blob: 43e677deae257e27a7bc8fcbfc63e1bddf4f0625 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2017 NXP
*
* Peng Fan <peng.fan@nxp.com>
*/
#include <command.h>
#include <asm/arch/clock.h>
#include <asm/arch/imx-regs.h>
#include <asm/io.h>
#include <asm/arch/sys_proto.h>
#include <errno.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
static struct anamix_pll *ana_pll = (struct anamix_pll *)ANATOP_BASE_ADDR;
static u32 get_root_clk(enum clk_root_index clock_id);
static u32 decode_frac_pll(enum clk_root_src frac_pll)
{
u32 pll_cfg0, pll_cfg1, pllout;
u32 pll_refclk_sel, pll_refclk;
u32 divr_val, divq_val, divf_val, divff, divfi;
u32 pllout_div_shift, pllout_div_mask, pllout_div;
switch (frac_pll) {
case ARM_PLL_CLK:
pll_cfg0 = readl(&ana_pll->arm_pll_cfg0);
pll_cfg1 = readl(&ana_pll->arm_pll_cfg1);
pllout_div_shift = HW_FRAC_ARM_PLL_DIV_SHIFT;
pllout_div_mask = HW_FRAC_ARM_PLL_DIV_MASK;
break;
default:
printf("Frac PLL %d not supporte\n", frac_pll);
return 0;
}
pllout_div = readl(&ana_pll->frac_pllout_div_cfg);
pllout_div = (pllout_div & pllout_div_mask) >> pllout_div_shift;
/* Power down */
if (pll_cfg0 & FRAC_PLL_PD_MASK)
return 0;
/* output not enabled */
if ((pll_cfg0 & FRAC_PLL_CLKE_MASK) == 0)
return 0;
pll_refclk_sel = pll_cfg0 & FRAC_PLL_REFCLK_SEL_MASK;
if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_OSC_25M)
pll_refclk = 25000000u;
else if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_OSC_27M)
pll_refclk = 27000000u;
else if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_HDMI_PHY_27M)
pll_refclk = 27000000u;
else
pll_refclk = 0;
if (pll_cfg0 & FRAC_PLL_BYPASS_MASK)
return pll_refclk;
divr_val = (pll_cfg0 & FRAC_PLL_REFCLK_DIV_VAL_MASK) >>
FRAC_PLL_REFCLK_DIV_VAL_SHIFT;
divq_val = pll_cfg0 & FRAC_PLL_OUTPUT_DIV_VAL_MASK;
divff = (pll_cfg1 & FRAC_PLL_FRAC_DIV_CTL_MASK) >>
FRAC_PLL_FRAC_DIV_CTL_SHIFT;
divfi = pll_cfg1 & FRAC_PLL_INT_DIV_CTL_MASK;
divf_val = 1 + divfi + divff / (1 << 24);
pllout = pll_refclk / (divr_val + 1) * 8 * divf_val /
((divq_val + 1) * 2);
return pllout / (pllout_div + 1);
}
static u32 decode_sscg_pll(enum clk_root_src sscg_pll)
{
u32 pll_cfg0, pll_cfg1, pll_cfg2;
u32 pll_refclk_sel, pll_refclk;
u32 divr1, divr2, divf1, divf2, divq, div;
u32 sse;
u32 pll_clke;
u32 pllout_div_shift, pllout_div_mask, pllout_div;
u32 pllout;
switch (sscg_pll) {
case SYSTEM_PLL1_800M_CLK:
case SYSTEM_PLL1_400M_CLK:
case SYSTEM_PLL1_266M_CLK:
case SYSTEM_PLL1_200M_CLK:
case SYSTEM_PLL1_160M_CLK:
case SYSTEM_PLL1_133M_CLK:
case SYSTEM_PLL1_100M_CLK:
case SYSTEM_PLL1_80M_CLK:
case SYSTEM_PLL1_40M_CLK:
pll_cfg0 = readl(&ana_pll->sys_pll1_cfg0);
pll_cfg1 = readl(&ana_pll->sys_pll1_cfg1);
pll_cfg2 = readl(&ana_pll->sys_pll1_cfg2);
pllout_div_shift = HW_SSCG_SYSTEM_PLL1_DIV_SHIFT;
