| /* |
| * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com> |
| * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org> |
| * (C) Copyright 2008 Armadeus Systems nc |
| * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de> |
| * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de> |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <common.h> |
| #include <malloc.h> |
| #include <net.h> |
| #include <miiphy.h> |
| #include "fec_mxc.h" |
| |
| #include <asm/arch/clock.h> |
| #include <asm/arch/imx-regs.h> |
| #include <asm/io.h> |
| #include <asm/errno.h> |
| #include <linux/compiler.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| /* |
| * Timeout the transfer after 5 mS. This is usually a bit more, since |
| * the code in the tightloops this timeout is used in adds some overhead. |
| */ |
| #define FEC_XFER_TIMEOUT 5000 |
| |
| #ifndef CONFIG_MII |
| #error "CONFIG_MII has to be defined!" |
| #endif |
| |
| #ifndef CONFIG_FEC_XCV_TYPE |
| #define CONFIG_FEC_XCV_TYPE MII100 |
| #endif |
| |
| /* |
| * The i.MX28 operates with packets in big endian. We need to swap them before |
| * sending and after receiving. |
| */ |
| #ifdef CONFIG_MX28 |
| #define CONFIG_FEC_MXC_SWAP_PACKET |
| #endif |
| |
| #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd)) |
| |
| /* Check various alignment issues at compile time */ |
| #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0)) |
| #error "ARCH_DMA_MINALIGN must be multiple of 16!" |
| #endif |
| |
| #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \ |
| (PKTALIGN % ARCH_DMA_MINALIGN != 0)) |
| #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!" |
| #endif |
| |
| #undef DEBUG |
| |
| struct nbuf { |
| uint8_t data[1500]; /**< actual data */ |
| int length; /**< actual length */ |
| int used; /**< buffer in use or not */ |
| uint8_t head[16]; /**< MAC header(6 + 6 + 2) + 2(aligned) */ |
| }; |
| |
| #ifdef CONFIG_FEC_MXC_SWAP_PACKET |
| static void swap_packet(uint32_t *packet, int length) |
| { |
| int i; |
| |
| for (i = 0; i < DIV_ROUND_UP(length, 4); i++) |
| packet[i] = __swab32(packet[i]); |
| } |
| #endif |
| |
| /* |
| * MII-interface related functions |
| */ |
| static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr, |
| uint8_t regAddr) |
| { |
| uint32_t reg; /* convenient holder for the PHY register */ |
| uint32_t phy; /* convenient holder for the PHY */ |
| uint32_t start; |
| int val; |
| |
| /* |
| * reading from any PHY's register is done by properly |
| * programming the FEC's MII data register. |
| */ |
| writel(FEC_IEVENT_MII, ð->ievent); |
| reg = regAddr << FEC_MII_DATA_RA_SHIFT; |
| phy = phyAddr << FEC_MII_DATA_PA_SHIFT; |
| |
| writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA | |
| phy | reg, ð->mii_data); |
| |
| /* |
| * wait for the related interrupt |
| */ |
| start = get_timer(0); |
| while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { |
| if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { |
| printf("Read MDIO failed...\n"); |
| return -1; |
| } |
| } |
| |
| /* |
| * clear mii interrupt bit |
| */ |
| writel(FEC_IEVENT_MII, ð->ievent); |
| |
| /* |
| * it's now safe to read the PHY's register |
| */ |
| val = (unsigned short)readl(ð->mii_data); |
| debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr, |
| regAddr, val); |
| return val; |
| } |
| |
| static void fec_mii_setspeed(struct ethernet_regs *eth) |
| { |
| /* |
| * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock |
| * and do not drop the Preamble. |
| */ |
| writel((((imx_get_fecclk() / 1000000) + 2) / 5) << 1, |
| ð->mii_speed); |
| debug("%s: mii_speed %08x\n", __func__, readl(ð->mii_speed)); |
| } |
| |
| static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr, |
| uint8_t regAddr, uint16_t data) |
| { |
