */ |
| if (nand->cache_page == page) |
| goto readdata; |
| /* Send the read command */ |
| NanD_Command(nand, NAND_CMD_READ0); |
| if (nand->bus16) { |
| NanD_Address(nand, ADDR_COLUMN_PAGE, |
| (page << nand->page_shift) + (col >> 1)); |
| } else { |
| NanD_Address(nand, ADDR_COLUMN_PAGE, |
| (page << nand->page_shift) + col); |
| } |
| |
| /* Read in a page + oob data */ |
| NanD_ReadBuf(nand, nand->data_buf, nand->oobblock + nand->oobsize); |
| |
| /* copy data into cache, for read out of cache and if ecc fails */ |
| if (nand->data_cache) { |
| memcpy (nand->data_cache, nand->data_buf, |
| nand->oobblock + nand->oobsize); |
| } |
| |
| /* Pick the ECC bytes out of the oob data */ |
| for (j = 0; j < 6; j++) { |
| ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])]; |
| } |
| |
| /* Calculate the ECC and verify it */ |
| /* If block was not written with ECC, skip ECC */ |
| if (oob_config.eccvalid_pos != -1 && |
| (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) { |
| |
| nand_calculate_ecc (&nand->data_buf[0], &ecc_calc[0]); |
| switch (nand_correct_data (&nand->data_buf[0], &ecc_code[0], &ecc_calc[0])) { |
| case -1: |
| printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page); |
| ecc_failed++; |
| break; |
| case 1: |
| case 2: /* transfer ECC corrected data to cache */ |
| if (nand->data_cache) |
| memcpy (nand->data_cache, nand->data_buf, 256); |
| break; |
| } |
| } |
| |
| if (oob_config.eccvalid_pos != -1 && |
| nand->oobblock == 512 && (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0xf0) != 0xf0) { |
| |
| nand_calculate_ecc (&nand->data_buf[256], &ecc_calc[3]); |
| switch (nand_correct_data (&nand->data_buf[256], &ecc_code[3], &ecc_calc[3])) { |
| case -1: |
| printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page); |
| ecc_failed++; |
| break; |
| case 1: |
| case 2: /* transfer ECC corrected data to cache */ |
| if (nand->data_cache) |
| memcpy (&nand->data_cache[256], &nand->data_buf[256], 256); |
| break; |
| } |
| } |
| readdata: |
| /* Read the data from ECC data buffer into return buffer */ |
| data_poi = (nand->data_cache) ? nand->data_cache : nand->data_buf; |
| data_poi += col; |
| if ((*retlen + (nand->oobblock - col)) >= len) { |
| memcpy (buf + *retlen, data_poi, len - *retlen); |
| *retlen = len; |
| } else { |
| memcpy (buf + *retlen, data_poi, nand->oobblock - col); |
| *retlen += nand->oobblock - col; |
| } |
| /* Set cache page address, invalidate, if ecc_failed */ |
| nand->cache_page = (nand->data_cache && !ecc_failed) ? page : -1; |
| |
| ecc_status += ecc_failed; |
| ecc_failed = 0; |
| |
| #else |
| /* Send the read command */ |
| NanD_Command(nand, NAND_CMD_READ0); |
| if (nand->bus16) { |
| NanD_Address(nand, ADDR_COLUMN_PAGE, |
| (page << nand->page_shift) + (col >> 1)); |
| } else { |
| NanD_Address(nand, ADDR_COLUMN_PAGE, |
| (page << nand->page_shift) + col); |
| } |
| |
| /* Read the data directly into the return buffer */ |
| if ((*retlen + (nand->oobblock - col)) >= len) { |
| NanD_ReadBuf(nand, buf + *retlen, len - *retlen); |
| *retlen = len; |
| /* We're done */ |
| continue; |
| } else { |
| NanD_ReadBuf(nand, buf + *retlen, nand->oobblock - col); |
| *retlen += nand->oobblock - col; |
| } |
| #endif |
| /* For subsequent reads align to page boundary. */ |
| col = 0; |
| /* Increment page address */ |
| page++; |
| } |
| |
| /* De-select the NAND device */ |
| NAND_DISABLE_CE(nand); /* set pin high */ |
| |
| /* |
