blob: ad7e1c0f2460e3deb5bf24ff6e80ef8c6e80139c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* (C) Copyright 2017 Rockchip Electronics Co., Ltd
*/
#include <bitfield.h>
#include <clk-uclass.h>
#include <dm.h>
#include <errno.h>
#include <log.h>
#include <malloc.h>
#include <syscon.h>
#include <asm/arch-rockchip/clock.h>
#include <asm/arch-rockchip/cru_px30.h>
#include <asm/arch-rockchip/hardware.h>
#include <asm/global_data.h>
#include <dm/device-internal.h>
#include <dm/lists.h>
#include <dt-bindings/clock/px30-cru.h>
#include <linux/bitops.h>
#include <linux/delay.h>
DECLARE_GLOBAL_DATA_PTR;
enum {
VCO_MAX_HZ = 3200U * 1000000,
VCO_MIN_HZ = 800 * 1000000,
OUTPUT_MAX_HZ = 3200U * 1000000,
OUTPUT_MIN_HZ = 24 * 1000000,
};
#define PX30_VOP_PLL_LIMIT 600000000
#define PX30_PLL_RATE(_rate, _refdiv, _fbdiv, _postdiv1, \
_postdiv2, _dsmpd, _frac) \
{ \
.rate = _rate##U, \
.fbdiv = _fbdiv, \
.postdiv1 = _postdiv1, \
.refdiv = _refdiv, \
.postdiv2 = _postdiv2, \
.dsmpd = _dsmpd, \
.frac = _frac, \
}
#define PX30_CPUCLK_RATE(_rate, _aclk_div, _pclk_div) \
{ \
.rate = _rate##U, \
.aclk_div = _aclk_div, \
.pclk_div = _pclk_div, \
}
#define DIV_TO_RATE(input_rate, div) ((input_rate) / ((div) + 1))
#define PX30_CLK_DUMP(_id, _name, _iscru) \
{ \
.id = _id, \
.name = _name, \
.is_cru = _iscru, \
}
static struct pll_rate_table px30_pll_rates[] = {
/* _mhz, _refdiv, _fbdiv, _postdiv1, _postdiv2, _dsmpd, _frac */
PX30_PLL_RATE(1200000000, 1, 50, 1, 1, 1, 0),
PX30_PLL_RATE(1188000000, 2, 99, 1, 1, 1, 0),
PX30_PLL_RATE(1100000000, 12, 550, 1, 1, 1, 0),
PX30_PLL_RATE(1008000000, 1, 84, 2, 1, 1, 0),
PX30_PLL_RATE(1000000000, 6, 500, 2, 1, 1, 0),
PX30_PLL_RATE(816000000, 1, 68, 2, 1, 1, 0),
PX30_PLL_RATE(600000000, 1, 75, 3, 1, 1, 0),
};
static struct cpu_rate_table px30_cpu_rates[] = {
PX30_CPUCLK_RATE(1200000000, 1, 5),
PX30_CPUCLK_RATE(1008000000, 1, 5),
PX30_CPUCLK_RATE(816000000, 1, 3),
PX30_CPUCLK_RATE(600000000, 1, 3),
PX30_CPUCLK_RATE(408000000, 1, 1),
};
static u8 pll_mode_shift[PLL_COUNT] = {
APLL_MODE_SHIFT, DPLL_MODE_SHIFT, CPLL_MODE_SHIFT,
NPLL_MODE_SHIFT, GPLL_MODE_SHIFT
};
static u32 pll_mode_mask[PLL_COUNT] = {
APLL_MODE_MASK, DPLL_MODE_MASK, CPLL_MODE_MASK,
NPLL_MODE_MASK, GPLL_MODE_MASK
};
static struct pll_rate_table auto_table;
static ulong px30_clk_get_pll_rate(struct px30_clk_priv *priv,
enum px30_pll_id pll_id);
static struct pll_rate_table *pll_clk_set_by_auto(u32 drate)
{
struct pll_rate_table *rate = &auto_table;
u32 ref_khz = OSC_HZ / KHz, refdiv, fbdiv = 0;
u32 postdiv1, postdiv2 = 1;
u32 fref_khz;
u32 diff_khz, best_diff_khz;
const u32 max_refdiv = 63, max_fbdiv = 3200, min_fbdiv = 16;
const u32 max_postdiv1 = 7, max_postdiv2 = 7;
u32 vco_khz;
u32 rate_khz = drate / KHz;
if (!drate) {
printf("%s: the frequency can't be 0 Hz\n", __func__);
return NULL;
}
postdiv1 = DIV_ROUND_UP(VCO_MIN_HZ / 1000, rate_khz);
if (postdiv1 > max_postdiv1) {
postdiv2 = DIV_ROUND_UP(postdiv1, max_postdiv1);
postdiv1 = DIV_ROUND_UP(postdiv1, postdiv2);
}
vco_khz = rate_khz * postdiv1 * postdiv2;
if (vco_khz < (VCO_MIN_HZ / KHz) || vco_khz > (VCO_MAX_HZ / KHz) ||
postdiv2 > max_postdiv2) {
printf("%s: Cannot find out a supported VCO for Freq (%uHz)\n",
__func__, rate_khz);
return NULL;
}
rate->postdiv1 = postdiv1;
rate->postdiv2 = postdiv2;
best_diff_khz = vco_khz;
for (refdiv = 1; refdiv < max_refdiv && best_diff_khz; refdiv++) {
fref_khz = ref_khz / refdiv;
fbdiv = vco_khz / fref_khz;
if (fbdiv >= max_fbdiv || fbdiv <= min_fbdiv)
continue;
diff_khz = vco_khz - fbdiv * fref_khz;
if (fbdiv + 1 < max_fbdiv && diff_khz > fref_khz / 2) {
fbdiv++;
diff_khz = fref_khz - diff_khz;
}
if (diff_khz >= best_diff_khz)
continue;
best_diff_khz = diff_khz;
rate->refdiv = refdiv;
rate->fbdiv = fbdiv;
}
if (best_diff_khz > 4 * (MHz / KHz)) {
printf("%s: Failed to match output frequency %u bestis %u Hz\n",
__func__, rate_khz,
best_diff_khz * KHz);
return NULL;
}
return rate;
}
static const struct pll_rate_table *get_pll_settings(unsigned long rate)
{
unsigned int rate_count = ARRAY_SIZE(px30_pll_rates);
int i;
for (i = 0; i < rate_count; i++) {
if (rate == px30_pll_rates[i].rate)
return &px30_pll_rates[i];
}
return pll_clk_set_by_auto(rate);
}
static const struct cpu_rate_table *get_cpu_settings(unsigned long rate)
{
unsigned int rate_count = ARRAY_SIZE(px30_cpu_rates);
int i;
for (i = 0; i < rate_count; i++) {
if (rate == px30_cpu_rates[i].rate)
return &px30_cpu_rates[i];
}
return NULL;
}
/*
* How to calculate the PLL(from TRM V0.3 Part 1 Page 63):
* Formulas also embedded within the Fractional PLL Verilog model:
* If DSMPD = 1 (DSM is disabled, "integer mode")
* FOUTVCO = FREF / REFDIV * FBDIV
* FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2
* Where:
* FOUTVCO = Fractional PLL non-divided output frequency
* FOUTPOSTDIV = Fractional PLL divided output frequency
* (output of second post divider)
* FREF = Fractional PLL input reference frequency, (the OSC_HZ 24MHz input)
* REFDIV = Fractional PLL input reference clock divider
* FBDIV = Integer value programmed into feedback divide
*
*/
static int rkclk_set_pll(struct px30_pll *pll, unsigned int *mode,
enum px30_pll_id pll_id,
unsigned long drate)
{
const struct pll_rate_table *rate;
uint vco_hz, output_hz;
rate = get_pll_settings(drate);
if (!rate) {
printf("%s unsupport rate\n", __func__);
return -EINVAL;
}
/* All PLLs have same VCO and output frequency range restrictions. */
vco_hz = OSC_HZ / 1000 * rate->fbdiv / rate->refdiv * 1000;
output_hz = vco_hz / rate->postdiv1 / rate->postdiv2;
debug("PLL at %p: fb=%d, ref=%d, pst1=%d, pst2=%d, vco=%u Hz, output=%u Hz\n",
pll, rate->fbdiv, rate->refdiv, rate->postdiv1,
rate->postdiv2, vco_hz, output_hz);
assert(vco_hz >= VCO_MIN_HZ && vco_hz <= VCO_MAX_HZ &&
output_hz >= OUTPUT_MIN_HZ && output_hz <= OUTPUT_MAX_HZ);
/*
* When power on or changing PLL setting,
* we must force PLL into slow mode to ensure output stable clock.