| uint32_t reg; /* convenient holder for the PHY register */ |
| uint32_t phy; /* convenient holder for the PHY */ |
| uint32_t start; |
| |
| reg = regAddr << FEC_MII_DATA_RA_SHIFT; |
| phy = phyAddr << FEC_MII_DATA_PA_SHIFT; |
| |
| writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR | |
| FEC_MII_DATA_TA | phy | reg | data, ð->mii_data); |
| |
| /* |
| * wait for the MII interrupt |
| */ |
| start = get_timer(0); |
| while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { |
| if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { |
| printf("Write MDIO failed...\n"); |
| return -1; |
| } |
| } |
| |
| /* |
| * clear MII interrupt bit |
| */ |
| writel(FEC_IEVENT_MII, ð->ievent); |
| debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr, |
| regAddr, data); |
| |
| return 0; |
| } |
| |
| int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr) |
| { |
| return fec_mdio_read(bus->priv, phyAddr, regAddr); |
| } |
| |
| int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr, |
| u16 data) |
| { |
| return fec_mdio_write(bus->priv, phyAddr, regAddr, data); |
| } |
| |
| #ifndef CONFIG_PHYLIB |
| static int miiphy_restart_aneg(struct eth_device *dev) |
| { |
| int ret = 0; |
| #if !defined(CONFIG_FEC_MXC_NO_ANEG) |
| struct fec_priv *fec = (struct fec_priv *)dev->priv; |
| struct ethernet_regs *eth = fec->bus->priv; |
| |
| /* |
| * Wake up from sleep if necessary |
| * Reset PHY, then delay 300ns |
| */ |
| #ifdef CONFIG_MX27 |
| fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF); |
| #endif |
| fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET); |
| udelay(1000); |
| |
| /* |
| * Set the auto-negotiation advertisement register bits |
| */ |
| fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE, |
| LPA_100FULL | LPA_100HALF | LPA_10FULL | |
| LPA_10HALF | PHY_ANLPAR_PSB_802_3); |
| fec_mdio_write(eth, fec->phy_id, MII_BMCR, |
| BMCR_ANENABLE | BMCR_ANRESTART); |
| |
| if (fec->mii_postcall) |
| ret = fec->mii_postcall(fec->phy_id); |
| |
| #endif |
| return ret; |
| } |
| |
| static int miiphy_wait_aneg(struct eth_device *dev) |
| { |
| uint32_t start; |
| int status; |
| struct fec_priv *fec = (struct fec_priv *)dev->priv; |
| struct ethernet_regs *eth = fec->bus->priv; |
| |
| /* |
| * Wait for AN completion |
| */ |
| start = get_timer(0); |
| do { |
| if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { |
| printf("%s: Autonegotiation timeout\n", dev->name); |
| return -1; |
| } |
| |
| status = fec_mdio_read(eth, fec->phy_id, MII_BMSR); |
| if (status < 0) { |
| printf("%s: Autonegotiation failed. status: %d\n", |
| dev->name, status); |
| return -1; |
| } |
| } while (!(status & BMSR_LSTATUS)); |
| |
| return 0; |
| } |
| #endif |
| |
| static int fec_rx_task_enable(struct fec_priv *fec) |
| { |
| writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active); |
| return 0; |
| } |
| |
| static int fec_rx_task_disable(struct fec_priv *fec) |
| { |
| return 0; |
| } |
| |
| static int fec_tx_task_enable(struct fec_priv *fec) |
| { |
| writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active); |
| return 0; |
| } |
| |
| static int fec_tx_task_disable(struct fec_priv *fec) |
| { |
| return 0; |
| } |
| |
| /** |
| * Initialize receive task's buffer descriptors |
| * @param[in] fec all we know about the device yet |
| * @param[in] count receive buffer count to be allocated |
| * @param[in] dsize desired size of each receive buffer |
| * @return 0 on success |
| * |
| * For this task we need additional memory for the data buffers. And each |
| * data buffer requires some alignment. Thy must be aligned to a specific |
| * boundary each. |
| */ |
| static int fec_rbd_init(struct fec_priv *fec, int count, int dsize) |
| { |
| uint32_t size; |
| int i; |
| |
| /* |