pllout_div_mask = HW_SSCG_SYSTEM_PLL1_DIV_MASK;
break;
case SYSTEM_PLL2_1000M_CLK:
case SYSTEM_PLL2_500M_CLK:
case SYSTEM_PLL2_333M_CLK:
case SYSTEM_PLL2_250M_CLK:
case SYSTEM_PLL2_200M_CLK:
case SYSTEM_PLL2_166M_CLK:
case SYSTEM_PLL2_125M_CLK:
case SYSTEM_PLL2_100M_CLK:
case SYSTEM_PLL2_50M_CLK:
pll_cfg0 = readl(&ana_pll->sys_pll2_cfg0);
pll_cfg1 = readl(&ana_pll->sys_pll2_cfg1);
pll_cfg2 = readl(&ana_pll->sys_pll2_cfg2);
pllout_div_shift = HW_SSCG_SYSTEM_PLL2_DIV_SHIFT;
pllout_div_mask = HW_SSCG_SYSTEM_PLL2_DIV_MASK;
break;
case SYSTEM_PLL3_CLK:
pll_cfg0 = readl(&ana_pll->sys_pll3_cfg0);
pll_cfg1 = readl(&ana_pll->sys_pll3_cfg1);
pll_cfg2 = readl(&ana_pll->sys_pll3_cfg2);
pllout_div_shift = HW_SSCG_SYSTEM_PLL3_DIV_SHIFT;
pllout_div_mask = HW_SSCG_SYSTEM_PLL3_DIV_MASK;
break;
case DRAM_PLL1_CLK:
pll_cfg0 = readl(&ana_pll->dram_pll_cfg0);
pll_cfg1 = readl(&ana_pll->dram_pll_cfg1);
pll_cfg2 = readl(&ana_pll->dram_pll_cfg2);
pllout_div_shift = HW_SSCG_DRAM_PLL_DIV_SHIFT;
pllout_div_mask = HW_SSCG_DRAM_PLL_DIV_MASK;
break;
default:
printf("sscg pll %d not supporte\n", sscg_pll);
return 0;
}
switch (sscg_pll) {
case DRAM_PLL1_CLK:
pll_clke = SSCG_PLL_DRAM_PLL_CLKE_MASK;
div = 1;
break;
case SYSTEM_PLL3_CLK:
pll_clke = SSCG_PLL_PLL3_CLKE_MASK;
div = 1;
break;
case SYSTEM_PLL2_1000M_CLK:
case SYSTEM_PLL1_800M_CLK:
pll_clke = SSCG_PLL_CLKE_MASK;
div = 1;
break;
case SYSTEM_PLL2_500M_CLK:
case SYSTEM_PLL1_400M_CLK:
pll_clke = SSCG_PLL_DIV2_CLKE_MASK;
div = 2;
break;
case SYSTEM_PLL2_333M_CLK:
case SYSTEM_PLL1_266M_CLK:
pll_clke = SSCG_PLL_DIV3_CLKE_MASK;
div = 3;
break;
case SYSTEM_PLL2_250M_CLK:
case SYSTEM_PLL1_200M_CLK:
pll_clke = SSCG_PLL_DIV4_CLKE_MASK;
div = 4;
break;
case SYSTEM_PLL2_200M_CLK:
case SYSTEM_PLL1_160M_CLK:
pll_clke = SSCG_PLL_DIV5_CLKE_MASK;
div = 5;
break;
case SYSTEM_PLL2_166M_CLK:
case SYSTEM_PLL1_133M_CLK:
pll_clke = SSCG_PLL_DIV6_CLKE_MASK;
div = 6;
break;
case SYSTEM_PLL2_125M_CLK:
case SYSTEM_PLL1_100M_CLK:
pll_clke = SSCG_PLL_DIV8_CLKE_MASK;
div = 8;
break;
case SYSTEM_PLL2_100M_CLK:
case SYSTEM_PLL1_80M_CLK:
pll_clke = SSCG_PLL_DIV10_CLKE_MASK;
div = 10;
break;
case SYSTEM_PLL2_50M_CLK:
case SYSTEM_PLL1_40M_CLK:
pll_clke = SSCG_PLL_DIV20_CLKE_MASK;
div = 20;
break;
default:
printf("sscg pll %d not supporte\n", sscg_pll);
return 0;
}
/* Power down */
if (pll_cfg0 & SSCG_PLL_PD_MASK)
return 0;
/* output not enabled */
if ((pll_cfg0 & pll_clke) == 0)
return 0;
pllout_div = readl(&ana_pll->sscg_pllout_div_cfg);
pllout_div = (pllout_div & pllout_div_mask) >> pllout_div_shift;
pll_refclk_sel = pll_cfg0 & SSCG_PLL_REFCLK_SEL_MASK;
if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_OSC_25M)
pll_refclk = 25000000u;
else if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_OSC_27M)
pll_refclk = 27000000u;