*/
rk_clrsetreg(mode, pll_mode_mask[pll_id],
PLLMUX_FROM_XIN24M << pll_mode_shift[pll_id]);
/* use integer mode */
rk_setreg(&pll->con1, 1 << PLL_DSMPD_SHIFT);
/* Power down */
rk_setreg(&pll->con1, 1 << PLL_PD_SHIFT);
rk_clrsetreg(&pll->con0,
PLL_POSTDIV1_MASK | PLL_FBDIV_MASK,
(rate->postdiv1 << PLL_POSTDIV1_SHIFT) | rate->fbdiv);
rk_clrsetreg(&pll->con1, PLL_POSTDIV2_MASK | PLL_REFDIV_MASK,
(rate->postdiv2 << PLL_POSTDIV2_SHIFT |
rate->refdiv << PLL_REFDIV_SHIFT));
/* Power Up */
rk_clrreg(&pll->con1, 1 << PLL_PD_SHIFT);
/* waiting for pll lock */
while (!(readl(&pll->con1) & (1 << PLL_LOCK_STATUS_SHIFT)))
udelay(1);
rk_clrsetreg(mode, pll_mode_mask[pll_id],
PLLMUX_FROM_PLL << pll_mode_shift[pll_id]);
return 0;
}
static uint32_t rkclk_pll_get_rate(struct px30_pll *pll, unsigned int *mode,
enum px30_pll_id pll_id)
{
u32 refdiv, fbdiv, postdiv1, postdiv2;
u32 con, shift, mask;
con = readl(mode);
shift = pll_mode_shift[pll_id];
mask = pll_mode_mask[pll_id];
switch ((con & mask) >> shift) {
case PLLMUX_FROM_XIN24M:
return OSC_HZ;
case PLLMUX_FROM_PLL:
/* normal mode */
con = readl(&pll->con0);
postdiv1 = (con & PLL_POSTDIV1_MASK) >> PLL_POSTDIV1_SHIFT;
fbdiv = (con & PLL_FBDIV_MASK) >> PLL_FBDIV_SHIFT;
con = readl(&pll->con1);
postdiv2 = (con & PLL_POSTDIV2_MASK) >> PLL_POSTDIV2_SHIFT;
refdiv = (con & PLL_REFDIV_MASK) >> PLL_REFDIV_SHIFT;
return (24 * fbdiv / (refdiv * postdiv1 * postdiv2)) * 1000000;
case PLLMUX_FROM_RTC32K:
default:
return 32768;
}
}
static ulong px30_i2c_get_clk(struct px30_clk_priv *priv, ulong clk_id)
{
struct px30_cru *cru = priv->cru;
u32 div, con;
switch (clk_id) {
case SCLK_I2C0:
con = readl(&cru->clksel_con[49]);
div = con >> CLK_I2C0_DIV_CON_SHIFT & CLK_I2C_DIV_CON_MASK;
break;
case SCLK_I2C1:
con = readl(&cru->clksel_con[49]);
div = con >> CLK_I2C1_DIV_CON_SHIFT & CLK_I2C_DIV_CON_MASK;
break;
case SCLK_I2C2:
con = readl(&cru->clksel_con[50]);
div = con >> CLK_I2C2_DIV_CON_SHIFT & CLK_I2C_DIV_CON_MASK;
break;
case SCLK_I2C3:
con = readl(&cru->clksel_con[50]);
div = con >> CLK_I2C3_DIV_CON_SHIFT & CLK_I2C_DIV_CON_MASK;
break;
default:
printf("do not support this i2c bus\n");
return -EINVAL;
}
return DIV_TO_RATE(priv->gpll_hz, div);
}
static ulong px30_i2c_set_clk(struct px30_clk_priv *priv, ulong clk_id, uint hz)
{
struct px30_cru *cru = priv->cru;
int src_clk_div;
src_clk_div = DIV_ROUND_UP(priv->gpll_hz, hz);
assert(src_clk_div - 1 <= 127);
switch (clk_id) {
case SCLK_I2C0:
rk_clrsetreg(&cru->clksel_con[49],
CLK_I2C_DIV_CON_MASK << CLK_I2C0_DIV_CON_SHIFT |
CLK_I2C_PLL_SEL_MASK << CLK_I2C0_PLL_SEL_SHIFT,
(src_clk_div - 1) << CLK_I2C0_DIV_CON_SHIFT |
CLK_I2C_PLL_SEL_GPLL << CLK_I2C0_PLL_SEL_SHIFT);
break;
case SCLK_I2C1:
rk_clrsetreg(&cru->clksel_con[49],
CLK_I2C_DIV_CON_MASK << CLK_I2C1_DIV_CON_SHIFT |
CLK_I2C_PLL_SEL_MASK << CLK_I2C1_PLL_SEL_SHIFT,
(src_clk_div - 1) << CLK_I2C1_DIV_CON_SHIFT |
CLK_I2C_PLL_SEL_GPLL << CLK_I2C1_PLL_SEL_SHIFT);
break;
case SCLK_I2C2:
rk_clrsetreg(&cru->clksel_con[50],
CLK_I2C_DIV_CON_MASK << CLK_I2C2_DIV_CON_SHIFT |
CLK_I2C_PLL_SEL_MASK << CLK_I2C2_PLL_SEL_SHIFT,
(src_clk_div - 1) << CLK_I2C2_DIV_CON_SHIFT |
CLK_I2C_PLL_SEL_GPLL << CLK_I2C2_PLL_SEL_SHIFT);
break;
case SCLK_I2C3:
rk_clrsetreg(&cru->clksel_con[50],
CLK_I2C_DIV_CON_MASK << CLK_I2C3_DIV_CON_SHIFT |
CLK_I2C_PLL_SEL_MASK << CLK_I2C3_PLL_SEL_SHIFT,
(src_clk_div - 1) << CLK_I2C3_DIV_CON_SHIFT |
CLK_I2C_PLL_SEL_GPLL << CLK_I2C3_PLL_SEL_SHIFT);
break;
default:
printf("do not support this i2c bus\n");
return -EINVAL;
}
return px30_i2c_get_clk(priv, clk_id);
}
/*
* calculate best rational approximation for a given fraction
* taking into account restricted register size, e.g. to find
* appropriate values for a pll with 5 bit denominator and
* 8 bit numerator register fields, trying to set up with a
* frequency ratio of 3.1415, one would say:
*
* rational_best_approximation(31415, 10000,
* (1 << 8) - 1, (1 << 5) - 1, &n, &d);
*
* you may look at given_numerator as a fixed point number,
* with the fractional part size described in given_denominator.
