| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Common initialisation for Qualcomm Snapdragon boards. |
| * |
| * Copyright (c) 2024 Linaro Ltd. |
| * Author: Caleb Connolly <caleb.connolly@linaro.org> |
| */ |
| |
| #include "time.h" |
| #include <asm/armv8/mmu.h> |
| #include <asm/gpio.h> |
| #include <asm/io.h> |
| #include <asm/psci.h> |
| #include <asm/system.h> |
| #include <dm/device.h> |
| #include <dm/pinctrl.h> |
| #include <dm/uclass-internal.h> |
| #include <dm/read.h> |
| #include <power/regulator.h> |
| #include <env.h> |
| #include <init.h> |
| #include <linux/arm-smccc.h> |
| #include <linux/bug.h> |
| #include <linux/psci.h> |
| #include <linux/sizes.h> |
| #include <lmb.h> |
| #include <malloc.h> |
| #include <fdt_support.h> |
| #include <usb.h> |
| #include <sort.h> |
| |
| #include "qcom-priv.h" |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| static struct mm_region rbx_mem_map[CONFIG_NR_DRAM_BANKS + 2] = { { 0 } }; |
| |
| struct mm_region *mem_map = rbx_mem_map; |
| |
| int dram_init(void) |
| { |
| return fdtdec_setup_mem_size_base(); |
| } |
| |
| static int ddr_bank_cmp(const void *v1, const void *v2) |
| { |
| const struct { |
| phys_addr_t start; |
| phys_size_t size; |
| } *res1 = v1, *res2 = v2; |
| |
| if (!res1->size) |
| return 1; |
| if (!res2->size) |
| return -1; |
| |
| return (res1->start >> 24) - (res2->start >> 24); |
| } |
| |
| int dram_init_banksize(void) |
| { |
| int ret; |
| |
| ret = fdtdec_setup_memory_banksize(); |
| if (ret < 0) |
| return ret; |
| |
| if (CONFIG_NR_DRAM_BANKS < 2) |
| return 0; |
| |
| /* Sort our RAM banks -_- */ |
| qsort(gd->bd->bi_dram, CONFIG_NR_DRAM_BANKS, sizeof(gd->bd->bi_dram[0]), ddr_bank_cmp); |
| |
| return 0; |
| } |
| |
| static void show_psci_version(void) |
| { |
| struct arm_smccc_res res; |
| |
| arm_smccc_smc(ARM_PSCI_0_2_FN_PSCI_VERSION, 0, 0, 0, 0, 0, 0, 0, &res); |
| |
| debug("PSCI: v%ld.%ld\n", |
| PSCI_VERSION_MAJOR(res.a0), |
| PSCI_VERSION_MINOR(res.a0)); |
| } |
| |
| void *board_fdt_blob_setup(int *err) |
| { |
| phys_addr_t fdt; |
| /* Return DTB pointer passed by ABL */ |
| *err = 0; |
| fdt = get_prev_bl_fdt_addr(); |
| |
| /* |
| * If we bail then the board will simply not boot, instead let's |
| * try and use the FDT built into U-Boot if there is one... |
| * This avoids having a hard dependency on the previous stage bootloader |
| */ |
| |
| if (IS_ENABLED(CONFIG_OF_SEPARATE) && (!fdt || fdt != ALIGN(fdt, SZ_4K) || |
| fdt_check_header((void *)fdt))) { |
| debug("%s: Using built in FDT, bootloader gave us %#llx\n", __func__, fdt); |
| return (void *)gd->fdt_blob; |
| } |
| |
| return (void *)fdt; |
| } |
| |
| void reset_cpu(void) |
| { |
| psci_system_reset(); |
| } |
| |
| /* |
| * Some Qualcomm boards require GPIO configuration when switching USB modes. |
| * Support setting this configuration via pinctrl state. |
| */ |
| int board_usb_init(int index, enum usb_init_type init) |
| { |
| struct udevice *usb; |
| int ret = 0; |
| |
| /* USB device */ |
| ret = uclass_find_device_by_seq(UCLASS_USB, index, &usb); |
| if (ret) { |
| printf("Cannot find USB device\n"); |
| return ret; |
| } |
| |
| ret = dev_read_stringlist_search(usb, "pinctrl-names", |
| "device"); |
| /* No "device" pinctrl state, so just bail */ |
| if (ret < 0) |
| return 0; |
| |
| /* Select "default" or "device" pinctrl */ |
| switch (init) { |
| case USB_INIT_HOST: |
| pinctrl_select_state(usb, "default"); |
| break; |
| case USB_INIT_DEVICE: |
| pinctrl_select_state(usb, "device"); |
| break; |
