| /* |
| * Copyright 2014 Freescale Semiconductor, Inc. |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <common.h> |
| #include <asm/io.h> |
| #include <asm/system.h> |
| #include <asm/armv8/mmu.h> |
| #include <asm/io.h> |
| #include <asm/arch-fsl-lsch3/soc.h> |
| #include <asm/arch-fsl-lsch3/immap_lsch3.h> |
| #include <fsl_debug_server.h> |
| #include <fsl-mc/fsl_mc.h> |
| #include <asm/arch/fsl_serdes.h> |
| #ifdef CONFIG_FSL_ESDHC |
| #include <fsl_esdhc.h> |
| #endif |
| #include "cpu.h" |
| #include "mp.h" |
| #include "speed.h" |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| static struct cpu_type cpu_type_list[] = { |
| #ifdef CONFIG_LS2085A |
| CPU_TYPE_ENTRY(LS2085, LS2085, 8), |
| CPU_TYPE_ENTRY(LS2080, LS2080, 8), |
| CPU_TYPE_ENTRY(LS2045, LS2045, 4), |
| #endif |
| }; |
| |
| void cpu_name(char *name) |
| { |
| struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| unsigned int i, svr, ver; |
| |
| svr = in_le32(&gur->svr); |
| ver = SVR_SOC_VER(svr); |
| |
| for (i = 0; i < ARRAY_SIZE(cpu_type_list); i++) |
| if ((cpu_type_list[i].soc_ver & SVR_WO_E) == ver) { |
| strcpy(name, cpu_type_list[i].name); |
| |
| if (IS_E_PROCESSOR(svr)) |
| strcat(name, "E"); |
| break; |
| } |
| |
| if (i == ARRAY_SIZE(cpu_type_list)) |
| strcpy(name, "unknown"); |
| } |
| |
| #ifndef CONFIG_SYS_DCACHE_OFF |
| /* |
| * To start MMU before DDR is available, we create MMU table in SRAM. |
| * The base address of SRAM is CONFIG_SYS_FSL_OCRAM_BASE. We use three |
| * levels of translation tables here to cover 40-bit address space. |
| * We use 4KB granule size, with 40 bits physical address, T0SZ=24 |
| * Level 0 IA[39], table address @0 |
| * Level 1 IA[31:30], table address @0x1000, 0x2000 |
| * Level 2 IA[29:21], table address @0x3000, 0x4000 |
| * Address above 0x5000 is free for other purpose. |
| */ |
| |
| #define SECTION_SHIFT_L0 39UL |
| #define SECTION_SHIFT_L1 30UL |
| #define SECTION_SHIFT_L2 21UL |
| #define BLOCK_SIZE_L0 0x8000000000UL |
| #define BLOCK_SIZE_L1 (1 << SECTION_SHIFT_L1) |
| #define BLOCK_SIZE_L2 (1 << SECTION_SHIFT_L2) |
| #define CONFIG_SYS_IFC_BASE 0x30000000 |
| #define CONFIG_SYS_IFC_SIZE 0x10000000 |
| #define CONFIG_SYS_IFC_BASE2 0x500000000 |
| #define CONFIG_SYS_IFC_SIZE2 0x100000000 |
| #define TCR_EL2_PS_40BIT (2 << 16) |
| #define LSCH3_VA_BITS (40) |
| #define LSCH3_TCR (TCR_TG0_4K | \ |
| TCR_EL2_PS_40BIT | \ |
| TCR_SHARED_NON | \ |
| TCR_ORGN_NC | \ |
| TCR_IRGN_NC | \ |
| TCR_T0SZ(LSCH3_VA_BITS)) |
| |
| /* |
| * Final MMU |
| * Let's start from the same layout as early MMU and modify as needed. |
| * IFC regions will be cache-inhibit. |
| */ |
| #define FINAL_QBMAN_CACHED_MEM 0x818000000UL |
| #define FINAL_QBMAN_CACHED_SIZE 0x4000000 |
| |
| |
| static inline void early_mmu_setup(void) |
| { |
| int el; |
| u64 i; |
| u64 section_l1t0, section_l1t1, section_l2t0, section_l2t1; |
| u64 *level0_table = (u64 *)CONFIG_SYS_FSL_OCRAM_BASE; |
| u64 *level1_table_0 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x1000); |