*
* for theoretical background, see:
* http://en.wikipedia.org/wiki/Continued_fraction
*/
static void rational_best_approximation(unsigned long given_numerator,
unsigned long given_denominator,
unsigned long max_numerator,
unsigned long max_denominator,
unsigned long *best_numerator,
unsigned long *best_denominator)
{
unsigned long n, d, n0, d0, n1, d1;
n = given_numerator;
d = given_denominator;
n0 = 0;
d1 = 0;
n1 = 1;
d0 = 1;
for (;;) {
unsigned long t, a;
if (n1 > max_numerator || d1 > max_denominator) {
n1 = n0;
d1 = d0;
break;
}
if (d == 0)
break;
t = d;
a = n / d;
d = n % d;
n = t;
t = n0 + a * n1;
n0 = n1;
n1 = t;
t = d0 + a * d1;
d0 = d1;
d1 = t;
}
*best_numerator = n1;
*best_denominator = d1;
}
static ulong px30_i2s_get_clk(struct px30_clk_priv *priv, ulong clk_id)
{
u32 con, fracdiv, gate;
u32 clk_src = priv->gpll_hz / 2;
unsigned long m, n;
struct px30_cru *cru = priv->cru;
switch (clk_id) {
case SCLK_I2S1:
con = readl(&cru->clksel_con[30]);
fracdiv = readl(&cru->clksel_con[31]);
gate = readl(&cru->clkgate_con[10]);
m = fracdiv & CLK_I2S1_FRAC_NUMERATOR_MASK;
m >>= CLK_I2S1_FRAC_NUMERATOR_SHIFT;
n = fracdiv & CLK_I2S1_FRAC_DENOMINATOR_MASK;
n >>= CLK_I2S1_FRAC_DENOMINATOR_SHIFT;
debug("con30: 0x%x, gate: 0x%x, frac: 0x%x\n",
con, gate, fracdiv);
break;
default:
printf("do not support this i2s bus\n");
return -EINVAL;
}
return clk_src * n / m;
}
static ulong px30_i2s_set_clk(struct px30_clk_priv *priv, ulong clk_id, uint hz)
{
u32 clk_src;
unsigned long m, n, val;
struct px30_cru *cru = priv->cru;
clk_src = priv->gpll_hz / 2;
rational_best_approximation(hz, clk_src,
GENMASK(16 - 1, 0),
GENMASK(16 - 1, 0),
&m, &n);
switch (clk_id) {
case SCLK_I2S1:
rk_clrsetreg(&cru->clksel_con[30],
CLK_I2S1_PLL_SEL_MASK, CLK_I2S1_PLL_SEL_GPLL);
rk_clrsetreg(&cru->clksel_con[30],
CLK_I2S1_DIV_CON_MASK, 0x1);
rk_clrsetreg(&cru->clksel_con[30],
CLK_I2S1_SEL_MASK, CLK_I2S1_SEL_FRAC);
val = m << CLK_I2S1_FRAC_NUMERATOR_SHIFT | n;
writel(val, &cru->clksel_con[31]);
rk_clrsetreg(&cru->clkgate_con[10],
CLK_I2S1_OUT_MCLK_PAD_MASK,
CLK_I2S1_OUT_MCLK_PAD_ENABLE);
break;
default:
printf("do not support this i2s bus\n");
return -EINVAL;
}
return px30_i2s_get_clk(priv, clk_id);
}
static ulong px30_nandc_get_clk(struct px30_clk_priv *priv)
{
struct px30_cru *cru = priv->cru;
u32 div, con;
con = readl(&cru->clksel_con[15]);
div = (con & NANDC_DIV_MASK) >> NANDC_DIV_SHIFT;
return DIV_TO_RATE(priv->gpll_hz, div);
}
static ulong px30_nandc_set_clk(struct px30_clk_priv *priv,
ulong set_rate)
{
struct px30_cru *cru = priv->cru;
int src_clk_div;
/* Select nandc source from GPLL by default */
/* nandc clock defaulg div 2 internal, need provide double in cru */
src_clk_div = DIV_ROUND_UP(priv->gpll_hz, set_rate);
assert(src_clk_div - 1 <= 31);
rk_clrsetreg(&cru->clksel_con[15],
NANDC_CLK_SEL_MASK | NANDC_PLL_MASK |
NANDC_DIV_MASK,
NANDC_CLK_SEL_NANDC << NANDC_CLK_SEL_SHIFT |
NANDC_SEL_GPLL << NANDC_PLL_SHIFT |
(src_clk_div - 1) << NANDC_DIV_SHIFT);
return px30_nandc_get_clk(priv);
}
static ulong px30_mmc_get_clk(struct px30_clk_priv *priv, uint clk_id)
{
struct px30_cru *cru = priv->cru;
u32 div, con, con_id;
switch (clk_id) {
case HCLK_SDMMC:
case SCLK_SDMMC:
con_id = 16;
break;
case HCLK_EMMC:
case SCLK_EMMC:
case SCLK_EMMC_SAMPLE:
con_id = 20;
break;
default:
return -EINVAL;
}
con = readl(&cru->clksel_con[con_id]);
div = (con & EMMC_DIV_MASK) >> EMMC_DIV_SHIFT;
if ((con & EMMC_PLL_MASK) >> EMMC_PLL_SHIFT
== EMMC_SEL_24M)
return DIV_TO_RATE(OSC_HZ, div) / 2;
else
return DIV_TO_RATE(priv->gpll_hz, div) / 2;
}
static ulong px30_mmc_set_clk(struct px30_clk_priv *priv,
ulong clk_id, ulong set_rate)
{
struct px30_cru *cru = priv->cru;
int src_clk_div;
u32 con_id;
switch (clk_id) {
case HCLK_SDMMC:
case SCLK_SDMMC:
con_id = 16;
break;
case HCLK_EMMC:
case SCLK_EMMC:
con_id = 20;
break;
default:
return -EINVAL;
}
/* Select clk_sdmmc/emmc source from GPLL by default */
/* mmc clock defaulg div 2 internal, need provide double in cru */
src_clk_div = DIV_ROUND_UP(priv->gpll_hz / 2, set_rate);
if (src_clk_div > 127) {
/* use 24MHz source for 400KHz clock */
src_clk_div = DIV_ROUND_UP(OSC_HZ / 2, set_rate);
rk_clrsetreg(&cru->clksel_con[con_id],
EMMC_PLL_MASK | EMMC_DIV_MASK,
EMMC_SEL_24M << EMMC_PLL_SHIFT |
(src_clk_div - 1) << EMMC_DIV_SHIFT);
} else {
rk_clrsetreg(&cru->clksel_con[con_id],
EMMC_PLL_MASK | EMMC_DIV_MASK,
EMMC_SEL_GPLL << EMMC_PLL_SHIFT |
(src_clk_div - 1) << EMMC_DIV_SHIFT);
}
rk_clrsetreg(&cru->clksel_con[con_id + 1], EMMC_CLK_SEL_MASK,
EMMC_CLK_SEL_EMMC);
return px30_mmc_get_clk(priv, clk_id);
}
static ulong px30_sfc_get_clk(struct px30_clk_priv *priv, uint clk_id)
{
struct px30_cru *cru = priv->cru;
u32 div, con;
con = readl(&cru->clksel_con[22]);
div = (con & SFC_DIV_CON_MASK) >> SFC_DIV_CON_SHIFT;
return DIV_TO_RATE(priv->gpll_hz, div);
}
static ulong px30_sfc_set_clk(struct px30_clk_priv *priv,
ulong clk_id, ulong set_rate)
{
struct px30_cru *cru = priv->cru;
int src_clk_div;
src_clk_div = DIV_ROUND_UP(priv->gpll_hz, set_rate);
rk_clrsetreg(&cru->clksel_con[22],
SFC_PLL_SEL_MASK | SFC_DIV_CON_MASK,
0 << SFC_PLL_SEL_SHIFT |
(src_clk_div - 1) << SFC_DIV_CON_SHIFT);
return px30_sfc_get_clk(priv, clk_id);
}
static ulong px30_pwm_get_clk(struct px30_clk_priv *priv, ulong clk_id)
{
struct px30_cru *cru = priv->cru;
u32 div, con;
switch (clk_id) {
case SCLK_PWM0:
con = readl(&cru->clksel_con[52]);
div = con >> CLK_PWM0_DIV_CON_SHIFT & CLK_PWM_DIV_CON_MASK;
break;
case SCLK_PWM1:
con = readl(&cru->clksel_con[52]);
div = con >> CLK_PWM1_DIV_CON_SHIFT & CLK_PWM_DIV_CON_MASK;
break;
default:
printf("do not support this pwm bus\n");
return -EINVAL;
}
return DIV_TO_RATE(priv->gpll_hz, div);
}
static ulong px30_pwm_set_clk(struct px30_clk_priv *priv, ulong clk_id, uint hz)
{
struct px30_cru *cru = priv->cru;
int src_clk_div;
src_clk_div = DIV_ROUND_UP(priv->gpll_hz, hz);
assert(src_clk_div - 1 <= 127);
switch (clk_id) {
case SCLK_PWM0:
rk_clrsetreg(&cru->clksel_con[52],
CLK_PWM_DIV_CON_MASK << CLK_PWM0_DIV_CON_SHIFT |
CLK_PWM_PLL_SEL_MASK << CLK_PWM0_PLL_SEL_SHIFT,
(src_clk_div - 1) << CLK_PWM0_DIV_CON_SHIFT |
CLK_PWM_PLL_SEL_GPLL << CLK_PWM0_PLL_SEL_SHIFT);
break;
case SCLK_PWM1:
rk_clrsetreg(&cru->clksel_con[52],
CLK_PWM_DIV_CON_MASK << CLK_PWM1_DIV_CON_SHIFT |
CLK_PWM_PLL_SEL_MASK << CLK_PWM1_PLL_SEL_SHIFT,
(src_clk_div - 1) << CLK_PWM1_DIV_CON_SHIFT |
CLK_PWM_PLL_SEL_GPLL << CLK_PWM1_PLL_SEL_SHIFT);
break;
default:
printf("do not support this pwm bus\n");
return -EINVAL;
}
return px30_pwm_get_clk(priv, clk_id);
}
static ulong px30_saradc_get_clk(struct px30_clk_priv *priv)
{
struct px30_cru *cru = priv->cru;
u32 div, con;
con = readl(&cru->clksel_con[55]);
div = con >> CLK_SARADC_DIV_CON_SHIFT & CLK_SARADC_DIV_CON_MASK;
return DIV_TO_RATE(OSC_HZ, div);
}
static ulong px30_saradc_set_clk(struct px30_clk_priv *priv, uint hz)
{
struct px30_cru *cru = priv->cru;
int src_clk_div;
src_clk_div = DIV_ROUND_UP(OSC_HZ, hz);
assert(src_clk_div - 1 <= 2047);
rk_clrsetreg(&cru->clksel_con[55],
CLK_SARADC_DIV_CON_MASK,
(src_clk_div - 1) << CLK_SARADC_DIV_CON_SHIFT);
return px30_saradc_get_clk(priv);
}
static ulong px30_tsadc_get_clk(struct px30_clk_priv *priv)
{
struct px30_cru *cru = priv->cru;
u32 div, con;
con = readl(&cru->clksel_con[54]);
div = con >> CLK_SARADC_DIV_CON_SHIFT & CLK_SARADC_DIV_CON_MASK;
return DIV_TO_RATE(OSC_HZ, div);
}
static ulong px30_tsadc_set_clk(struct px30_clk_priv *priv, uint hz)
{
struct px30_cru *cru = priv->cru;
int src_clk_div;
src_clk_div = DIV_ROUND_UP(OSC_HZ, hz);
assert(src_clk_div - 1 <= 2047);
rk_clrsetreg(&cru->clksel_con[54],
CLK_SARADC_DIV_CON_MASK,
(src_clk_div - 1) << CLK_SARADC_DIV_CON_SHIFT);
return px30_tsadc_get_clk(priv);
}
static ulong px30_spi_get_clk(struct px30_clk_priv *priv, ulong clk_id)
{
struct px30_cru *cru = priv->cru;
u32 div, con;
switch (clk_id) {
case SCLK_SPI0:
con = readl(&cru->clksel_con[53]);
div = con >> CLK_SPI0_DIV_CON_SHIFT & CLK_SPI_DIV_CON_MASK;
break;
case SCLK_SPI1:
con = readl(&cru->clksel_con[53]);
div = con >> CLK_SPI1_DIV_CON_SHIFT & CLK_SPI_DIV_CON_MASK;
break;
default:
printf("do not support this pwm bus\n");
return -EINVAL;
}
return DIV_TO_RATE(priv->gpll_hz, div);
}
static ulong px30_spi_set_clk(struct px30_clk_priv *priv, ulong clk_id, uint hz)
{
struct px30_cru *cru = priv->cru;
int src_clk_div;
src_clk_div = DIV_ROUND_UP(priv->gpll_hz, hz);
assert(src_clk_div - 1 <= 127);
switch (clk_id) {
case SCLK_SPI0:
rk_clrsetreg(&cru->clksel_con[53],
CLK_SPI_DIV_CON_MASK << CLK_SPI0_DIV_CON_SHIFT |
CLK_SPI_PLL_SEL_MASK << CLK_SPI0_PLL_SEL_SHIFT,
(src_clk_div - 1) << CLK_SPI0_DIV_CON_SHIFT |
CLK_SPI_PLL_SEL_GPLL << CLK_SPI0_PLL_SEL_SHIFT);
break;
case SCLK_SPI1:
rk_clrsetreg(&cru->clksel_con[53],
CLK_SPI_DIV_CON_MASK << CLK_SPI1_DIV_CON_SHIFT |
CLK_SPI_PLL_SEL_MASK << CLK_SPI1_PLL_SEL_SHIFT,
(src_clk_div - 1) << CLK_SPI1_DIV_CON_SHIFT |
CLK_SPI_PLL_SEL_GPLL << CLK_SPI1_PLL_SEL_SHIFT);
break;
default:
printf("do not support this pwm bus\n");
return -EINVAL;
}
return px30_spi_get_clk(priv, clk_id);
}
static ulong px30_vop_get_clk(struct px30_clk_priv *priv, ulong clk_id)
{
struct px30_cru *cru = priv->cru;
u32 div, con, parent;
switch (clk_id) {
case ACLK_VOPB:
case ACLK_VOPL:
con = readl(&cru->clksel_con[3]);
div = con & ACLK_VO_DIV_MASK;
parent = priv->gpll_hz;
break;
case DCLK_VOPB:
con = readl(&cru->clksel_con[5]);
div = con & DCLK_VOPB_DIV_MASK;
parent = rkclk_pll_get_rate(&cru->pll[CPLL], &cru->mode, CPLL);
break;
case DCLK_VOPL:
con = readl(&cru->clksel_con[8]);
div = con & DCLK_VOPL_DIV_MASK;
parent = rkclk_pll_get_rate(&cru->pll[NPLL], &cru->mode, NPLL);
break;
default:
return -ENOENT;
}
return DIV_TO_RATE(parent, div);
}
static ulong px30_vop_set_clk(struct px30_clk_priv *priv, ulong clk_id, uint hz)
{
struct px30_cru *cru = priv->cru;
ulong npll_hz;
int src_clk_div;
switch (clk_id) {
case ACLK_VOPB:
case ACLK_VOPL:
src_clk_div = DIV_ROUND_UP(priv->gpll_hz, hz);
assert(src_clk_div - 1 <= 31);
rk_clrsetreg(&cru->clksel_con[3],
ACLK_VO_PLL_MASK | ACLK_VO_DIV_MASK,
ACLK_VO_SEL_GPLL << ACLK_VO_PLL_SHIFT |
(src_clk_div - 1) << ACLK_VO_DIV_SHIFT);
break;
case DCLK_VOPB:
if (hz < PX30_VOP_PLL_LIMIT) {
src_clk_div = DIV_ROUND_UP(PX30_VOP_PLL_LIMIT, hz);
if (src_clk_div % 2)
src_clk_div = src_clk_div - 1;
} else {
src_clk_div = 1;
}
assert(src_clk_div - 1 <= 255);
rkclk_set_pll(&cru->pll[CPLL], &cru->mode,
CPLL, hz * src_clk_div);
rk_clrsetreg(&cru->clksel_con[5],
DCLK_VOPB_SEL_MASK | DCLK_VOPB_PLL_SEL_MASK |
DCLK_VOPB_DIV_MASK,
DCLK_VOPB_SEL_DIVOUT << DCLK_VOPB_SEL_SHIFT |
DCLK_VOPB_PLL_SEL_CPLL << DCLK_VOPB_PLL_SEL_SHIFT |
(src_clk_div - 1) << DCLK_VOPB_DIV_SHIFT);
break;
case DCLK_VOPL:
npll_hz = px30_clk_get_pll_rate(priv, NPLL);
if (npll_hz >= PX30_VOP_PLL_LIMIT && npll_hz >= hz &&
npll_hz % hz == 0) {
src_clk_div = npll_hz / hz;
assert(src_clk_div - 1 <= 255);
} else {
if (hz < PX30_VOP_PLL_LIMIT) {
src_clk_div = DIV_ROUND_UP(PX30_VOP_PLL_LIMIT,
hz);
if (src_clk_div % 2)
src_clk_div = src_clk_div - 1;
} else {
src_clk_div = 1;
}
assert(src_clk_div - 1 <= 255);
rkclk_set_pll(&cru->pll[NPLL], &cru->mode, NPLL,
hz * src_clk_div);
}
rk_clrsetreg(&cru->clksel_con[8],
DCLK_VOPL_SEL_MASK | DCLK_VOPL_PLL_SEL_MASK |
DCLK_VOPL_DIV_MASK,
DCLK_VOPL_SEL_DIVOUT << DCLK_VOPL_SEL_SHIFT |
DCLK_VOPL_PLL_SEL_NPLL << DCLK_VOPL_PLL_SEL_SHIFT |
(src_clk_div - 1) << DCLK_VOPL_DIV_SHIFT);
break;
default:
printf("do not support this vop freq\n");
return -EINVAL;
}
return px30_vop_get_clk(priv, clk_id);
}
static ulong px30_bus_get_clk(struct px30_clk_priv *priv, ulong clk_id)
{
struct px30_cru *cru = priv->cru;
u32 div, con, parent;
switch (clk_id) {
case ACLK_BUS_PRE:
con = readl(&cru->clksel_con[23]);
div = (con & BUS_ACLK_DIV_MASK) >> BUS_ACLK_DIV_SHIFT;
parent = priv->gpll_hz;
break;
case HCLK_BUS_PRE:
con = readl(&cru->clksel_con[24]);
div = (con & BUS_HCLK_DIV_MASK) >> BUS_HCLK_DIV_SHIFT;
parent = priv->gpll_hz;
break;
case PCLK_BUS_PRE:
case PCLK_WDT_NS:
parent = px30_bus_get_clk(priv, ACLK_BUS_PRE);
con = readl(&cru->clksel_con[24]);
div = (con & BUS_PCLK_DIV_MASK) >> BUS_PCLK_DIV_SHIFT;
break;
default:
return -ENOENT;
}
return DIV_TO_RATE(parent, div);
}
static ulong px30_bus_set_clk(struct px30_clk_priv *priv, ulong clk_id,
ulong hz)
{
struct px30_cru *cru = priv->cru;
int src_clk_div;
/*
* select gpll as pd_bus bus clock source and
* set up dependent divisors for PCLK/HCLK and ACLK clocks.