else if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_HDMI_PHY_27M)
pll_refclk = 27000000u;
else
pll_refclk = 0;
/* We assume bypass1/2 are the same value */
if ((pll_cfg0 & SSCG_PLL_BYPASS1_MASK) ||
(pll_cfg0 & SSCG_PLL_BYPASS2_MASK))
return pll_refclk;
divr1 = (pll_cfg2 & SSCG_PLL_REF_DIVR1_MASK) >>
SSCG_PLL_REF_DIVR1_SHIFT;
divr2 = (pll_cfg2 & SSCG_PLL_REF_DIVR2_MASK) >>
SSCG_PLL_REF_DIVR2_SHIFT;
divf1 = (pll_cfg2 & SSCG_PLL_FEEDBACK_DIV_F1_MASK) >>
SSCG_PLL_FEEDBACK_DIV_F1_SHIFT;
divf2 = (pll_cfg2 & SSCG_PLL_FEEDBACK_DIV_F2_MASK) >>
SSCG_PLL_FEEDBACK_DIV_F2_SHIFT;
divq = (pll_cfg2 & SSCG_PLL_OUTPUT_DIV_VAL_MASK) >>
SSCG_PLL_OUTPUT_DIV_VAL_SHIFT;
sse = pll_cfg1 & SSCG_PLL_SSE_MASK;
if (sse)
sse = 8;
else
sse = 2;
pllout = pll_refclk / (divr1 + 1) * sse * (divf1 + 1) /
(divr2 + 1) * (divf2 + 1) / (divq + 1);
return pllout / (pllout_div + 1) / div;
}
static u32 get_root_src_clk(enum clk_root_src root_src)
{
switch (root_src) {
case OSC_25M_CLK:
return 25000000;
case OSC_27M_CLK:
return 27000000;
case OSC_32K_CLK:
return 32768;
case ARM_PLL_CLK:
return decode_frac_pll(root_src);
case SYSTEM_PLL1_800M_CLK:
case SYSTEM_PLL1_400M_CLK:
case SYSTEM_PLL1_266M_CLK:
case SYSTEM_PLL1_200M_CLK:
case SYSTEM_PLL1_160M_CLK:
case SYSTEM_PLL1_133M_CLK:
case SYSTEM_PLL1_100M_CLK:
case SYSTEM_PLL1_80M_CLK:
case SYSTEM_PLL1_40M_CLK:
case SYSTEM_PLL2_1000M_CLK:
case SYSTEM_PLL2_500M_CLK:
case SYSTEM_PLL2_333M_CLK:
case SYSTEM_PLL2_250M_CLK:
case SYSTEM_PLL2_200M_CLK:
case SYSTEM_PLL2_166M_CLK:
case SYSTEM_PLL2_125M_CLK:
case SYSTEM_PLL2_100M_CLK:
case SYSTEM_PLL2_50M_CLK:
case SYSTEM_PLL3_CLK:
return decode_sscg_pll(root_src);
case ARM_A53_ALT_CLK:
return get_root_clk(ARM_A53_CLK_ROOT);
default:
return 0;
}
return 0;
}
static u32 get_root_clk(enum clk_root_index clock_id)
{
enum clk_root_src root_src;
u32 post_podf, pre_podf, root_src_clk;
if (clock_root_enabled(clock_id) <= 0)
return 0;
if (clock_get_prediv(clock_id, &pre_podf) < 0)
return 0;
if (clock_get_postdiv(clock_id, &post_podf) < 0)
return 0;
if (clock_get_src(clock_id, &root_src) < 0)
return 0;
root_src_clk = get_root_src_clk(root_src);
return root_src_clk / (post_podf + 1) / (pre_podf + 1);
}
#ifdef CONFIG_IMX_HAB
void hab_caam_clock_enable(unsigned char enable)
{
/* The CAAM clock is always on for iMX8M */
}
#endif
#ifdef CONFIG_MXC_OCOTP
void enable_ocotp_clk(unsigned char enable)
{
clock_enable(CCGR_OCOTP, !!enable);
}
#endif
int enable_i2c_clk(unsigned char enable, unsigned int i2c_num)
{
/* 0 - 3 is valid i2c num */
if (i2c_num > 3)
return -EINVAL;
clock_enable(CCGR_I2C1 + i2c_num, !!enable);
return 0;
}
u32 get_arm_core_clk(void)
{
enum clk_root_src root_src;
u32 root_src_clk;
if (clock_get_src(CORE_SEL_CFG, &root_src) < 0)
return 0;
root_src_clk = get_root_src_clk(root_src);
return root_src_clk;
}