| u64 *level1_table_1 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x2000); |
| u64 *level2_table_0 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x3000); |
| u64 *level2_table_1 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x4000); |
| |
| level0_table[0] = |
| (u64)level1_table_0 | PMD_TYPE_TABLE; |
| level0_table[1] = |
| (u64)level1_table_1 | PMD_TYPE_TABLE; |
| |
| /* |
| * set level 1 table 0 to cache_inhibit, covering 0 to 512GB |
| * set level 1 table 1 to cache enabled, covering 512GB to 1TB |
| * set level 2 table to cache-inhibit, covering 0 to 1GB |
| */ |
| section_l1t0 = 0; |
| section_l1t1 = BLOCK_SIZE_L0; |
| section_l2t0 = 0; |
| section_l2t1 = CONFIG_SYS_FLASH_BASE; |
| for (i = 0; i < 512; i++) { |
| set_pgtable_section(level1_table_0, i, section_l1t0, |
| MT_DEVICE_NGNRNE); |
| set_pgtable_section(level1_table_1, i, section_l1t1, |
| MT_NORMAL); |
| set_pgtable_section(level2_table_0, i, section_l2t0, |
| MT_DEVICE_NGNRNE); |
| set_pgtable_section(level2_table_1, i, section_l2t1, |
| MT_DEVICE_NGNRNE); |
| section_l1t0 += BLOCK_SIZE_L1; |
| section_l1t1 += BLOCK_SIZE_L1; |
| section_l2t0 += BLOCK_SIZE_L2; |
| section_l2t1 += BLOCK_SIZE_L2; |
| } |
| |
| level1_table_0[0] = |
| (u64)level2_table_0 | PMD_TYPE_TABLE; |
| level1_table_0[1] = |
| 0x40000000 | PMD_SECT_AF | PMD_TYPE_SECT | |
| PMD_ATTRINDX(MT_DEVICE_NGNRNE); |
| level1_table_0[2] = |
| 0x80000000 | PMD_SECT_AF | PMD_TYPE_SECT | |
| PMD_ATTRINDX(MT_NORMAL); |
| level1_table_0[3] = |
| 0xc0000000 | PMD_SECT_AF | PMD_TYPE_SECT | |
| PMD_ATTRINDX(MT_NORMAL); |
| |
| /* Rewerite table to enable cache for OCRAM */ |
| set_pgtable_section(level2_table_0, |
| CONFIG_SYS_FSL_OCRAM_BASE >> SECTION_SHIFT_L2, |
| CONFIG_SYS_FSL_OCRAM_BASE, |
| MT_NORMAL); |
| |
| #if defined(CONFIG_SYS_NOR0_CSPR_EARLY) && defined(CONFIG_SYS_NOR_AMASK_EARLY) |
| /* Rewrite table to enable cache for two entries (4MB) */ |
| section_l2t1 = CONFIG_SYS_IFC_BASE; |
| set_pgtable_section(level2_table_0, |
| section_l2t1 >> SECTION_SHIFT_L2, |
| section_l2t1, |
| MT_NORMAL); |
| section_l2t1 += BLOCK_SIZE_L2; |
| set_pgtable_section(level2_table_0, |
| section_l2t1 >> SECTION_SHIFT_L2, |
| section_l2t1, |
| MT_NORMAL); |
| #endif |
| |
| /* Create a mapping for 256MB IFC region to final flash location */ |
| level1_table_0[CONFIG_SYS_FLASH_BASE >> SECTION_SHIFT_L1] = |
| (u64)level2_table_1 | PMD_TYPE_TABLE; |
| section_l2t1 = CONFIG_SYS_IFC_BASE; |
| for (i = 0; i < 0x10000000 >> SECTION_SHIFT_L2; i++) { |
| set_pgtable_section(level2_table_1, i, |
| section_l2t1, MT_DEVICE_NGNRNE); |
| section_l2t1 += BLOCK_SIZE_L2; |
| } |
| |
| el = current_el(); |
| set_ttbr_tcr_mair(el, (u64)level0_table, LSCH3_TCR, MEMORY_ATTRIBUTES); |
| set_sctlr(get_sctlr() | CR_M); |
| } |
| |
| /* |
| * This final tale looks similar to early table, but different in detail. |
| * These tables are in regular memory. Cache on IFC is disabled. One sub table |
| * is added to enable cache for QBMan. |