*/
switch (clk_id) {
case ACLK_BUS_PRE:
src_clk_div = DIV_ROUND_UP(priv->gpll_hz, hz);
assert(src_clk_div - 1 <= 31);
rk_clrsetreg(&cru->clksel_con[23],
BUS_PLL_SEL_MASK | BUS_ACLK_DIV_MASK,
BUS_PLL_SEL_GPLL << BUS_PLL_SEL_SHIFT |
(src_clk_div - 1) << BUS_ACLK_DIV_SHIFT);
break;
case HCLK_BUS_PRE:
src_clk_div = DIV_ROUND_UP(priv->gpll_hz, hz);
assert(src_clk_div - 1 <= 31);
rk_clrsetreg(&cru->clksel_con[24],
BUS_PLL_SEL_MASK | BUS_HCLK_DIV_MASK,
BUS_PLL_SEL_GPLL << BUS_PLL_SEL_SHIFT |
(src_clk_div - 1) << BUS_HCLK_DIV_SHIFT);
break;
case PCLK_BUS_PRE:
src_clk_div =
DIV_ROUND_UP(px30_bus_get_clk(priv, ACLK_BUS_PRE), hz);
assert(src_clk_div - 1 <= 3);
rk_clrsetreg(&cru->clksel_con[24],
BUS_PCLK_DIV_MASK,
(src_clk_div - 1) << BUS_PCLK_DIV_SHIFT);
break;
default:
printf("do not support this bus freq\n");
return -EINVAL;
}
return px30_bus_get_clk(priv, clk_id);
}
static ulong px30_peri_get_clk(struct px30_clk_priv *priv, ulong clk_id)
{
struct px30_cru *cru = priv->cru;
u32 div, con, parent;
switch (clk_id) {
case ACLK_PERI_PRE:
con = readl(&cru->clksel_con[14]);
div = (con & PERI_ACLK_DIV_MASK) >> PERI_ACLK_DIV_SHIFT;
parent = priv->gpll_hz;
break;
case HCLK_PERI_PRE:
con = readl(&cru->clksel_con[14]);
div = (con & PERI_HCLK_DIV_MASK) >> PERI_HCLK_DIV_SHIFT;
parent = priv->gpll_hz;
break;
default:
return -ENOENT;
}
return DIV_TO_RATE(parent, div);
}
static ulong px30_peri_set_clk(struct px30_clk_priv *priv, ulong clk_id,
ulong hz)
{
struct px30_cru *cru = priv->cru;
int src_clk_div;
src_clk_div = DIV_ROUND_UP(priv->gpll_hz, hz);
assert(src_clk_div - 1 <= 31);
/*
* select gpll as pd_peri bus clock source and
* set up dependent divisors for HCLK and ACLK clocks.
*/
switch (clk_id) {
case ACLK_PERI_PRE:
rk_clrsetreg(&cru->clksel_con[14],
PERI_PLL_SEL_MASK | PERI_ACLK_DIV_MASK,
PERI_PLL_GPLL << PERI_PLL_SEL_SHIFT |
(src_clk_div - 1) << PERI_ACLK_DIV_SHIFT);
break;
case HCLK_PERI_PRE:
rk_clrsetreg(&cru->clksel_con[14],
PERI_PLL_SEL_MASK | PERI_HCLK_DIV_MASK,
PERI_PLL_GPLL << PERI_PLL_SEL_SHIFT |
(src_clk_div - 1) << PERI_HCLK_DIV_SHIFT);
break;
default:
printf("do not support this peri freq\n");
return -EINVAL;
}
return px30_peri_get_clk(priv, clk_id);
}
#ifndef CONFIG_XPL_BUILD
static ulong px30_crypto_get_clk(struct px30_clk_priv *priv, ulong clk_id)
{
struct px30_cru *cru = priv->cru;
u32 div, con, parent;
switch (clk_id) {
case SCLK_CRYPTO:
con = readl(&cru->clksel_con[25]);
div = (con & CRYPTO_DIV_MASK) >> CRYPTO_DIV_SHIFT;
parent = priv->gpll_hz;
break;
case SCLK_CRYPTO_APK:
con = readl(&cru->clksel_con[25]);
div = (con & CRYPTO_APK_DIV_MASK) >> CRYPTO_APK_DIV_SHIFT;
parent = priv->gpll_hz;
break;
default:
return -ENOENT;
}
return DIV_TO_RATE(parent, div);
}
static ulong px30_crypto_set_clk(struct px30_clk_priv *priv, ulong clk_id,
ulong hz)
{
struct px30_cru *cru = priv->cru;
int src_clk_div;
src_clk_div = DIV_ROUND_UP(priv->gpll_hz, hz);
assert(src_clk_div - 1 <= 31);
/*
* select gpll as crypto clock source and
* set up dependent divisors for crypto clocks.