unsigned int mxc_get_clock(enum mxc_clock clk)
{
u32 val;
switch (clk) {
case MXC_ARM_CLK:
return get_arm_core_clk();
case MXC_IPG_CLK:
clock_get_target_val(IPG_CLK_ROOT, &val);
val = val & 0x3;
return get_root_clk(AHB_CLK_ROOT) / (val + 1);
case MXC_CSPI_CLK:
return get_root_clk(ECSPI1_CLK_ROOT);
case MXC_ESDHC_CLK:
return get_root_clk(USDHC1_CLK_ROOT);
case MXC_ESDHC2_CLK:
return get_root_clk(USDHC2_CLK_ROOT);
case MXC_I2C_CLK:
return get_root_clk(I2C1_CLK_ROOT);
case MXC_UART_CLK:
return get_root_clk(UART1_CLK_ROOT);
case MXC_QSPI_CLK:
return get_root_clk(QSPI_CLK_ROOT);
default:
return get_root_clk(clk);
}
}
u32 imx_get_uartclk(void)
{
return mxc_get_clock(UART1_CLK_ROOT);
}
void mxs_set_lcdclk(u32 base_addr, u32 freq)
{
/*
* LCDIF_PIXEL_CLK: select 800MHz root clock,
* select pre divider 8, output is 100 MHz
*/
clock_set_target_val(LCDIF_PIXEL_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(4) |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV8));
}
void init_wdog_clk(void)
{
clock_enable(CCGR_WDOG1, 0);
clock_enable(CCGR_WDOG2, 0);
clock_enable(CCGR_WDOG3, 0);
clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(0));
clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(0));
clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(0));
clock_enable(CCGR_WDOG1, 1);
clock_enable(CCGR_WDOG2, 1);
clock_enable(CCGR_WDOG3, 1);
}
void init_usb_clk(void)
{
if (!is_usb_boot()) {
clock_enable(CCGR_USB_CTRL1, 0);
clock_enable(CCGR_USB_CTRL2, 0);
clock_enable(CCGR_USB_PHY1, 0);
clock_enable(CCGR_USB_PHY2, 0);
/* 500MHz */
clock_set_target_val(USB_BUS_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(1));
/* 100MHz */
clock_set_target_val(USB_CORE_REF_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(1));
/* 100MHz */
clock_set_target_val(USB_PHY_REF_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(1));
clock_enable(CCGR_USB_CTRL1, 1);
clock_enable(CCGR_USB_CTRL2, 1);
clock_enable(CCGR_USB_PHY1, 1);
clock_enable(CCGR_USB_PHY2, 1);
}
}
void init_nand_clk(void)
{
clock_enable(CCGR_RAWNAND, 0);
clock_set_target_val(NAND_CLK_ROOT,
CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(3) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4));
clock_enable(CCGR_RAWNAND, 1);
}
void init_uart_clk(u32 index)
{
/* Set uart clock root 25M OSC */
switch (index) {
case 0:
clock_enable(CCGR_UART1, 0);
clock_set_target_val(UART1_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(0));
clock_enable(CCGR_UART1, 1);
return;
case 1:
clock_enable(CCGR_UART2, 0);
clock_set_target_val(UART2_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(0));
clock_enable(CCGR_UART2, 1);
return;
case 2:
clock_enable(CCGR_UART3, 0);
clock_set_target_val(UART3_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(0));
clock_enable(CCGR_UART3, 1);
return;