| */ |
| static inline void final_mmu_setup(void) |
| { |
| int el; |
| u64 i, tbl_base, tbl_limit, section_base; |
| u64 section_l1t0, section_l1t1, section_l2; |
| u64 *level0_table = (u64 *)gd->arch.tlb_addr; |
| u64 *level1_table_0 = (u64 *)(gd->arch.tlb_addr + 0x1000); |
| u64 *level1_table_1 = (u64 *)(gd->arch.tlb_addr + 0x2000); |
| u64 *level2_table_0 = (u64 *)(gd->arch.tlb_addr + 0x3000); |
| u64 *level2_table_1 = (u64 *)(gd->arch.tlb_addr + 0x4000); |
| |
| |
| level0_table[0] = |
| (u64)level1_table_0 | PMD_TYPE_TABLE; |
| level0_table[1] = |
| (u64)level1_table_1 | PMD_TYPE_TABLE; |
| |
| /* |
| * set level 1 table 0 to cache_inhibit, covering 0 to 512GB |
| * set level 1 table 1 to cache enabled, covering 512GB to 1TB |
| * set level 2 table 0 to cache-inhibit, covering 0 to 1GB |
| */ |
| section_l1t0 = 0; |
| section_l1t1 = BLOCK_SIZE_L0 | PMD_SECT_OUTER_SHARE; |
| section_l2 = 0; |
| for (i = 0; i < 512; i++) { |
| set_pgtable_section(level1_table_0, i, section_l1t0, |
| MT_DEVICE_NGNRNE); |
| set_pgtable_section(level1_table_1, i, section_l1t1, |
| MT_NORMAL); |
| set_pgtable_section(level2_table_0, i, section_l2, |
| MT_DEVICE_NGNRNE); |
| section_l1t0 += BLOCK_SIZE_L1; |
| section_l1t1 += BLOCK_SIZE_L1; |
| section_l2 += BLOCK_SIZE_L2; |
| } |
| |
| level1_table_0[0] = |
| (u64)level2_table_0 | PMD_TYPE_TABLE; |
| level1_table_0[2] = |
| 0x80000000 | PMD_SECT_AF | PMD_TYPE_SECT | |
| PMD_SECT_OUTER_SHARE | PMD_ATTRINDX(MT_NORMAL); |
| level1_table_0[3] = |
| 0xc0000000 | PMD_SECT_AF | PMD_TYPE_SECT | |
| PMD_SECT_OUTER_SHARE | PMD_ATTRINDX(MT_NORMAL); |
| |
| /* Rewrite table to enable cache */ |
| set_pgtable_section(level2_table_0, |
| CONFIG_SYS_FSL_OCRAM_BASE >> SECTION_SHIFT_L2, |
| CONFIG_SYS_FSL_OCRAM_BASE, |
| MT_NORMAL); |
| |
| /* |
| * Fill in other part of tables if cache is needed |
| * If finer granularity than 1GB is needed, sub table |
| * should be created. |
| */ |
| section_base = FINAL_QBMAN_CACHED_MEM & ~(BLOCK_SIZE_L1 - 1); |
| i = section_base >> SECTION_SHIFT_L1; |
| level1_table_0[i] = (u64)level2_table_1 | PMD_TYPE_TABLE; |
| section_l2 = section_base; |
| for (i = 0; i < 512; i++) { |
| set_pgtable_section(level2_table_1, i, section_l2, |
| MT_DEVICE_NGNRNE); |
| section_l2 += BLOCK_SIZE_L2; |
| } |
| tbl_base = FINAL_QBMAN_CACHED_MEM & (BLOCK_SIZE_L1 - 1); |
| tbl_limit = (FINAL_QBMAN_CACHED_MEM + FINAL_QBMAN_CACHED_SIZE) & |
| (BLOCK_SIZE_L1 - 1); |
| for (i = tbl_base >> SECTION_SHIFT_L2; |
| i < tbl_limit >> SECTION_SHIFT_L2; i++) { |
| section_l2 = section_base + (i << SECTION_SHIFT_L2); |
| set_pgtable_section(level2_table_1, i, |
| section_l2, MT_NORMAL); |
| } |
| |
| /* flush new MMU table */ |
| flush_dcache_range(gd->arch.tlb_addr, |
| gd->arch.tlb_addr + gd->arch.tlb_size); |
| |
| /* point TTBR to the new table */ |
| el = current_el(); |
| asm volatile("dsb sy"); |
| if (el == 1) { |
| asm volatile("msr ttbr0_el1, %0" |
| : : "r" ((u64)level0_table) : "memory"); |
| } else if (el == 2) { |