| * Return success, if no ECC failures, else -EIO |
| * fs driver will take care of that, because |
| * retlen == desired len and result == -EIO |
| */ |
| return ecc_status ? -1 : 0; |
| } |
| |
| /* |
| * Nand_page_program function is used for write and writev ! |
| */ |
| static int nand_write_page (struct nand_chip *nand, |
| int page, int col, int last, u_char * ecc_code) |
| { |
| |
| int i; |
| unsigned long nandptr = nand->IO_ADDR; |
| |
| #ifdef CONFIG_MTD_NAND_ECC |
| #ifdef CONFIG_MTD_NAND_VERIFY_WRITE |
| int ecc_bytes = (nand->oobblock == 512) ? 6 : 3; |
| #endif |
| #endif |
| /* pad oob area */ |
| for (i = nand->oobblock; i < nand->oobblock + nand->oobsize; i++) |
| nand->data_buf[i] = 0xff; |
| |
| #ifdef CONFIG_MTD_NAND_ECC |
| /* Zero out the ECC array */ |
| for (i = 0; i < 6; i++) |
| ecc_code[i] = 0x00; |
| |
| /* Read back previous written data, if col > 0 */ |
| if (col) { |
| NanD_Command (nand, NAND_CMD_READ0); |
| if (nand->bus16) { |
| NanD_Address (nand, ADDR_COLUMN_PAGE, |
| (page << nand->page_shift) + (col >> 1)); |
| } else { |
| NanD_Address (nand, ADDR_COLUMN_PAGE, |
| (page << nand->page_shift) + col); |
| } |
| |
| if (nand->bus16) { |
| u16 val; |
| |
| for (i = 0; i < col; i += 2) { |
| val = READ_NAND (nandptr); |
| nand->data_buf[i] = val & 0xff; |
| nand->data_buf[i + 1] = val >> 8; |
| } |
| } else { |
| for (i = 0; i < col; i++) |
| nand->data_buf[i] = READ_NAND (nandptr); |
| } |
| } |
| |
| /* Calculate and write the ECC if we have enough data */ |
| if ((col < nand->eccsize) && (last >= nand->eccsize)) { |
| nand_calculate_ecc (&nand->data_buf[0], &(ecc_code[0])); |
| for (i = 0; i < 3; i++) { |
| nand->data_buf[(nand->oobblock + |
| oob_config.ecc_pos[i])] = ecc_code[i]; |
| } |
| if (oob_config.eccvalid_pos != -1) { |
| nand->data_buf[nand->oobblock + |
| oob_config.eccvalid_pos] = 0xf0; |
| } |
| } |
| |
| /* Calculate and write the second ECC if we have enough data */ |
| if ((nand->oobblock == 512) && (last == nand->oobblock)) { |
| nand_calculate_ecc (&nand->data_buf[256], &(ecc_code[3])); |
| for (i = 3; i < 6; i++) { |
| nand->data_buf[(nand->oobblock + |
| oob_config.ecc_pos[i])] = ecc_code[i]; |
| } |
| if (oob_config.eccvalid_pos != -1) { |
| nand->data_buf[nand->oobblock + |
| oob_config.eccvalid_pos] &= 0x0f; |
| } |
| } |
| #endif |
| /* Prepad for partial page programming !!! */ |
| for (i = 0; i < col; i++) |
| nand->data_buf[i] = 0xff; |
| |
| /* Postpad for partial page programming !!! oob is already padded */ |
| for (i = last; i < nand->oobblock; i++) |
| nand->data_buf[i] = 0xff; |
| |
| /* Send command to begin auto page programming */ |
| NanD_Command (nand, NAND_CMD_READ0); |
| NanD_Command (nand, NAND_CMD_SEQIN); |
| if (nand->bus16) { |
| NanD_Address (nand, ADDR_COLUMN_PAGE, |
| (page << nand->page_shift) + (col >> 1)); |
| } else { |
| NanD_Address (nand, ADDR_COLUMN_PAGE, |
| (page << nand->page_shift) + col); |
| } |
| |
| /* Write out complete page of data */ |
| if (nand->bus16) { |
| for (i = 0; i < (nand->oobblock + nand->oobsize); i += 2) { |
| WRITE_NAND (nand->data_buf[i] + |
| (nand->data_buf[i + 1] << 8), |
| nand->IO_ADDR); |
| } |
| } else { |
| for (i = 0; i < (nand->oobblock + nand->oobsize); i++) |
| WRITE_NAND (nand->data_buf[i], nand->IO_ADDR); |
| } |
| |
| /* Send command to actually program the data */ |
| NanD_Command (nand, NAND_CMD_PAGEPROG); |
| NanD_Command (nand, NAND_CMD_STATUS); |
| #ifdef NAND_NO_RB |
| { |
| u_char ret_val; |