*/
switch (clk_id) {
case SCLK_CRYPTO:
rk_clrsetreg(&cru->clksel_con[25],
CRYPTO_PLL_SEL_MASK | CRYPTO_DIV_MASK,
CRYPTO_PLL_SEL_GPLL << CRYPTO_PLL_SEL_SHIFT |
(src_clk_div - 1) << CRYPTO_DIV_SHIFT);
break;
case SCLK_CRYPTO_APK:
rk_clrsetreg(&cru->clksel_con[25],
CRYPTO_APK_PLL_SEL_MASK | CRYPTO_APK_DIV_MASK,
CRYPTO_PLL_SEL_GPLL << CRYPTO_APK_SEL_SHIFT |
(src_clk_div - 1) << CRYPTO_APK_DIV_SHIFT);
break;
default:
printf("do not support this peri freq\n");
return -EINVAL;
}
return px30_crypto_get_clk(priv, clk_id);
}
static ulong px30_i2s1_mclk_get_clk(struct px30_clk_priv *priv, ulong clk_id)
{
struct px30_cru *cru = priv->cru;
u32 con;
con = readl(&cru->clksel_con[30]);
if (!(con & CLK_I2S1_OUT_SEL_MASK))
return -ENOENT;
return 12000000;
}
static ulong px30_i2s1_mclk_set_clk(struct px30_clk_priv *priv, ulong clk_id,
ulong hz)
{
struct px30_cru *cru = priv->cru;
if (hz != 12000000) {
printf("do not support this i2s1_mclk freq\n");
return -EINVAL;
}
rk_clrsetreg(&cru->clksel_con[30], CLK_I2S1_OUT_SEL_MASK,
CLK_I2S1_OUT_SEL_OSC);
rk_clrsetreg(&cru->clkgate_con[10], CLK_I2S1_OUT_MCLK_PAD_MASK,
CLK_I2S1_OUT_MCLK_PAD_ENABLE);
return px30_i2s1_mclk_get_clk(priv, clk_id);
}
static ulong px30_mac_set_clk(struct px30_clk_priv *priv, uint hz)
{
struct px30_cru *cru = priv->cru;
u32 con = readl(&cru->clksel_con[22]);
ulong pll_rate;
u8 div;
if ((con >> GMAC_PLL_SEL_SHIFT) & GMAC_PLL_SEL_CPLL)
pll_rate = px30_clk_get_pll_rate(priv, CPLL);
else if ((con >> GMAC_PLL_SEL_SHIFT) & GMAC_PLL_SEL_NPLL)
pll_rate = px30_clk_get_pll_rate(priv, NPLL);
else
pll_rate = priv->gpll_hz;
/*default set 50MHZ for gmac*/
if (!hz)
hz = 50000000;
div = DIV_ROUND_UP(pll_rate, hz) - 1;
assert(div < 32);
rk_clrsetreg(&cru->clksel_con[22], CLK_GMAC_DIV_MASK,
div << CLK_GMAC_DIV_SHIFT);
return DIV_TO_RATE(pll_rate, div);
}
static int px30_mac_set_speed_clk(struct px30_clk_priv *priv, uint hz)
{
struct px30_cru *cru = priv->cru;
if (hz != 2500000 && hz != 25000000) {
debug("Unsupported mac speed:%d\n", hz);
return -EINVAL;
}
rk_clrsetreg(&cru->clksel_con[23], RMII_CLK_SEL_MASK,
((hz == 2500000) ? 0 : 1) << RMII_CLK_SEL_SHIFT);
return 0;
}
#endif
static ulong px30_clk_get_pll_rate(struct px30_clk_priv *priv,
enum px30_pll_id pll_id)
{
struct px30_cru *cru = priv->cru;
return rkclk_pll_get_rate(&cru->pll[pll_id], &cru->mode, pll_id);
}
static ulong px30_clk_set_pll_rate(struct px30_clk_priv *priv,
enum px30_pll_id pll_id, ulong hz)
{
struct px30_cru *cru = priv->cru;
if (rkclk_set_pll(&cru->pll[pll_id], &cru->mode, pll_id, hz))
return -EINVAL;
return rkclk_pll_get_rate(&cru->pll[pll_id], &cru->mode, pll_id);
}
static ulong px30_armclk_set_clk(struct px30_clk_priv *priv, ulong hz)
{
struct px30_cru *cru = priv->cru;
const struct cpu_rate_table *rate;
ulong old_rate;
rate = get_cpu_settings(hz);
if (!rate) {
printf("%s unsupport rate\n", __func__);
return -EINVAL;
}
/*
* select apll as cpu/core clock pll source and
* set up dependent divisors for PERI and ACLK clocks.
* core hz : apll = 1:1
*/
old_rate = px30_clk_get_pll_rate(priv, APLL);
if (old_rate > hz) {
if (rkclk_set_pll(&cru->pll[APLL], &cru->mode, APLL, hz))
return -EINVAL;
rk_clrsetreg(&cru->clksel_con[0],
CORE_CLK_PLL_SEL_MASK | CORE_DIV_CON_MASK |
CORE_ACLK_DIV_MASK | CORE_DBG_DIV_MASK,
rate->aclk_div << CORE_ACLK_DIV_SHIFT |
rate->pclk_div << CORE_DBG_DIV_SHIFT |
CORE_CLK_PLL_SEL_APLL << CORE_CLK_PLL_SEL_SHIFT |
0 << CORE_DIV_CON_SHIFT);
} else if (old_rate < hz) {
rk_clrsetreg(&cru->clksel_con[0],
CORE_CLK_PLL_SEL_MASK | CORE_DIV_CON_MASK |
CORE_ACLK_DIV_MASK | CORE_DBG_DIV_MASK,
rate->aclk_div << CORE_ACLK_DIV_SHIFT |
rate->pclk_div << CORE_DBG_DIV_SHIFT |
CORE_CLK_PLL_SEL_APLL << CORE_CLK_PLL_SEL_SHIFT |
0 << CORE_DIV_CON_SHIFT);
if (rkclk_set_pll(&cru->pll[APLL], &cru->mode, APLL, hz))
return -EINVAL;
}
return px30_clk_get_pll_rate(priv, APLL);
}
static ulong px30_clk_get_rate(struct clk *clk)
{
struct px30_clk_priv *priv = dev_get_priv(clk->dev);
ulong rate = 0;
if (!priv->gpll_hz && clk->id > ARMCLK) {
printf("%s gpll=%lu\n", __func__, priv->gpll_hz);
return -ENOENT;
}
debug("%s %ld\n", __func__, clk->id);
switch (clk->id) {
case PLL_APLL:
rate = px30_clk_get_pll_rate(priv, APLL);
break;
case PLL_DPLL:
rate = px30_clk_get_pll_rate(priv, DPLL);
break;
case PLL_CPLL:
rate = px30_clk_get_pll_rate(priv, CPLL);
break;
case PLL_NPLL:
rate = px30_clk_get_pll_rate(priv, NPLL);
break;
case ARMCLK:
rate = px30_clk_get_pll_rate(priv, APLL);
break;
case HCLK_SDMMC:
case HCLK_EMMC:
case SCLK_SDMMC:
case SCLK_EMMC:
case SCLK_EMMC_SAMPLE:
rate = px30_mmc_get_clk(priv, clk->id);
break;
case SCLK_SFC:
rate = px30_sfc_get_clk(priv, clk->id);
break;
case SCLK_I2C0:
case SCLK_I2C1:
case SCLK_I2C2:
case SCLK_I2C3:
rate = px30_i2c_get_clk(priv, clk->id);
break;
case SCLK_I2S1:
rate = px30_i2s_get_clk(priv, clk->id);
break;
case SCLK_NANDC:
rate = px30_nandc_get_clk(priv);
break;
case SCLK_PWM0:
case SCLK_PWM1:
rate = px30_pwm_get_clk(priv, clk->id);
break;
case SCLK_SARADC:
rate = px30_saradc_get_clk(priv);
break;
case SCLK_TSADC:
rate = px30_tsadc_get_clk(priv);
break;
case SCLK_SPI0:
case SCLK_SPI1:
rate = px30_spi_get_clk(priv, clk->id);
break;
case ACLK_VOPB:
case ACLK_VOPL:
case DCLK_VOPB:
case DCLK_VOPL:
rate = px30_vop_get_clk(priv, clk->id);
break;
case ACLK_BUS_PRE:
case HCLK_BUS_PRE:
case PCLK_BUS_PRE:
case PCLK_WDT_NS:
rate = px30_bus_get_clk(priv, clk->id);
break;
case ACLK_PERI_PRE:
case HCLK_PERI_PRE:
rate = px30_peri_get_clk(priv, clk->id);
break;
#ifndef CONFIG_XPL_BUILD
case SCLK_CRYPTO:
case SCLK_CRYPTO_APK:
rate = px30_crypto_get_clk(priv, clk->id);
break;
#endif
default:
return -ENOENT;
}
return rate;
}
static ulong px30_clk_set_rate(struct clk *clk, ulong rate)