| * Allocate memory for the buffers. This allocation respects the |
| * alignment |
| */ |
| size = roundup(dsize, ARCH_DMA_MINALIGN); |
| for (i = 0; i < count; i++) { |
| uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer); |
| if (data_ptr == 0) { |
| uint8_t *data = memalign(ARCH_DMA_MINALIGN, |
| size); |
| if (!data) { |
| printf("%s: error allocating rxbuf %d\n", |
| __func__, i); |
| goto err; |
| } |
| writel((uint32_t)data, &fec->rbd_base[i].data_pointer); |
| } /* needs allocation */ |
| writew(FEC_RBD_EMPTY, &fec->rbd_base[i].status); |
| writew(0, &fec->rbd_base[i].data_length); |
| } |
| |
| /* Mark the last RBD to close the ring. */ |
| writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[i - 1].status); |
| fec->rbd_index = 0; |
| |
| return 0; |
| |
| err: |
| for (; i >= 0; i--) { |
| uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer); |
| free((void *)data_ptr); |
| } |
| |
| return -ENOMEM; |
| } |
| |
| /** |
| * Initialize transmit task's buffer descriptors |
| * @param[in] fec all we know about the device yet |
| * |
| * Transmit buffers are created externally. We only have to init the BDs here.\n |
| * Note: There is a race condition in the hardware. When only one BD is in |
| * use it must be marked with the WRAP bit to use it for every transmitt. |
| * This bit in combination with the READY bit results into double transmit |
| * of each data buffer. It seems the state machine checks READY earlier then |
| * resetting it after the first transfer. |
| * Using two BDs solves this issue. |
| */ |
| static void fec_tbd_init(struct fec_priv *fec) |
| { |
| unsigned addr = (unsigned)fec->tbd_base; |
| unsigned size = roundup(2 * sizeof(struct fec_bd), |
| ARCH_DMA_MINALIGN); |
| writew(0x0000, &fec->tbd_base[0].status); |
| writew(FEC_TBD_WRAP, &fec->tbd_base[1].status); |
| fec->tbd_index = 0; |
| flush_dcache_range(addr, addr+size); |
| } |
| |
| /** |
| * Mark the given read buffer descriptor as free |
| * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0 |
| * @param[in] pRbd buffer descriptor to mark free again |
| */ |
| static void fec_rbd_clean(int last, struct fec_bd *pRbd) |
| { |
| unsigned short flags = FEC_RBD_EMPTY; |
| if (last) |
| flags |= FEC_RBD_WRAP; |
| writew(flags, &pRbd->status); |
| writew(0, &pRbd->data_length); |
| } |
| |
| static int fec_get_hwaddr(struct eth_device *dev, int dev_id, |
| unsigned char *mac) |
| { |
| imx_get_mac_from_fuse(dev_id, mac); |
| return !is_valid_ether_addr(mac); |
| } |
| |
| static int fec_set_hwaddr(struct eth_device *dev) |
| { |
| uchar *mac = dev->enetaddr; |
| struct fec_priv *fec = (struct fec_priv *)dev->priv; |
| |
| writel(0, &fec->eth->iaddr1); |
| writel(0, &fec->eth->iaddr2); |
| writel(0, &fec->eth->gaddr1); |
| writel(0, &fec->eth->gaddr2); |
| |
| /* |
| * Set physical address |
| */ |
| writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3], |
| &fec->eth->paddr1); |
| writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2); |
| |
| return 0; |
| } |
| |
| /* |
| * Do initial configuration of the FEC registers |
| */ |
| static void fec_reg_setup(struct fec_priv *fec) |
| { |
| uint32_t rcntrl; |
| |
| /* |
| * Set interrupt mask register |
| */ |
| writel(0x00000000, &fec->eth->imask); |
| |
| /* |
| * Clear FEC-Lite interrupt event register(IEVENT) |
| */ |
| writel(0xffffffff, &fec->eth->ievent); |
| |
| |
| /* |
| * Set FEC-Lite receive control register(R_CNTRL): |
| */ |
| |
| /* Start with frame length = 1518, common for all modes. */ |
| rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT; |
| if (fec->xcv_type != SEVENWIRE) /* xMII modes */ |
| rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE; |
| if (fec->xcv_type == RGMII) |
| rcntrl |= FEC_RCNTRL_RGMII; |
| else if (fec->xcv_type == RMII) |