| |
| do { |
| ret_val = READ_NAND (nandptr); /* wait till ready */ |
| } while ((ret_val & 0x40) != 0x40); |
| } |
| #endif |
| /* See if device thinks it succeeded */ |
| if (READ_NAND (nand->IO_ADDR) & 0x01) { |
| printf ("%s: Failed write, page 0x%08x, ", __FUNCTION__, |
| page); |
| return -1; |
| } |
| #ifdef CONFIG_MTD_NAND_VERIFY_WRITE |
| /* |
| * The NAND device assumes that it is always writing to |
| * a cleanly erased page. Hence, it performs its internal |
| * write verification only on bits that transitioned from |
| * 1 to 0. The device does NOT verify the whole page on a |
| * byte by byte basis. It is possible that the page was |
| * not completely erased or the page is becoming unusable |
| * due to wear. The read with ECC would catch the error |
| * later when the ECC page check fails, but we would rather |
| * catch it early in the page write stage. Better to write |
| * no data than invalid data. |
| */ |
| |
| /* Send command to read back the page */ |
| if (col < nand->eccsize) |
| NanD_Command (nand, NAND_CMD_READ0); |
| else |
| NanD_Command (nand, NAND_CMD_READ1); |
| if (nand->bus16) { |
| NanD_Address (nand, ADDR_COLUMN_PAGE, |
| (page << nand->page_shift) + (col >> 1)); |
| } else { |
| NanD_Address (nand, ADDR_COLUMN_PAGE, |
| (page << nand->page_shift) + col); |
| } |
| |
| /* Loop through and verify the data */ |
| if (nand->bus16) { |
| for (i = col; i < last; i = +2) { |
| if ((nand->data_buf[i] + |
| (nand->data_buf[i + 1] << 8)) != READ_NAND (nand->IO_ADDR)) { |
| printf ("%s: Failed write verify, page 0x%08x ", |
| __FUNCTION__, page); |
| return -1; |
| } |
| } |
| } else { |
| for (i = col; i < last; i++) { |
| if (nand->data_buf[i] != READ_NAND (nand->IO_ADDR)) { |
| printf ("%s: Failed write verify, page 0x%08x ", |
| __FUNCTION__, page); |
| return -1; |
| } |
| } |
| } |
| |
| #ifdef CONFIG_MTD_NAND_ECC |
| /* |
| * We also want to check that the ECC bytes wrote |
| * correctly for the same reasons stated above. |
| */ |
| NanD_Command (nand, NAND_CMD_READOOB); |
| if (nand->bus16) { |
| NanD_Address (nand, ADDR_COLUMN_PAGE, |
| (page << nand->page_shift) + (col >> 1)); |
| } else { |
| NanD_Address (nand, ADDR_COLUMN_PAGE, |
| (page << nand->page_shift) + col); |
| } |
| if (nand->bus16) { |
| for (i = 0; i < nand->oobsize; i += 2) { |
| u16 val; |
| |
| val = READ_NAND (nand->IO_ADDR); |
| nand->data_buf[i] = val & 0xff; |
| nand->data_buf[i + 1] = val >> 8; |
| } |
| } else { |
| for (i = 0; i < nand->oobsize; i++) { |
| nand->data_buf[i] = READ_NAND (nand->IO_ADDR); |
| } |
| } |
| for (i = 0; i < ecc_bytes; i++) { |
| if ((nand->data_buf[(oob_config.ecc_pos[i])] != ecc_code[i]) && ecc_code[i]) { |
| printf ("%s: Failed ECC write " |
| "verify, page 0x%08x, " |
| "%6i bytes were succesful\n", |
| __FUNCTION__, page, i); |
| return -1; |
| } |
| } |
| #endif /* CONFIG_MTD_NAND_ECC */ |
| #endif /* CONFIG_MTD_NAND_VERIFY_WRITE */ |
| return 0; |
| } |
| |
| static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len, |
| size_t * retlen, const u_char * buf, u_char * ecc_code) |
| { |
| int i, page, col, cnt, ret = 0; |
| |
| /* Do not allow write past end of device */ |
| if ((to + len) > nand->totlen) { |
| printf ("%s: Attempt to write past end of page\n", __FUNCTION__); |
| return -1; |
| } |
| |
| /* Shift to get page */ |
| page = ((int) to) >> nand->page_shift; |
| |
| /* Get the starting column */ |
| col = to & (nand->oobblock - 1); |
| |