{
struct px30_clk_priv *priv = dev_get_priv(clk->dev);
ulong ret = 0;
if (!priv->gpll_hz && clk->id > ARMCLK) {
printf("%s gpll=%lu\n", __func__, priv->gpll_hz);
return -ENOENT;
}
debug("%s %ld %ld\n", __func__, clk->id, rate);
switch (clk->id) {
case PLL_NPLL:
ret = px30_clk_set_pll_rate(priv, NPLL, rate);
break;
case PLL_CPLL:
ret = px30_clk_set_pll_rate(priv, CPLL, rate);
break;
case ARMCLK:
ret = px30_armclk_set_clk(priv, rate);
break;
case HCLK_SDMMC:
case HCLK_EMMC:
case SCLK_SDMMC:
case SCLK_EMMC:
ret = px30_mmc_set_clk(priv, clk->id, rate);
break;
case SCLK_SFC:
ret = px30_sfc_set_clk(priv, clk->id, rate);
break;
case SCLK_I2C0:
case SCLK_I2C1:
case SCLK_I2C2:
case SCLK_I2C3:
ret = px30_i2c_set_clk(priv, clk->id, rate);
break;
case SCLK_I2S1:
ret = px30_i2s_set_clk(priv, clk->id, rate);
break;
case SCLK_NANDC:
ret = px30_nandc_set_clk(priv, rate);
break;
case SCLK_PWM0:
case SCLK_PWM1:
ret = px30_pwm_set_clk(priv, clk->id, rate);
break;
case SCLK_SARADC:
ret = px30_saradc_set_clk(priv, rate);
break;
case SCLK_TSADC:
ret = px30_tsadc_set_clk(priv, rate);
break;
case SCLK_SPI0:
case SCLK_SPI1:
ret = px30_spi_set_clk(priv, clk->id, rate);
break;
case ACLK_VOPB:
case ACLK_VOPL:
case DCLK_VOPB:
case DCLK_VOPL:
ret = px30_vop_set_clk(priv, clk->id, rate);
break;
case ACLK_BUS_PRE:
case HCLK_BUS_PRE:
case PCLK_BUS_PRE:
ret = px30_bus_set_clk(priv, clk->id, rate);
break;
case ACLK_PERI_PRE:
case HCLK_PERI_PRE:
ret = px30_peri_set_clk(priv, clk->id, rate);
break;
#ifndef CONFIG_XPL_BUILD
case SCLK_CRYPTO:
case SCLK_CRYPTO_APK:
ret = px30_crypto_set_clk(priv, clk->id, rate);
break;
case SCLK_I2S1_OUT:
ret = px30_i2s1_mclk_set_clk(priv, clk->id, rate);
break;
case SCLK_GMAC:
case SCLK_GMAC_SRC:
ret = px30_mac_set_clk(priv, rate);
break;
case SCLK_GMAC_RMII:
ret = px30_mac_set_speed_clk(priv, rate);
break;
#endif
default:
return -ENOENT;
}
return ret;
}
#if CONFIG_IS_ENABLED(OF_REAL)
static int px30_gmac_set_parent(struct clk *clk, struct clk *parent)
{
struct px30_clk_priv *priv = dev_get_priv(clk->dev);
struct px30_cru *cru = priv->cru;
if (parent->id == SCLK_GMAC_SRC) {
debug("%s: switching GAMC to SCLK_GMAC_SRC\n", __func__);
rk_clrsetreg(&cru->clksel_con[23], RMII_EXTCLK_SEL_MASK,
RMII_EXTCLK_SEL_INT << RMII_EXTCLK_SEL_SHIFT);
} else {
debug("%s: switching GMAC to external clock\n", __func__);
rk_clrsetreg(&cru->clksel_con[23], RMII_EXTCLK_SEL_MASK,
RMII_EXTCLK_SEL_EXT << RMII_EXTCLK_SEL_SHIFT);
}
return 0;
}
static int px30_clk_set_parent(struct clk *clk, struct clk *parent)
{
switch (clk->id) {
case SCLK_GMAC:
return px30_gmac_set_parent(clk, parent);
default:
return -ENOENT;
}
}
#endif
static int px30_clk_enable(struct clk *clk)
{
switch (clk->id) {
case HCLK_HOST:
case HCLK_OTG:
case HCLK_SFC:
case SCLK_GMAC:
case SCLK_GMAC_RX_TX:
case SCLK_MAC_REF:
case SCLK_MAC_REFOUT:
case SCLK_SFC:
case ACLK_GMAC:
case PCLK_GMAC:
case SCLK_GMAC_RMII:
/* Required to successfully probe the Designware GMAC driver */
return 0;
case PCLK_WDT_NS:
/* Required to successfully probe the Designware watchdog driver */
return 0;
}
debug("%s: unsupported clk %ld\n", __func__, clk->id);
return -ENOENT;
}
static struct clk_ops px30_clk_ops = {
.get_rate = px30_clk_get_rate,
.set_rate = px30_clk_set_rate,
#if CONFIG_IS_ENABLED(OF_REAL)
.set_parent = px30_clk_set_parent,
#endif
.enable = px30_clk_enable,
};
static void px30_clk_init(struct px30_clk_priv *priv)
{
ulong npll_hz;
int ret;
npll_hz = px30_clk_get_pll_rate(priv, NPLL);
if (npll_hz != NPLL_HZ) {
ret = px30_clk_set_pll_rate(priv, NPLL, NPLL_HZ);
if (ret < 0)
printf("%s failed to set npll rate\n", __func__);
}
px30_bus_set_clk(priv, ACLK_BUS_PRE, ACLK_BUS_HZ);
px30_bus_set_clk(priv, HCLK_BUS_PRE, HCLK_BUS_HZ);
px30_bus_set_clk(priv, PCLK_BUS_PRE, PCLK_BUS_HZ);
px30_peri_set_clk(priv, ACLK_PERI_PRE, ACLK_PERI_HZ);
px30_peri_set_clk(priv, HCLK_PERI_PRE, HCLK_PERI_HZ);
}
static int px30_clk_probe(struct udevice *dev)
{
struct px30_clk_priv *priv = dev_get_priv(dev);
struct clk clk_gpll;
int ret;
if (px30_clk_get_pll_rate(priv, APLL) != APLL_HZ)
px30_armclk_set_clk(priv, APLL_HZ);
/* get the GPLL rate from the pmucru */
ret = clk_get_by_name(dev, "gpll", &clk_gpll);
if (ret) {
printf("%s: failed to get gpll clk from pmucru\n", __func__);
return ret;
}
priv->gpll_hz = clk_get_rate(&clk_gpll);
px30_clk_init(priv);
return 0;
}
static int px30_clk_of_to_plat(struct udevice *dev)
{
struct px30_clk_priv *priv = dev_get_priv(dev);
priv->cru = dev_read_addr_ptr(dev);
return 0;
}
static int px30_clk_bind(struct udevice *dev)
{
int ret;
struct udevice *sys_child;
struct sysreset_reg *priv;
/* The reset driver does not have a device node, so bind it here */
ret = device_bind_driver(dev, "rockchip_sysreset", "sysreset",
&sys_child);
if (ret) {
debug("Warning: No sysreset driver: ret=%d\n", ret);
} else {
priv = malloc(sizeof(struct sysreset_reg));
priv->glb_srst_fst_value = offsetof(struct px30_cru,
glb_srst_fst);
priv->glb_srst_snd_value = offsetof(struct px30_cru,
glb_srst_snd);
dev_set_priv(sys_child, priv);
}
#if CONFIG_IS_ENABLED(RESET_ROCKCHIP)
ret = offsetof(struct px30_cru, softrst_con[0]);
ret = rockchip_reset_bind(dev, ret, 12);
if (ret)
debug("Warning: software reset driver bind failed\n");
#endif
return 0;
}
static const struct udevice_id px30_clk_ids[] = {
{ .compatible = "rockchip,px30-cru" },
{ }
};
U_BOOT_DRIVER(rockchip_px30_cru) = {
.name = "rockchip_px30_cru",
.id = UCLASS_CLK,
.of_match = px30_clk_ids,
.priv_auto = sizeof(struct px30_clk_priv),
.of_to_plat = px30_clk_of_to_plat,
.ops = &px30_clk_ops,
.bind = px30_clk_bind,
.probe = px30_clk_probe,
};
static ulong px30_pclk_pmu_get_pmuclk(struct px30_pmuclk_priv *priv)