| rcntrl |= FEC_RCNTRL_RMII; |
| |
| writel(rcntrl, &fec->eth->r_cntrl); |
| } |
| |
| /** |
| * Start the FEC engine |
| * @param[in] dev Our device to handle |
| */ |
| static int fec_open(struct eth_device *edev) |
| { |
| struct fec_priv *fec = (struct fec_priv *)edev->priv; |
| int speed; |
| uint32_t addr, size; |
| int i; |
| |
| debug("fec_open: fec_open(dev)\n"); |
| /* full-duplex, heartbeat disabled */ |
| writel(1 << 2, &fec->eth->x_cntrl); |
| fec->rbd_index = 0; |
| |
| /* Invalidate all descriptors */ |
| for (i = 0; i < FEC_RBD_NUM - 1; i++) |
| fec_rbd_clean(0, &fec->rbd_base[i]); |
| fec_rbd_clean(1, &fec->rbd_base[i]); |
| |
| /* Flush the descriptors into RAM */ |
| size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), |
| ARCH_DMA_MINALIGN); |
| addr = (uint32_t)fec->rbd_base; |
| flush_dcache_range(addr, addr + size); |
| |
| #ifdef FEC_QUIRK_ENET_MAC |
| /* Enable ENET HW endian SWAP */ |
| writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP, |
| &fec->eth->ecntrl); |
| /* Enable ENET store and forward mode */ |
| writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD, |
| &fec->eth->x_wmrk); |
| #endif |
| /* |
| * Enable FEC-Lite controller |
| */ |
| writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN, |
| &fec->eth->ecntrl); |
| #if defined(CONFIG_MX25) || defined(CONFIG_MX53) |
| udelay(100); |
| /* |
| * setup the MII gasket for RMII mode |
| */ |
| |
| /* disable the gasket */ |
| writew(0, &fec->eth->miigsk_enr); |
| |
| /* wait for the gasket to be disabled */ |
| while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) |
| udelay(2); |
| |
| /* configure gasket for RMII, 50 MHz, no loopback, and no echo */ |
| writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr); |
| |
| /* re-enable the gasket */ |
| writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr); |
| |
| /* wait until MII gasket is ready */ |
| int max_loops = 10; |
| while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) { |
| if (--max_loops <= 0) { |
| printf("WAIT for MII Gasket ready timed out\n"); |
| break; |
| } |
| } |
| #endif |
| |
| #ifdef CONFIG_PHYLIB |
| { |
| /* Start up the PHY */ |
| int ret = phy_startup(fec->phydev); |
| |
| if (ret) { |
| printf("Could not initialize PHY %s\n", |
| fec->phydev->dev->name); |
| return ret; |
| } |
| speed = fec->phydev->speed; |
| } |
| #else |
| miiphy_wait_aneg(edev); |
| speed = miiphy_speed(edev->name, fec->phy_id); |
| miiphy_duplex(edev->name, fec->phy_id); |
| #endif |
| |
| #ifdef FEC_QUIRK_ENET_MAC |
| { |
| u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED; |
| u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T; |
| if (speed == _1000BASET) |
| ecr |= FEC_ECNTRL_SPEED; |
| else if (speed != _100BASET) |
| rcr |= FEC_RCNTRL_RMII_10T; |
| writel(ecr, &fec->eth->ecntrl); |
| writel(rcr, &fec->eth->r_cntrl); |
| } |
| #endif |
| debug("%s:Speed=%i\n", __func__, speed); |
| |
| /* |
| * Enable SmartDMA receive task |
| */ |
| fec_rx_task_enable(fec); |
| |
| udelay(100000); |
| return 0; |
| } |
| |
| static int fec_init(struct eth_device *dev, bd_t* bd) |
| { |
| struct fec_priv *fec = (struct fec_priv *)dev->priv; |
| uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop; |
| uint32_t size; |
| int i, ret; |
| |
| /* Initialize MAC address */ |
| fec_set_hwaddr(dev); |
| |
| /* |
| * Allocate transmit descriptors, there are two in total. This |
| * allocation respects cache alignment. |
| */ |
| if (!fec->tbd_base) { |
| size = roundup(2 * sizeof(struct fec_bd), |
| ARCH_DMA_MINALIGN); |
| fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size); |
| if (!fec->tbd_base) { |
| ret = -ENOMEM; |
| goto err1; |
| } |
| memset(fec->tbd_base, 0, size); |
| fec_tbd_init(fec); |
| } |
| |
| /* |