| /* Initialize return length value */ |
| *retlen = 0; |
| |
| /* Select the NAND device */ |
| #ifdef CONFIG_OMAP1510 |
| archflashwp(0,0); |
| #endif |
| #ifdef CONFIG_SYS_NAND_WP |
| NAND_WP_OFF(); |
| #endif |
| |
| NAND_ENABLE_CE(nand); /* set pin low */ |
| |
| /* Check the WP bit */ |
| NanD_Command(nand, NAND_CMD_STATUS); |
| if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { |
| printf ("%s: Device is write protected!!!\n", __FUNCTION__); |
| ret = -1; |
| goto out; |
| } |
| |
| /* Loop until all data is written */ |
| while (*retlen < len) { |
| /* Invalidate cache, if we write to this page */ |
| if (nand->cache_page == page) |
| nand->cache_page = -1; |
| |
| /* Write data into buffer */ |
| if ((col + len) >= nand->oobblock) { |
| for (i = col, cnt = 0; i < nand->oobblock; i++, cnt++) { |
| nand->data_buf[i] = buf[(*retlen + cnt)]; |
| } |
| } else { |
| for (i = col, cnt = 0; cnt < (len - *retlen); i++, cnt++) { |
| nand->data_buf[i] = buf[(*retlen + cnt)]; |
| } |
| } |
| /* We use the same function for write and writev !) */ |
| ret = nand_write_page (nand, page, col, i, ecc_code); |
| if (ret) |
| goto out; |
| |
| /* Next data start at page boundary */ |
| col = 0; |
| |
| /* Update written bytes count */ |
| *retlen += cnt; |
| |
| /* Increment page address */ |
| page++; |
| } |
| |
| /* Return happy */ |
| *retlen = len; |
| |
| out: |
| /* De-select the NAND device */ |
| NAND_DISABLE_CE(nand); /* set pin high */ |
| #ifdef CONFIG_OMAP1510 |
| archflashwp(0,1); |
| #endif |
| #ifdef CONFIG_SYS_NAND_WP |
| NAND_WP_ON(); |
| #endif |
| |
| return ret; |
| } |
| |
| /* read from the 16 bytes of oob data that correspond to a 512 byte |
| * page or 2 256-byte pages. |
| */ |
| int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len, |
| size_t * retlen, u_char * buf) |
| { |
| int len256 = 0; |
| struct Nand *mychip; |
| int ret = 0; |
| |
| mychip = &nand->chips[ofs >> nand->chipshift]; |
| |
| /* update address for 2M x 8bit devices. OOB starts on the second */ |
| /* page to maintain compatibility with nand_read_ecc. */ |
| if (nand->page256) { |
| if (!(ofs & 0x8)) |
| ofs += 0x100; |
| else |
| ofs -= 0x8; |
| } |
| |
| NAND_ENABLE_CE(nand); /* set pin low */ |
| NanD_Command(nand, NAND_CMD_READOOB); |
| if (nand->bus16) { |
| NanD_Address(nand, ADDR_COLUMN_PAGE, |
| ((ofs >> nand->page_shift) << nand->page_shift) + |
| ((ofs & (nand->oobblock - 1)) >> 1)); |
| } else { |
| NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); |
| } |
| |
| /* treat crossing 8-byte OOB data for 2M x 8bit devices */ |
| /* Note: datasheet says it should automaticaly wrap to the */ |
| /* next OOB block, but it didn't work here. mf. */ |
| if (nand->page256 && ofs + len > (ofs | 0x7) + 1) { |
| len256 = (ofs | 0x7) + 1 - ofs; |
| NanD_ReadBuf(nand, buf, len256); |
| |
| NanD_Command(nand, NAND_CMD_READOOB); |
| NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff)); |
| } |
| |
| NanD_ReadBuf(nand, &buf[len256], len - len256); |
| |
| *retlen = len; |
| /* Reading the full OOB data drops us off of the end of the page, |
| * causing the flash device to go into busy mode, so we need |
| * to wait until ready 11.4.1 and Toshiba TC58256FT nands */ |
| |
| ret = NanD_WaitReady(nand, 1); |
| NAND_DISABLE_CE(nand); /* set pin high */ |
| |
| return ret; |
| |
| } |
| |
| /* write to the 16 bytes of oob data that correspond to a 512 byte |
| * page or 2 256-byte pages. |
| */ |