| default: |
| debug("Unknown usb_init_type %d\n", init); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Some boards still need board specific init code, they can implement that by |
| * overriding this function. |
| * |
| * FIXME: get rid of board specific init code |
| */ |
| void __weak qcom_board_init(void) |
| { |
| } |
| |
| int board_init(void) |
| { |
| regulators_enable_boot_on(false); |
| show_psci_version(); |
| qcom_of_fixup_nodes(); |
| qcom_board_init(); |
| return 0; |
| } |
| |
| /* Sets up the "board", and "soc" environment variables as well as constructing the devicetree |
| * path, with a few quirks to handle non-standard dtb filenames. This is not meant to be a |
| * comprehensive solution to automatically picking the DTB, but aims to be correct for the |
| * majority case. For most devices it should be possible to make this algorithm work by |
| * adjusting the root compatible property in the U-Boot DTS. Handling devices with multiple |
| * variants that are all supported by a single U-Boot image will require implementing device- |
| * specific detection. |
| */ |
| static void configure_env(void) |
| { |
| const char *first_compat, *last_compat; |
| char *tmp; |
| char buf[32] = { 0 }; |
| /* |
| * Most DTB filenames follow the scheme: qcom/<soc>-[vendor]-<board>.dtb |
| * The vendor is skipped when it's a Qualcomm reference board, or the |
| * db845c. |
| */ |
| char dt_path[64] = { 0 }; |
| int compat_count, ret; |
| ofnode root; |
| |
| root = ofnode_root(); |
| /* This is almost always 2, but be explicit that we want the first and last compatibles |
| * not the first and second. |
| */ |
| compat_count = ofnode_read_string_count(root, "compatible"); |
| if (compat_count < 2) { |
| log_warning("%s: only one root compatible bailing!\n", __func__); |
| return; |
| } |
| |
| /* The most specific device compatible (e.g. "thundercomm,db845c") */ |
| ret = ofnode_read_string_index(root, "compatible", 0, &first_compat); |
| if (ret < 0) { |
| log_warning("Can't read first compatible\n"); |
| return; |
| } |
| |
| /* The last compatible is always the SoC compatible */ |
| ret = ofnode_read_string_index(root, "compatible", compat_count - 1, &last_compat); |
| if (ret < 0) { |
| log_warning("Can't read second compatible\n"); |
| return; |
| } |
| |
| /* Copy the second compat (e.g. "qcom,sdm845") into buf */ |
| strlcpy(buf, last_compat, sizeof(buf) - 1); |
| tmp = buf; |
| |
| /* strsep() is destructive, it replaces the comma with a \0 */ |
| if (!strsep(&tmp, ",")) { |
| log_warning("second compatible '%s' has no ','\n", buf); |
| return; |
| } |
| |
| /* tmp now points to just the "sdm845" part of the string */ |
| env_set("soc", tmp); |
| |
| /* Now figure out the "board" part from the first compatible */ |
| memset(buf, 0, sizeof(buf)); |
| strlcpy(buf, first_compat, sizeof(buf) - 1); |
| tmp = buf; |
| |
| /* The Qualcomm reference boards (RBx, HDK, etc) */ |
| if (!strncmp("qcom", buf, strlen("qcom"))) { |
| /* |
| * They all have the first compatible as "qcom,<soc>-<board>" |
| * (e.g. "qcom,qrb5165-rb5"). We extract just the part after |
| * the dash. |
| */ |
| if (!strsep(&tmp, "-")) { |
| log_warning("compatible '%s' has no '-'\n", buf); |
| return; |
| } |
| /* tmp is now "rb5" */ |
| env_set("board", tmp); |
| } else { |
| if (!strsep(&tmp, ",")) { |
| log_warning("compatible '%s' has no ','\n", buf); |
| return; |
| } |
| /* for thundercomm we just want the bit after the comma (e.g. "db845c"), |
| * for all other boards we replace the comma with a '-' and take both |