{
struct px30_pmucru *pmucru = priv->pmucru;
u32 div, con;
con = readl(&pmucru->pmu_clksel_con[0]);
div = (con & CLK_PMU_PCLK_DIV_MASK) >> CLK_PMU_PCLK_DIV_SHIFT;
return DIV_TO_RATE(priv->gpll_hz, div);
}
static ulong px30_pclk_pmu_set_pmuclk(struct px30_pmuclk_priv *priv, ulong hz)
{
struct px30_pmucru *pmucru = priv->pmucru;
int src_clk_div;
src_clk_div = DIV_ROUND_UP(priv->gpll_hz, hz);
assert(src_clk_div - 1 <= 31);
rk_clrsetreg(&pmucru->pmu_clksel_con[0],
CLK_PMU_PCLK_DIV_MASK,
(src_clk_div - 1) << CLK_PMU_PCLK_DIV_SHIFT);
return px30_pclk_pmu_get_pmuclk(priv);
}
static ulong px30_pmuclk_get_gpll_rate(struct px30_pmuclk_priv *priv)
{
struct px30_pmucru *pmucru = priv->pmucru;
return rkclk_pll_get_rate(&pmucru->pll, &pmucru->pmu_mode, GPLL);
}
static ulong px30_pmuclk_set_gpll_rate(struct px30_pmuclk_priv *priv, ulong hz)
{
struct px30_pmucru *pmucru = priv->pmucru;
ulong pclk_pmu_rate;
u32 div;
if (priv->gpll_hz == hz)
return priv->gpll_hz;
div = DIV_ROUND_UP(hz, priv->gpll_hz);
/* save clock rate */
pclk_pmu_rate = px30_pclk_pmu_get_pmuclk(priv);
/* avoid rate too large, reduce rate first */
px30_pclk_pmu_set_pmuclk(priv, pclk_pmu_rate / div);
/* change gpll rate */
rkclk_set_pll(&pmucru->pll, &pmucru->pmu_mode, GPLL, hz);
priv->gpll_hz = px30_pmuclk_get_gpll_rate(priv);
/* restore clock rate */
px30_pclk_pmu_set_pmuclk(priv, pclk_pmu_rate);
return priv->gpll_hz;
}
static ulong px30_pmu_uart0_get_clk(struct px30_pmuclk_priv *priv)
{
struct px30_pmucru *pmucru = priv->pmucru;
u32 clk_div_con;
u32 clk_pll_sel;
ulong pll_rate;
u32 clk_sel;
ulong clk;
u32 con;
con = readl(&pmucru->pmu_clksel_con[3]);
clk_div_con = bitfield_extract_by_mask(con, UART0_DIV_CON_MASK);
clk_pll_sel = bitfield_extract_by_mask(con, UART0_PLL_SEL_MASK);
switch (clk_pll_sel) {
case UART0_PLL_SEL_GPLL:
pll_rate = px30_pmuclk_get_gpll_rate(priv);
break;
case UART0_PLL_SEL_24M:
pll_rate = OSC_HZ;
break;
case UART0_PLL_SEL_480M:
case UART0_PLL_SEL_NPLL:
/* usbphy480M and NPLL clocks, generated by CRU, are not supported yet */
default:
return -ENOENT;
}
clk = DIV_TO_RATE(pll_rate, clk_div_con);
con = readl(&pmucru->pmu_clksel_con[4]);
clk_sel = bitfield_extract_by_mask(con, UART0_CLK_SEL_MASK);
switch (clk_sel) {
case UART0_CLK_SEL_UART0:
return clk;
case UART0_CLK_SEL_UART0_NP5:{
u32 clk_divnp5_div_con;
clk_divnp5_div_con =
bitfield_extract_by_mask(con, UART0_DIVNP5_MASK);
return 2 * (u64) clk / (2 * clk_divnp5_div_con + 3);
}
case UART0_CLK_SEL_UART0_FRAC:{
u32 fracdiv, n, m;
fracdiv = readl(&pmucru->pmu_clksel_con[5]);
n = bitfield_extract_by_mask(fracdiv,
CLK_UART_FRAC_NUMERATOR_MASK);
m = bitfield_extract_by_mask(fracdiv,
CLK_UART_FRAC_DENOMINATOR_MASK);
return (u64) clk * n / m;
}
default:
return -ENOENT;
}
}
static ulong px30_pmu_uart0_set_clk(struct px30_pmuclk_priv *priv, ulong rate)
{
struct px30_pmucru *pmucru = priv->pmucru;
ulong m = 0, n = 0;
ulong gpll_rate;
u32 clk_div_con;
u32 clk_pll_sel;
u32 clk_sel;
gpll_rate = px30_pmuclk_get_gpll_rate(priv);
if (gpll_rate % rate == 0) {
clk_pll_sel = UART0_PLL_SEL_GPLL;
clk_sel = UART0_CLK_SEL_UART0;
clk_div_con = DIV_ROUND_UP(priv->gpll_hz, rate);
} else if (rate == OSC_HZ) {
clk_pll_sel = UART0_PLL_SEL_24M;
clk_sel = UART0_CLK_SEL_UART0;
clk_div_con = 1;
} else {
clk_pll_sel = UART0_PLL_SEL_GPLL;
clk_sel = UART0_CLK_SEL_UART0_FRAC;
clk_div_con = 1;
rational_best_approximation(rate, priv->gpll_hz,
GENMASK(16 - 1, 0),
GENMASK(16 - 1, 0), &m, &n);
}
rk_clrsetreg(&pmucru->pmu_clksel_con[3],
UART0_PLL_SEL_MASK | UART0_DIV_CON_MASK,
clk_pll_sel << UART0_PLL_SEL_SHIFT | (clk_div_con - 1));
rk_clrsetreg(&pmucru->pmu_clksel_con[4], UART0_CLK_SEL_MASK,
clk_sel << UART0_CLK_SEL_SHIFT);
if (m && n) {
u32 fracdiv;
fracdiv = m << CLK_UART_FRAC_NUMERATOR_SHIFT | n;
writel(fracdiv, &pmucru->pmu_clksel_con[5]);
}
return px30_pmu_uart0_get_clk(priv);
}
static ulong px30_pmuclk_get_rate(struct clk *clk)
{
struct px30_pmuclk_priv *priv = dev_get_priv(clk->dev);
ulong rate = 0;
debug("%s %ld\n", __func__, clk->id);
switch (clk->id) {
case PLL_GPLL:
rate = px30_pmuclk_get_gpll_rate(priv);
break;
case PCLK_PMU_PRE:
rate = px30_pclk_pmu_get_pmuclk(priv);
break;
case SCLK_UART0_PMU:
rate = px30_pmu_uart0_get_clk(priv);
break;
default:
return -ENOENT;
}
return rate;
}
static ulong px30_pmuclk_set_rate(struct clk *clk, ulong rate)
{
struct px30_pmuclk_priv *priv = dev_get_priv(clk->dev);
ulong ret = 0;
debug("%s %ld %ld\n", __func__, clk->id, rate);
switch (clk->id) {
case PLL_GPLL:
ret = px30_pmuclk_set_gpll_rate(priv, rate);
break;
case PCLK_PMU_PRE:
ret = px30_pclk_pmu_set_pmuclk(priv, rate);
break;
case SCLK_UART0_PMU:
ret = px30_pmu_uart0_set_clk(priv, rate);
break;
default:
return -ENOENT;
}
return ret;
}
static struct clk_ops px30_pmuclk_ops = {
.get_rate = px30_pmuclk_get_rate,
.set_rate = px30_pmuclk_set_rate,
};
static void px30_pmuclk_init(struct px30_pmuclk_priv *priv)
{
priv->gpll_hz = px30_pmuclk_get_gpll_rate(priv);
px30_pmuclk_set_gpll_rate(priv, GPLL_HZ);
px30_pclk_pmu_set_pmuclk(priv, PCLK_PMU_HZ);
}
static int px30_pmuclk_probe(struct udevice *dev)
{
struct px30_pmuclk_priv *priv = dev_get_priv(dev);
px30_pmuclk_init(priv);
return 0;
}
static int px30_pmuclk_of_to_plat(struct udevice *dev)
{
struct px30_pmuclk_priv *priv = dev_get_priv(dev);
priv->pmucru = dev_read_addr_ptr(dev);
return 0;
}
static const struct udevice_id px30_pmuclk_ids[] = {
{ .compatible = "rockchip,px30-pmucru" },
{ }
};
U_BOOT_DRIVER(rockchip_px30_pmucru) = {
.name = "rockchip_px30_pmucru",
.id = UCLASS_CLK,
.of_match = px30_pmuclk_ids,
.priv_auto = sizeof(struct px30_pmuclk_priv),
.of_to_plat = px30_pmuclk_of_to_plat,
.ops = &px30_pmuclk_ops,
.probe = px30_pmuclk_probe,
};