| int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len, |
| size_t * retlen, const u_char * buf) |
| { |
| int len256 = 0; |
| int i; |
| unsigned long nandptr = nand->IO_ADDR; |
| |
| #ifdef PSYCHO_DEBUG |
| printf("nand_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n", |
| (long)ofs, len, buf[0], buf[1], buf[2], buf[3], |
| buf[8], buf[9], buf[14],buf[15]); |
| #endif |
| |
| NAND_ENABLE_CE(nand); /* set pin low to enable chip */ |
| |
| /* Reset the chip */ |
| NanD_Command(nand, NAND_CMD_RESET); |
| |
| /* issue the Read2 command to set the pointer to the Spare Data Area. */ |
| NanD_Command(nand, NAND_CMD_READOOB); |
| if (nand->bus16) { |
| NanD_Address(nand, ADDR_COLUMN_PAGE, |
| ((ofs >> nand->page_shift) << nand->page_shift) + |
| ((ofs & (nand->oobblock - 1)) >> 1)); |
| } else { |
| NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); |
| } |
| |
| /* update address for 2M x 8bit devices. OOB starts on the second */ |
| /* page to maintain compatibility with nand_read_ecc. */ |
| if (nand->page256) { |
| if (!(ofs & 0x8)) |
| ofs += 0x100; |
| else |
| ofs -= 0x8; |
| } |
| |
| /* issue the Serial Data In command to initial the Page Program process */ |
| NanD_Command(nand, NAND_CMD_SEQIN); |
| if (nand->bus16) { |
| NanD_Address(nand, ADDR_COLUMN_PAGE, |
| ((ofs >> nand->page_shift) << nand->page_shift) + |
| ((ofs & (nand->oobblock - 1)) >> 1)); |
| } else { |
| NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); |
| } |
| |
| /* treat crossing 8-byte OOB data for 2M x 8bit devices */ |
| /* Note: datasheet says it should automaticaly wrap to the */ |
| /* next OOB block, but it didn't work here. mf. */ |
| if (nand->page256 && ofs + len > (ofs | 0x7) + 1) { |
| len256 = (ofs | 0x7) + 1 - ofs; |
| for (i = 0; i < len256; i++) |
| WRITE_NAND(buf[i], nandptr); |
| |
| NanD_Command(nand, NAND_CMD_PAGEPROG); |
| NanD_Command(nand, NAND_CMD_STATUS); |
| #ifdef NAND_NO_RB |
| { u_char ret_val; |
| do { |
| ret_val = READ_NAND(nandptr); /* wait till ready */ |
| } while ((ret_val & 0x40) != 0x40); |
| } |
| #endif |
| if (READ_NAND(nandptr) & 1) { |
| puts ("Error programming oob data\n"); |
| /* There was an error */ |
| NAND_DISABLE_CE(nand); /* set pin high */ |
| *retlen = 0; |
| return -1; |
| } |
| NanD_Command(nand, NAND_CMD_SEQIN); |
| NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff)); |
| } |
| |
| if (nand->bus16) { |
| for (i = len256; i < len; i += 2) { |
| WRITE_NAND(buf[i] + (buf[i+1] << 8), nandptr); |
| } |
| } else { |
| for (i = len256; i < len; i++) |
| WRITE_NAND(buf[i], nandptr); |
| } |
| |
| NanD_Command(nand, NAND_CMD_PAGEPROG); |
| NanD_Command(nand, NAND_CMD_STATUS); |
| #ifdef NAND_NO_RB |
| { u_char ret_val; |
| do { |
| ret_val = READ_NAND(nandptr); /* wait till ready */ |
| } while ((ret_val & 0x40) != 0x40); |
| } |
| #endif |
| if (READ_NAND(nandptr) & 1) { |
| puts ("Error programming oob data\n"); |
| /* There was an error */ |
| NAND_DISABLE_CE(nand); /* set pin high */ |
| *retlen = 0; |
| return -1; |
| } |
| |
| NAND_DISABLE_CE(nand); /* set pin high */ |
| *retlen = len; |
| return 0; |
| |
| } |
| |
| int nand_legacy_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean) |
| { |
| /* This is defined as a structure so it will work on any system |
| * using native endian jffs2 (the default). |
| */ |
| static struct jffs2_unknown_node clean_marker = { |
| JFFS2_MAGIC_BITMASK, |
| JFFS2_NODETYPE_CLEANMARKER, |
| 8 /* 8 bytes in this node */ |
| }; |
| unsigned long nandptr; |