case 3:
clock_enable(CCGR_UART4, 0);
clock_set_target_val(UART4_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(0));
clock_enable(CCGR_UART4, 1);
return;
default:
printf("Invalid uart index\n");
return;
}
}
void init_clk_usdhc(u32 index)
{
/*
* set usdhc clock root
* sys pll1 400M
*/
switch (index) {
case 0:
clock_enable(CCGR_USDHC1, 0);
clock_set_target_val(USDHC1_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(1));
clock_enable(CCGR_USDHC1, 1);
return;
case 1:
clock_enable(CCGR_USDHC2, 0);
clock_set_target_val(USDHC2_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(1));
clock_enable(CCGR_USDHC2, 1);
return;
default:
printf("Invalid usdhc index\n");
return;
}
}
int set_clk_qspi(void)
{
/*
* set qspi root
* sys pll1 100M
*/
clock_enable(CCGR_QSPI, 0);
clock_set_target_val(QSPI_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(7));
clock_enable(CCGR_QSPI, 1);
return 0;
}
#ifdef CONFIG_FEC_MXC
int set_clk_enet(enum enet_freq type)
{
u32 target;
u32 enet1_ref;
switch (type) {
case ENET_125MHZ:
enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_125M_CLK;
break;
case ENET_50MHZ:
enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_50M_CLK;
break;
case ENET_25MHZ:
enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK;
break;
default:
return -EINVAL;
}
/* disable the clock first */
clock_enable(CCGR_ENET1, 0);
clock_enable(CCGR_SIM_ENET, 0);
/* set enet axi clock 266Mhz */
target = CLK_ROOT_ON | ENET_AXI_CLK_ROOT_FROM_SYS1_PLL_266M |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
clock_set_target_val(ENET_AXI_CLK_ROOT, target);
target = CLK_ROOT_ON | enet1_ref |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
clock_set_target_val(ENET_REF_CLK_ROOT, target);
target = CLK_ROOT_ON |
ENET1_TIME_CLK_ROOT_FROM_PLL_ENET_MAIN_100M_CLK |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
clock_set_target_val(ENET_TIMER_CLK_ROOT, target);
/* enable clock */
clock_enable(CCGR_SIM_ENET, 1);
clock_enable(CCGR_ENET1, 1);
return 0;
}
#endif
u32 imx_get_fecclk(void)
{
return get_root_clk(ENET_AXI_CLK_ROOT);
}
static struct dram_bypass_clk_setting imx8mq_dram_bypass_tbl[] = {
DRAM_BYPASS_ROOT_CONFIG(MHZ(100), 2, CLK_ROOT_PRE_DIV1, 2,
CLK_ROOT_PRE_DIV2),
DRAM_BYPASS_ROOT_CONFIG(MHZ(250), 3, CLK_ROOT_PRE_DIV2, 2,
CLK_ROOT_PRE_DIV2),
DRAM_BYPASS_ROOT_CONFIG(MHZ(400), 1, CLK_ROOT_PRE_DIV2, 3,
CLK_ROOT_PRE_DIV2),
};
void dram_enable_bypass(ulong clk_val)
{
int i;
struct dram_bypass_clk_setting *config;
for (i = 0; i < ARRAY_SIZE(imx8mq_dram_bypass_tbl); i++) {
if (clk_val == imx8mq_dram_bypass_tbl[i].clk)
break;
}
if (i == ARRAY_SIZE(imx8mq_dram_bypass_tbl)) {
printf("No matched freq table %lu\n", clk_val);
return;
}
config = &imx8mq_dram_bypass_tbl[i];
clock_set_target_val(DRAM_ALT_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(config->alt_root_sel) |