| asm volatile("msr ttbr0_el2, %0" |
| : : "r" ((u64)level0_table) : "memory"); |
| } else if (el == 3) { |
| asm volatile("msr ttbr0_el3, %0" |
| : : "r" ((u64)level0_table) : "memory"); |
| } else { |
| hang(); |
| } |
| asm volatile("isb"); |
| |
| /* |
| * MMU is already enabled, just need to invalidate TLB to load the |
| * new table. The new table is compatible with the current table, if |
| * MMU somehow walks through the new table before invalidation TLB, |
| * it still works. So we don't need to turn off MMU here. |
| */ |
| } |
| |
| int arch_cpu_init(void) |
| { |
| icache_enable(); |
| __asm_invalidate_dcache_all(); |
| __asm_invalidate_tlb_all(); |
| early_mmu_setup(); |
| set_sctlr(get_sctlr() | CR_C); |
| return 0; |
| } |
| |
| /* |
| * This function is called from lib/board.c. |
| * It recreates MMU table in main memory. MMU and d-cache are enabled earlier. |
| * There is no need to disable d-cache for this operation. |
| */ |
| void enable_caches(void) |
| { |
| final_mmu_setup(); |
| __asm_invalidate_tlb_all(); |
| } |
| #endif |
| |
| static inline u32 initiator_type(u32 cluster, int init_id) |
| { |
| struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| u32 idx = (cluster >> (init_id * 8)) & TP_CLUSTER_INIT_MASK; |
| u32 type = in_le32(&gur->tp_ityp[idx]); |
| |
| if (type & TP_ITYP_AV) |
| return type; |
| |
| return 0; |
| } |
| |
| u32 cpu_mask(void) |
| { |
| struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| int i = 0, count = 0; |
| u32 cluster, type, mask = 0; |
| |
| do { |
| int j; |
| cluster = in_le32(&gur->tp_cluster[i].lower); |
| for (j = 0; j < TP_INIT_PER_CLUSTER; j++) { |
| type = initiator_type(cluster, j); |
| if (type) { |
| if (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM) |
| mask |= 1 << count; |
| count++; |
| } |
| } |
| i++; |
| } while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC); |
| |
| return mask; |
| } |
| |
| /* |
| * Return the number of cores on this SOC. |
| */ |
| int cpu_numcores(void) |
| { |
| return hweight32(cpu_mask()); |
| } |
| |
| int fsl_qoriq_core_to_cluster(unsigned int core) |
| { |
| struct ccsr_gur __iomem *gur = |
| (void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| int i = 0, count = 0; |
| u32 cluster; |
| |
| do { |
| int j; |
| cluster = in_le32(&gur->tp_cluster[i].lower); |
| for (j = 0; j < TP_INIT_PER_CLUSTER; j++) { |
| if (initiator_type(cluster, j)) { |
| if (count == core) |
| return i; |
| count++; |
| } |
| } |
| i++; |
| } while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC); |
| |
| return -1; /* cannot identify the cluster */ |
| } |
| |
| u32 fsl_qoriq_core_to_type(unsigned int core) |
| { |
| struct ccsr_gur __iomem *gur = |
| (void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| int i = 0, count = 0; |
| u32 cluster, type; |
| |
| do { |
| int j; |
| cluster = in_le32(&gur->tp_cluster[i].lower); |
| for (j = 0; j < TP_INIT_PER_CLUSTER; j++) { |
| type = initiator_type(cluster, j); |
| if (type) { |
| if (count == core) |