| struct Nand *mychip; |
| int ret = 0; |
| |
| if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) { |
| printf ("Offset and size must be sector aligned, erasesize = %d\n", |
| (int) nand->erasesize); |
| return -1; |
| } |
| |
| nandptr = nand->IO_ADDR; |
| |
| /* Select the NAND device */ |
| #ifdef CONFIG_OMAP1510 |
| archflashwp(0,0); |
| #endif |
| #ifdef CONFIG_SYS_NAND_WP |
| NAND_WP_OFF(); |
| #endif |
| NAND_ENABLE_CE(nand); /* set pin low */ |
| |
| /* Check the WP bit */ |
| NanD_Command(nand, NAND_CMD_STATUS); |
| if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { |
| printf ("nand_write_ecc: Device is write protected!!!\n"); |
| ret = -1; |
| goto out; |
| } |
| |
| /* Check the WP bit */ |
| NanD_Command(nand, NAND_CMD_STATUS); |
| if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { |
| printf ("%s: Device is write protected!!!\n", __FUNCTION__); |
| ret = -1; |
| goto out; |
| } |
| |
| /* FIXME: Do nand in the background. Use timers or schedule_task() */ |
| while(len) { |
| /*mychip = &nand->chips[shr(ofs, nand->chipshift)];*/ |
| mychip = &nand->chips[ofs >> nand->chipshift]; |
| |
| /* always check for bad block first, genuine bad blocks |
| * should _never_ be erased. |
| */ |
| if (ALLOW_ERASE_BAD_DEBUG || !check_block(nand, ofs)) { |
| /* Select the NAND device */ |
| NAND_ENABLE_CE(nand); /* set pin low */ |
| |
| NanD_Command(nand, NAND_CMD_ERASE1); |
| NanD_Address(nand, ADDR_PAGE, ofs); |
| NanD_Command(nand, NAND_CMD_ERASE2); |
| |
| NanD_Command(nand, NAND_CMD_STATUS); |
| |
| #ifdef NAND_NO_RB |
| { u_char ret_val; |
| do { |
| ret_val = READ_NAND(nandptr); /* wait till ready */ |
| } while ((ret_val & 0x40) != 0x40); |
| } |
| #endif |
| if (READ_NAND(nandptr) & 1) { |
| printf ("%s: Error erasing at 0x%lx\n", |
| __FUNCTION__, (long)ofs); |
| /* There was an error */ |
| ret = -1; |
| goto out; |
| } |
| if (clean) { |
| int n; /* return value not used */ |
| int p, l; |
| |
| /* clean marker position and size depend |
| * on the page size, since 256 byte pages |
| * only have 8 bytes of oob data |
| */ |
| if (nand->page256) { |
| p = NAND_JFFS2_OOB8_FSDAPOS; |
| l = NAND_JFFS2_OOB8_FSDALEN; |
| } else { |
| p = NAND_JFFS2_OOB16_FSDAPOS; |
| l = NAND_JFFS2_OOB16_FSDALEN; |
| } |
| |
| ret = nand_write_oob(nand, ofs + p, l, (size_t *)&n, |
| (u_char *)&clean_marker); |
| /* quit here if write failed */ |
| if (ret) |
| goto out; |
| } |
| } |
| ofs += nand->erasesize; |
| len -= nand->erasesize; |
| } |
| |
| out: |
| /* De-select the NAND device */ |
| NAND_DISABLE_CE(nand); /* set pin high */ |
| #ifdef CONFIG_OMAP1510 |
| archflashwp(0,1); |
| #endif |
| #ifdef CONFIG_SYS_NAND_WP |
| NAND_WP_ON(); |
| #endif |
| |
| return ret; |
| } |
| |
| |
| static inline int nandcheck(unsigned long potential, unsigned long physadr) |
| { |
| return 0; |
| } |
| |
| unsigned long nand_probe(unsigned long physadr) |
| { |
| struct nand_chip *nand = NULL; |
| int i = 0, ChipID = 1; |
| |
| #ifdef CONFIG_MTD_NAND_ECC_JFFS2 |
| oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0; |
| oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1; |
| oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2; |
| oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3; |
| oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4; |
| oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5; |
| oob_config.eccvalid_pos = 4; |
| #else |
| oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0; |
| oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1; |
| oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2; |
| oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3; |
| oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4; |
| oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5; |
| oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS; |
| #endif |
| oob_config.badblock_pos = 5; |
| |
| for (i=0; i<CONFIG_SYS_MAX_NAND_DEVICE; i++) { |
| if (nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) { |
| nand = &nand_dev_desc[i]; |
| break; |
| } |
| } |
| if (!nand) |
| return (0); |
| |
| memset((char *)nand, 0, sizeof(struct nand_chip)); |
| |
| nand->IO_ADDR = physadr; |
| nand->cache_page = -1; /* init the cache page */ |
| NanD_ScanChips(nand); |
| |
| if (nand->totlen == 0) { |
| /* no chips found, clean up and quit */ |
| memset((char *)nand, 0, sizeof(struct nand_chip)); |
| nand->ChipID = NAND_ChipID_UNKNOWN; |
| return (0); |
| } |
| |
| nand->ChipID = ChipID; |
| if (curr_device == -1) |
| curr_device = i; |
| |
| nand->data_buf = malloc (nand->oobblock + nand->oobsize); |
| if (!nand->data_buf) { |
| puts ("Cannot allocate memory for data structures.\n"); |
| return (0); |
| } |
| |
| return (nand->totlen); |
| } |
| |
| #ifdef CONFIG_MTD_NAND_ECC |
| /* |
| * Pre-calculated 256-way 1 byte column parity |
| */ |
| static const u_char nand_ecc_precalc_table[] = { |
| 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, |
| 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00, |
| 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, |
| 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, |
| 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, |
| 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, |
| 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, |
| 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, |
| 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, |
| 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, |
| 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, |
| 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, |
| 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, |
| 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, |
| 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, |
| 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, |
| 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, |
| 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, |
| 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, |
| 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, |
| 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, |
| 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, |
| 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, |
| 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, |
| 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, |
| 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, |
| 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, |
| 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, |
| 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, |
| 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, |
| 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, |
| 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00 |
| }; |
| |
| |
| /* |
| * Creates non-inverted ECC code from line parity |
| */ |
| static void nand_trans_result(u_char reg2, u_char reg3, |