CLK_ROOT_PRE_DIV(config->alt_pre_div));
clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(config->apb_root_sel) |
CLK_ROOT_PRE_DIV(config->apb_pre_div));
clock_set_target_val(DRAM_SEL_CFG, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(1));
}
void dram_disable_bypass(void)
{
clock_set_target_val(DRAM_SEL_CFG, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(0));
clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(4) |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV5));
}
#ifdef CONFIG_SPL_BUILD
void dram_pll_init(ulong pll_val)
{
u32 val;
void __iomem *pll_control_reg = &ana_pll->dram_pll_cfg0;
void __iomem *pll_cfg_reg2 = &ana_pll->dram_pll_cfg2;
/* Bypass */
setbits_le32(pll_control_reg, SSCG_PLL_BYPASS1_MASK);
setbits_le32(pll_control_reg, SSCG_PLL_BYPASS2_MASK);
switch (pll_val) {
case MHZ(800):
val = readl(pll_cfg_reg2);
val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
SSCG_PLL_FEEDBACK_DIV_F2_MASK |
SSCG_PLL_FEEDBACK_DIV_F1_MASK |
SSCG_PLL_REF_DIVR2_MASK);
val |= SSCG_PLL_OUTPUT_DIV_VAL(0);
val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(11);
val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(39);
val |= SSCG_PLL_REF_DIVR2_VAL(29);
writel(val, pll_cfg_reg2);
break;
case MHZ(600):
val = readl(pll_cfg_reg2);
val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
SSCG_PLL_FEEDBACK_DIV_F2_MASK |
SSCG_PLL_FEEDBACK_DIV_F1_MASK |
SSCG_PLL_REF_DIVR2_MASK);
val |= SSCG_PLL_OUTPUT_DIV_VAL(1);
val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(17);
val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(39);
val |= SSCG_PLL_REF_DIVR2_VAL(29);
writel(val, pll_cfg_reg2);
break;
case MHZ(400):
val = readl(pll_cfg_reg2);
val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
SSCG_PLL_FEEDBACK_DIV_F2_MASK |
SSCG_PLL_FEEDBACK_DIV_F1_MASK |
SSCG_PLL_REF_DIVR2_MASK);
val |= SSCG_PLL_OUTPUT_DIV_VAL(1);
val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(11);
val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(39);
val |= SSCG_PLL_REF_DIVR2_VAL(29);
writel(val, pll_cfg_reg2);
break;
case MHZ(167):
val = readl(pll_cfg_reg2);
val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
SSCG_PLL_FEEDBACK_DIV_F2_MASK |
SSCG_PLL_FEEDBACK_DIV_F1_MASK |
SSCG_PLL_REF_DIVR2_MASK);
val |= SSCG_PLL_OUTPUT_DIV_VAL(3);
val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(8);
val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(45);
val |= SSCG_PLL_REF_DIVR2_VAL(30);
writel(val, pll_cfg_reg2);
break;
default:
break;
}
/* Clear power down bit */
clrbits_le32(pll_control_reg, SSCG_PLL_PD_MASK);
/* Eanble ARM_PLL/SYS_PLL */
setbits_le32(pll_control_reg, SSCG_PLL_DRAM_PLL_CLKE_MASK);
/* Clear bypass */
clrbits_le32(pll_control_reg, SSCG_PLL_BYPASS1_MASK);