| * (e.g. "oneplus-enchilada") |
| */ |
| if (!strncmp("thundercomm", buf, strlen("thundercomm"))) { |
| env_set("board", tmp); |
| } else { |
| *(tmp - 1) = '-'; |
| env_set("board", buf); |
| } |
| } |
| |
| /* Now build the full path name */ |
| snprintf(dt_path, sizeof(dt_path), "qcom/%s-%s.dtb", |
| env_get("soc"), env_get("board")); |
| env_set("fdtfile", dt_path); |
| } |
| |
| void __weak qcom_late_init(void) |
| { |
| } |
| |
| #define KERNEL_COMP_SIZE SZ_64M |
| |
| #define addr_alloc(size) lmb_alloc(size, SZ_2M) |
| |
| /* Stolen from arch/arm/mach-apple/board.c */ |
| int board_late_init(void) |
| { |
| u32 status = 0; |
| |
| /* We need to be fairly conservative here as we support boards with just 1G of TOTAL RAM */ |
| status |= env_set_hex("kernel_addr_r", addr_alloc(SZ_128M)); |
| status |= env_set_hex("ramdisk_addr_r", addr_alloc(SZ_128M)); |
| status |= env_set_hex("kernel_comp_addr_r", addr_alloc(KERNEL_COMP_SIZE)); |
| status |= env_set_hex("kernel_comp_size", KERNEL_COMP_SIZE); |
| status |= env_set_hex("scriptaddr", addr_alloc(SZ_4M)); |
| status |= env_set_hex("pxefile_addr_r", addr_alloc(SZ_4M)); |
| status |= env_set_hex("fdt_addr_r", addr_alloc(SZ_2M)); |
| |
| if (status) |
| log_warning("%s: Failed to set run time variables\n", __func__); |
| |
| configure_env(); |
| qcom_late_init(); |
| |
| return 0; |
| } |
| |
| static void build_mem_map(void) |
| { |
| int i, j; |
| |
| /* |
| * Ensure the peripheral block is sized to correctly cover the address range |
| * up to the first memory bank. |
| * Don't map the first page to ensure that we actually trigger an abort on a |
| * null pointer access rather than just hanging. |
| * FIXME: we should probably split this into more precise regions |
| */ |
| mem_map[0].phys = 0x1000; |
| mem_map[0].virt = mem_map[0].phys; |
| mem_map[0].size = gd->bd->bi_dram[0].start - mem_map[0].phys; |
| mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | |
| PTE_BLOCK_NON_SHARE | |
| PTE_BLOCK_PXN | PTE_BLOCK_UXN; |
| |
| for (i = 1, j = 0; i < ARRAY_SIZE(rbx_mem_map) - 1 && gd->bd->bi_dram[j].size; i++, j++) { |
| mem_map[i].phys = gd->bd->bi_dram[j].start; |
| mem_map[i].virt = mem_map[i].phys; |
| mem_map[i].size = gd->bd->bi_dram[j].size; |
| mem_map[i].attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) | \ |
| PTE_BLOCK_INNER_SHARE; |
| } |
| |
| mem_map[i].phys = UINT64_MAX; |
| mem_map[i].size = 0; |
| |
| #ifdef DEBUG |
| debug("Configured memory map:\n"); |
| for (i = 0; mem_map[i].size; i++) |
| debug(" 0x%016llx - 0x%016llx: entry %d\n", |
| mem_map[i].phys, mem_map[i].phys + mem_map[i].size, i); |
| #endif |
| } |
| |
| u64 get_page_table_size(void) |
| { |
| return SZ_64K; |
| } |
| |
| static int fdt_cmp_res(const void *v1, const void *v2) |
| { |
| const struct fdt_resource *res1 = v1, *res2 = v2; |
| |
| return res1->start - res2->start; |
| } |
| |
| #define N_RESERVED_REGIONS 32 |
| |
| /* Mark all no-map regions as PTE_TYPE_FAULT to prevent speculative access. |
| * On some platforms this is enough to trigger a security violation and trap |
| * to EL3. |
| */ |
| static void carve_out_reserved_memory(void) |
| { |
| static struct fdt_resource res[N_RESERVED_REGIONS] = { 0 }; |
| int parent, rmem, count, i = 0; |
| phys_addr_t start; |
| size_t size; |
| |
| /* Some reserved nodes must be carved out, as the cache-prefetcher may otherwise |
| * attempt to access them, causing a security exception. |
| */ |
| parent = fdt_path_offset(gd->fdt_blob, "/reserved-memory"); |
| if (parent <= 0) { |