| return type; |
| count++; |
| } |
| } |
| i++; |
| } while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC); |
| |
| return -1; /* cannot identify the cluster */ |
| } |
| |
| #ifdef CONFIG_DISPLAY_CPUINFO |
| int print_cpuinfo(void) |
| { |
| struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| struct sys_info sysinfo; |
| char buf[32]; |
| unsigned int i, core; |
| u32 type; |
| |
| puts("SoC: "); |
| |
| cpu_name(buf); |
| printf(" %s (0x%x)\n", buf, in_le32(&gur->svr)); |
| |
| memset((u8 *)buf, 0x00, ARRAY_SIZE(buf)); |
| |
| get_sys_info(&sysinfo); |
| puts("Clock Configuration:"); |
| for_each_cpu(i, core, cpu_numcores(), cpu_mask()) { |
| if (!(i % 3)) |
| puts("\n "); |
| type = TP_ITYP_VER(fsl_qoriq_core_to_type(core)); |
| printf("CPU%d(%s):%-4s MHz ", core, |
| type == TY_ITYP_VER_A7 ? "A7 " : |
| (type == TY_ITYP_VER_A53 ? "A53" : |
| (type == TY_ITYP_VER_A57 ? "A57" : " ")), |
| strmhz(buf, sysinfo.freq_processor[core])); |
| } |
| printf("\n Bus: %-4s MHz ", |
| strmhz(buf, sysinfo.freq_systembus)); |
| printf("DDR: %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus)); |
| printf(" DP-DDR: %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus2)); |
| puts("\n"); |
| |
| /* Display the RCW, so that no one gets confused as to what RCW |
| * we're actually using for this boot. |
| */ |
| puts("Reset Configuration Word (RCW):"); |
| for (i = 0; i < ARRAY_SIZE(gur->rcwsr); i++) { |
| u32 rcw = in_le32(&gur->rcwsr[i]); |
| |
| if ((i % 4) == 0) |
| printf("\n %02x:", i * 4); |
| printf(" %08x", rcw); |
| } |
| puts("\n"); |
| |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_FSL_ESDHC |
| int cpu_mmc_init(bd_t *bis) |
| { |
| return fsl_esdhc_mmc_init(bis); |
| } |
| #endif |
| |
| int cpu_eth_init(bd_t *bis) |
| { |
| int error = 0; |
| |
| #ifdef CONFIG_FSL_MC_ENET |
| error = fsl_mc_ldpaa_init(bis); |
| #endif |
| return error; |
| } |
| |
| int arch_early_init_r(void) |
| { |
| int rv; |
| rv = fsl_lsch3_wake_seconday_cores(); |
| |
| if (rv) |
| printf("Did not wake secondary cores\n"); |
| |
| #ifdef CONFIG_SYS_HAS_SERDES |
| fsl_serdes_init(); |
| #endif |
| return 0; |
| } |
| |
| int timer_init(void) |
| { |
| u32 __iomem *cntcr = (u32 *)CONFIG_SYS_FSL_TIMER_ADDR; |
| u32 __iomem *cltbenr = (u32 *)CONFIG_SYS_FSL_PMU_CLTBENR; |
| #ifdef COUNTER_FREQUENCY_REAL |
| unsigned long cntfrq = COUNTER_FREQUENCY_REAL; |
| |
| /* Update with accurate clock frequency */ |
| asm volatile("msr cntfrq_el0, %0" : : "r" (cntfrq) : "memory"); |
| #endif |
| |
| /* Enable timebase for all clusters. |
| * It is safe to do so even some clusters are not enabled. |
| */ |
| out_le32(cltbenr, 0xf); |
| |
| /* Enable clock for timer |
| * This is a global setting. |
| */ |
| out_le32(cntcr, 0x1); |
| |
| return 0; |
| } |
| |
| void reset_cpu(ulong addr) |
| { |
| u32 __iomem *rstcr = (u32 *)CONFIG_SYS_FSL_RST_ADDR; |
| u32 val; |
| |
| /* Raise RESET_REQ_B */ |
| val = in_le32(rstcr); |
| val |= 0x02; |
| out_le32(rstcr, val); |
| } |