__udelay(100);
clrbits_le32(pll_control_reg, SSCG_PLL_BYPASS2_MASK);
/* Wait lock */
while (!(readl(pll_control_reg) & SSCG_PLL_LOCK_MASK))
;
}
static int frac_pll_init(u32 pll, enum frac_pll_out_val val)
{
void __iomem *pll_cfg0, __iomem *pll_cfg1;
u32 val_cfg0, val_cfg1, divq;
int ret;
switch (pll) {
case ANATOP_ARM_PLL:
pll_cfg0 = &ana_pll->arm_pll_cfg0;
pll_cfg1 = &ana_pll->arm_pll_cfg1;
if (val == FRAC_PLL_OUT_1000M) {
val_cfg1 = FRAC_PLL_INT_DIV_CTL_VAL(49);
divq = 0;
} else {
val_cfg1 = FRAC_PLL_INT_DIV_CTL_VAL(79);
divq = 1;
}
val_cfg0 = FRAC_PLL_CLKE_MASK | FRAC_PLL_REFCLK_SEL_OSC_25M |
FRAC_PLL_LOCK_SEL_MASK | FRAC_PLL_NEWDIV_VAL_MASK |
FRAC_PLL_REFCLK_DIV_VAL(4) |
FRAC_PLL_OUTPUT_DIV_VAL(divq);
break;
default:
return -EINVAL;
}
/* bypass the clock */
setbits_le32(pll_cfg0, FRAC_PLL_BYPASS_MASK);
/* Set the value */
writel(val_cfg1, pll_cfg1);
writel(val_cfg0 | FRAC_PLL_BYPASS_MASK, pll_cfg0);
val_cfg0 = readl(pll_cfg0);
/* unbypass the clock */
clrbits_le32(pll_cfg0, FRAC_PLL_BYPASS_MASK);
ret = readl_poll_timeout(pll_cfg0, val_cfg0,
val_cfg0 & FRAC_PLL_LOCK_MASK, 1);
if (ret)
printf("%s timeout\n", __func__);
clrbits_le32(pll_cfg0, FRAC_PLL_NEWDIV_VAL_MASK);
return 0;
}
int clock_init(void)
{
u32 grade;
clock_set_target_val(ARM_A53_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(0));
/*
* 8MQ only supports two grades: consumer and industrial.
* We set ARM clock to 1Ghz for consumer, 800Mhz for industrial
*/
grade = get_cpu_temp_grade(NULL, NULL);
if (!grade)
frac_pll_init(ANATOP_ARM_PLL, FRAC_PLL_OUT_1000M);
else
frac_pll_init(ANATOP_ARM_PLL, FRAC_PLL_OUT_800M);
/* Bypass CCM A53 ROOT, Switch to ARM PLL -> MUX-> CPU */
clock_set_target_val(CORE_SEL_CFG, CLK_ROOT_SOURCE_SEL(1));
/*
* According to ANAMIX SPEC
* sys pll1 fixed at 800MHz
* sys pll2 fixed at 1GHz
* Here we only enable the outputs.
*/
setbits_le32(&ana_pll->sys_pll1_cfg0, SSCG_PLL_CLKE_MASK |
SSCG_PLL_DIV2_CLKE_MASK | SSCG_PLL_DIV3_CLKE_MASK |
SSCG_PLL_DIV4_CLKE_MASK | SSCG_PLL_DIV5_CLKE_MASK |
SSCG_PLL_DIV6_CLKE_MASK | SSCG_PLL_DIV8_CLKE_MASK |
SSCG_PLL_DIV10_CLKE_MASK | SSCG_PLL_DIV20_CLKE_MASK);
setbits_le32(&ana_pll->sys_pll2_cfg0, SSCG_PLL_CLKE_MASK |
SSCG_PLL_DIV2_CLKE_MASK | SSCG_PLL_DIV3_CLKE_MASK |
SSCG_PLL_DIV4_CLKE_MASK | SSCG_PLL_DIV5_CLKE_MASK |
SSCG_PLL_DIV6_CLKE_MASK | SSCG_PLL_DIV8_CLKE_MASK |
SSCG_PLL_DIV10_CLKE_MASK | SSCG_PLL_DIV20_CLKE_MASK);
clock_set_target_val(NAND_USDHC_BUS_CLK_ROOT, CLK_ROOT_ON |
CLK_ROOT_SOURCE_SEL(1));
init_wdog_clk();
clock_enable(CCGR_TSENSOR, 1);
clock_enable(CCGR_OCOTP, 1);
/* config GIC ROOT to sys_pll2_200m */
clock_enable(CCGR_GIC, 0);
clock_set_target_val(GIC_CLK_ROOT,
CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(1));
clock_enable(CCGR_GIC, 1);
return 0;
}
#endif
/*
* Dump some clockes.