| log_err("No reserved memory regions found\n"); |
| return; |
| } |
| |
| /* Collect the reserved memory regions */ |
| fdt_for_each_subnode(rmem, gd->fdt_blob, parent) { |
| const fdt32_t *ptr; |
| int len; |
| if (!fdt_getprop(gd->fdt_blob, rmem, "no-map", NULL)) |
| continue; |
| |
| if (i == N_RESERVED_REGIONS) { |
| log_err("Too many reserved regions!\n"); |
| break; |
| } |
| |
| /* Read the address and size out from the reg property. Doing this "properly" with |
| * fdt_get_resource() takes ~70ms on SDM845, but open-coding the happy path here |
| * takes <1ms... Oh the woes of no dcache. |
| */ |
| ptr = fdt_getprop(gd->fdt_blob, rmem, "reg", &len); |
| if (ptr) { |
| /* Qualcomm devices use #address/size-cells = <2> but all reserved regions are within |
| * the 32-bit address space. So we can cheat here for speed. |
| */ |
| res[i].start = fdt32_to_cpu(ptr[1]); |
| res[i].end = res[i].start + fdt32_to_cpu(ptr[3]); |
| i++; |
| } |
| } |
| |
| /* Sort the reserved memory regions by address */ |
| count = i; |
| qsort(res, count, sizeof(struct fdt_resource), fdt_cmp_res); |
| |
| /* Now set the right attributes for them. Often a lot of the regions are tightly packed together |
| * so we can optimise the number of calls to mmu_change_region_attr() by combining adjacent |
| * regions. |
| */ |
| start = ALIGN_DOWN(res[0].start, SZ_2M); |
| size = ALIGN(res[0].end - start, SZ_2M); |
| for (i = 1; i <= count; i++) { |
| /* We ideally want to 2M align everything for more efficient pagetables, but we must avoid |
| * overwriting reserved memory regions which shouldn't be mapped as FAULT (like those with |
| * compatible properties). |
| * If within 2M of the previous region, bump the size to include this region. Otherwise |
| * start a new region. |
| */ |
| if (i == count || start + size < res[i].start - SZ_2M) { |
| debug(" 0x%016llx - 0x%016llx: reserved\n", |
| start, start + size); |
| mmu_change_region_attr(start, size, PTE_TYPE_FAULT); |
| /* If this is the final region then quit here before we index |
| * out of bounds... |
| */ |
| if (i == count) |
| break; |
| start = ALIGN_DOWN(res[i].start, SZ_2M); |
| size = ALIGN(res[i].end - start, SZ_2M); |
| } else { |
| /* Bump size if this region is immediately after the previous one */ |
| size = ALIGN(res[i].end - start, SZ_2M); |
| } |
| } |
| } |
| |
| /* This function open-codes setup_all_pgtables() so that we can |
| * insert additional mappings *before* turning on the MMU. |
| */ |
| void enable_caches(void) |
| { |
| u64 tlb_addr = gd->arch.tlb_addr; |
| u64 tlb_size = gd->arch.tlb_size; |
| u64 pt_size; |
| ulong carveout_start; |
| |
| gd->arch.tlb_fillptr = tlb_addr; |
| |
| build_mem_map(); |
| |
| icache_enable(); |
| |
| /* Create normal system page tables */ |
| setup_pgtables(); |
| |
| pt_size = (uintptr_t)gd->arch.tlb_fillptr - |
| (uintptr_t)gd->arch.tlb_addr; |
| debug("Primary pagetable size: %lluKiB\n", pt_size / 1024); |
| |
| /* Create emergency page tables */ |
| gd->arch.tlb_size -= pt_size; |
| gd->arch.tlb_addr = gd->arch.tlb_fillptr; |
| setup_pgtables(); |
| gd->arch.tlb_emerg = gd->arch.tlb_addr; |
| gd->arch.tlb_addr = tlb_addr; |
| gd->arch.tlb_size = tlb_size; |
| |
| /* We do the carveouts only for QCS404, for now. */ |
| if (fdt_node_check_compatible(gd->fdt_blob, 0, "qcom,qcs404") == 0) { |
| carveout_start = get_timer(0); |
| /* Takes ~20-50ms on SDM845 */ |
| carve_out_reserved_memory(); |
| debug("carveout time: %lums\n", get_timer(carveout_start)); |
| } |
| dcache_enable(); |
| } |