| u_char *ecc_code) |
| { |
| u_char a, b, i, tmp1, tmp2; |
| |
| /* Initialize variables */ |
| a = b = 0x80; |
| tmp1 = tmp2 = 0; |
| |
| /* Calculate first ECC byte */ |
| for (i = 0; i < 4; i++) { |
| if (reg3 & a) /* LP15,13,11,9 --> ecc_code[0] */ |
| tmp1 |= b; |
| b >>= 1; |
| if (reg2 & a) /* LP14,12,10,8 --> ecc_code[0] */ |
| tmp1 |= b; |
| b >>= 1; |
| a >>= 1; |
| } |
| |
| /* Calculate second ECC byte */ |
| b = 0x80; |
| for (i = 0; i < 4; i++) { |
| if (reg3 & a) /* LP7,5,3,1 --> ecc_code[1] */ |
| tmp2 |= b; |
| b >>= 1; |
| if (reg2 & a) /* LP6,4,2,0 --> ecc_code[1] */ |
| tmp2 |= b; |
| b >>= 1; |
| a >>= 1; |
| } |
| |
| /* Store two of the ECC bytes */ |
| ecc_code[0] = tmp1; |
| ecc_code[1] = tmp2; |
| } |
| |
| /* |
| * Calculate 3 byte ECC code for 256 byte block |
| */ |
| static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code) |
| { |
| u_char idx, reg1, reg3; |
| int j; |
| |
| /* Initialize variables */ |
| reg1 = reg3 = 0; |
| ecc_code[0] = ecc_code[1] = ecc_code[2] = 0; |
| |
| /* Build up column parity */ |
| for(j = 0; j < 256; j++) { |
| |
| /* Get CP0 - CP5 from table */ |
| idx = nand_ecc_precalc_table[dat[j]]; |
| reg1 ^= idx; |
| |
| /* All bit XOR = 1 ? */ |
| if (idx & 0x40) { |
| reg3 ^= (u_char) j; |
| } |
| } |
| |
| /* Create non-inverted ECC code from line parity */ |
| nand_trans_result((reg1 & 0x40) ? ~reg3 : reg3, reg3, ecc_code); |
| |
| /* Calculate final ECC code */ |
| ecc_code[0] = ~ecc_code[0]; |
| ecc_code[1] = ~ecc_code[1]; |
| ecc_code[2] = ((~reg1) << 2) | 0x03; |
| } |
| |
| /* |
| * Detect and correct a 1 bit error for 256 byte block |
| */ |
| static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc) |
| { |
| u_char a, b, c, d1, d2, d3, add, bit, i; |
| |
| /* Do error detection */ |
| d1 = calc_ecc[0] ^ read_ecc[0]; |
| d2 = calc_ecc[1] ^ read_ecc[1]; |
| d3 = calc_ecc[2] ^ read_ecc[2]; |
| |
| if ((d1 | d2 | d3) == 0) { |
| /* No errors */ |
| return 0; |
| } else { |
| a = (d1 ^ (d1 >> 1)) & 0x55; |
| b = (d2 ^ (d2 >> 1)) & 0x55; |
| c = (d3 ^ (d3 >> 1)) & 0x54; |
| |
| /* Found and will correct single bit error in the data */ |
| if ((a == 0x55) && (b == 0x55) && (c == 0x54)) { |
| c = 0x80; |
| add = 0; |
| a = 0x80; |
| for (i=0; i<4; i++) { |
| if (d1 & c) |
| add |= a; |
| c >>= 2; |
| a >>= 1; |
| } |
| c = 0x80; |
| for (i=0; i<4; i++) { |
| if (d2 & c) |
| add |= a; |
| c >>= 2; |
| a >>= 1; |
| } |
| bit = 0; |
| b = 0x04; |
| c = 0x80; |
| for (i=0; i<3; i++) { |
| if (d3 & c) |
| bit |= b; |
| c >>= 2; |
| b >>= 1; |
| } |
| b = 0x01; |
| a = dat[add]; |
| a ^= (b << bit); |
| dat[add] = a; |
| return 1; |
| } |
| else { |
| i = 0; |
| while (d1) { |
| if (d1 & 0x01) |
| ++i; |
| d1 >>= 1; |
| } |
| while (d2) { |
| if (d2 & 0x01) |
| ++i; |
| d2 >>= 1; |
| } |
| while (d3) { |
| if (d3 & 0x01) |
| ++i; |
| d3 >>= 1; |
| } |
| if (i == 1) { |
| /* ECC Code Error Correction */ |
| read_ecc[0] = calc_ecc[0]; |
| read_ecc[1] = calc_ecc[1]; |
| read_ecc[2] = calc_ecc[2]; |
| return 2; |
| } |
| else { |
| /* Uncorrectable Error */ |
| return -1; |
| } |
| } |
| } |
| |
| /* Should never happen */ |
| return -1; |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_JFFS2_NAND |
| int read_jffs2_nand(size_t start, size_t len, |
| size_t * retlen, u_char * buf, int nanddev) |
| { |
| return nand_legacy_rw(nand_dev_desc + nanddev, NANDRW_READ | NANDRW_JFFS2, |
| start, len, retlen, buf); |
| } |
| #endif /* CONFIG_JFFS2_NAND */ |