*/
#ifndef CONFIG_SPL_BUILD
static int do_imx8m_showclocks(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
u32 freq;
freq = decode_frac_pll(ARM_PLL_CLK);
printf("ARM_PLL %8d MHz\n", freq / 1000000);
freq = decode_sscg_pll(DRAM_PLL1_CLK);
printf("DRAM_PLL %8d MHz\n", freq / 1000000);
freq = decode_sscg_pll(SYSTEM_PLL1_800M_CLK);
printf("SYS_PLL1_800 %8d MHz\n", freq / 1000000);
freq = decode_sscg_pll(SYSTEM_PLL1_400M_CLK);
printf("SYS_PLL1_400 %8d MHz\n", freq / 1000000);
freq = decode_sscg_pll(SYSTEM_PLL1_266M_CLK);
printf("SYS_PLL1_266 %8d MHz\n", freq / 1000000);
freq = decode_sscg_pll(SYSTEM_PLL1_200M_CLK);
printf("SYS_PLL1_200 %8d MHz\n", freq / 1000000);
freq = decode_sscg_pll(SYSTEM_PLL1_160M_CLK);
printf("SYS_PLL1_160 %8d MHz\n", freq / 1000000);
freq = decode_sscg_pll(SYSTEM_PLL1_133M_CLK);
printf("SYS_PLL1_133 %8d MHz\n", freq / 1000000);
freq = decode_sscg_pll(SYSTEM_PLL1_100M_CLK);
printf("SYS_PLL1_100 %8d MHz\n", freq / 1000000);
freq = decode_sscg_pll(SYSTEM_PLL1_80M_CLK);
printf("SYS_PLL1_80 %8d MHz\n", freq / 1000000);
freq = decode_sscg_pll(SYSTEM_PLL1_40M_CLK);
printf("SYS_PLL1_40 %8d MHz\n", freq / 1000000);
freq = decode_sscg_pll(SYSTEM_PLL2_1000M_CLK);
printf("SYS_PLL2_1000 %8d MHz\n", freq / 1000000);
freq = decode_sscg_pll(SYSTEM_PLL2_500M_CLK);
printf("SYS_PLL2_500 %8d MHz\n", freq / 1000000);
freq = decode_sscg_pll(SYSTEM_PLL2_333M_CLK);
printf("SYS_PLL2_333 %8d MHz\n", freq / 1000000);
freq = decode_sscg_pll(SYSTEM_PLL2_250M_CLK);
printf("SYS_PLL2_250 %8d MHz\n", freq / 1000000);
freq = decode_sscg_pll(SYSTEM_PLL2_200M_CLK);
printf("SYS_PLL2_200 %8d MHz\n", freq / 1000000);
freq = decode_sscg_pll(SYSTEM_PLL2_166M_CLK);
printf("SYS_PLL2_166 %8d MHz\n", freq / 1000000);
freq = decode_sscg_pll(SYSTEM_PLL2_125M_CLK);
printf("SYS_PLL2_125 %8d MHz\n", freq / 1000000);
freq = decode_sscg_pll(SYSTEM_PLL2_100M_CLK);
printf("SYS_PLL2_100 %8d MHz\n", freq / 1000000);
freq = decode_sscg_pll(SYSTEM_PLL2_50M_CLK);
printf("SYS_PLL2_50 %8d MHz\n", freq / 1000000);
freq = decode_sscg_pll(SYSTEM_PLL3_CLK);
printf("SYS_PLL3 %8d MHz\n", freq / 1000000);
freq = mxc_get_clock(UART1_CLK_ROOT);
printf("UART1 %8d MHz\n", freq / 1000000);
freq = mxc_get_clock(USDHC1_CLK_ROOT);
printf("USDHC1 %8d MHz\n", freq / 1000000);
freq = mxc_get_clock(QSPI_CLK_ROOT);
printf("QSPI %8d MHz\n", freq / 1000000);
return 0;
}
U_BOOT_CMD(
clocks, CONFIG_SYS_MAXARGS, 1, do_imx8m_showclocks,
"display clocks",
""
);
#endif