| * Allocate receive descriptors. This allocation respects cache |
| * alignment. |
| */ |
| if (!fec->rbd_base) { |
| size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), |
| ARCH_DMA_MINALIGN); |
| fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size); |
| if (!fec->rbd_base) { |
| ret = -ENOMEM; |
| goto err2; |
| } |
| memset(fec->rbd_base, 0, size); |
| /* |
| * Initialize RxBD ring |
| */ |
| if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) { |
| ret = -ENOMEM; |
| goto err3; |
| } |
| flush_dcache_range((unsigned)fec->rbd_base, |
| (unsigned)fec->rbd_base + size); |
| } |
| |
| fec_reg_setup(fec); |
| |
| if (fec->xcv_type != SEVENWIRE) |
| fec_mii_setspeed(fec->bus->priv); |
| |
| /* |
| * Set Opcode/Pause Duration Register |
| */ |
| writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */ |
| writel(0x2, &fec->eth->x_wmrk); |
| /* |
| * Set multicast address filter |
| */ |
| writel(0x00000000, &fec->eth->gaddr1); |
| writel(0x00000000, &fec->eth->gaddr2); |
| |
| |
| /* clear MIB RAM */ |
| for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4) |
| writel(0, i); |
| |
| /* FIFO receive start register */ |
| writel(0x520, &fec->eth->r_fstart); |
| |
| /* size and address of each buffer */ |
| writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr); |
| writel((uint32_t)fec->tbd_base, &fec->eth->etdsr); |
| writel((uint32_t)fec->rbd_base, &fec->eth->erdsr); |
| |
| #ifndef CONFIG_PHYLIB |
| if (fec->xcv_type != SEVENWIRE) |
| miiphy_restart_aneg(dev); |
| #endif |
| fec_open(dev); |
| return 0; |
| |
| err3: |
| free(fec->rbd_base); |
| err2: |
| free(fec->tbd_base); |
| err1: |
| return ret; |
| } |
| |
| /** |
| * Halt the FEC engine |
| * @param[in] dev Our device to handle |
| */ |
| static void fec_halt(struct eth_device *dev) |
| { |
| struct fec_priv *fec = (struct fec_priv *)dev->priv; |
| int counter = 0xffff; |
| |
| /* |
| * issue graceful stop command to the FEC transmitter if necessary |
| */ |
| writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl), |
| &fec->eth->x_cntrl); |
| |
| debug("eth_halt: wait for stop regs\n"); |
| /* |
| * wait for graceful stop to register |
| */ |
| while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA))) |
| udelay(1); |
| |
| /* |
| * Disable SmartDMA tasks |
| */ |
| fec_tx_task_disable(fec); |
| fec_rx_task_disable(fec); |
| |
| /* |
| * Disable the Ethernet Controller |
| * Note: this will also reset the BD index counter! |
| */ |
| writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN, |
| &fec->eth->ecntrl); |
| fec->rbd_index = 0; |
| fec->tbd_index = 0; |
| debug("eth_halt: done\n"); |
| } |
| |
| /** |
| * Transmit one frame |
| * @param[in] dev Our ethernet device to handle |
| * @param[in] packet Pointer to the data to be transmitted |
| * @param[in] length Data count in bytes |
| * @return 0 on success |
| */ |
| static int fec_send(struct eth_device *dev, void *packet, int length) |
| { |
| unsigned int status; |
| uint32_t size, end; |
| uint32_t addr; |
| int timeout = FEC_XFER_TIMEOUT; |
| int ret = 0; |
| |
| /* |
| * This routine transmits one frame. This routine only accepts |
| * 6-byte Ethernet addresses. |
| */ |
| struct fec_priv *fec = (struct fec_priv *)dev->priv; |
| |
| /* |
| * Check for valid length of data. |
| */ |
| if ((length > 1500) || (length <= 0)) { |
| printf("Payload (%d) too large\n", length); |
| return -1; |
| } |
| |
| /* |
| * Setup the transmit buffer. We are always using the first buffer for |
| * transmission, the second will be empty and only used to stop the DMA |
| * engine. We also flush the packet to RAM here to avoid cache trouble. |
| */ |
| #ifdef CONFIG_FEC_MXC_SWAP_PACKET |
| swap_packet((uint32_t *)packet, length); |
| #endif |
| |
| addr = (uint32_t)packet; |
| end = roundup(addr + length, ARCH_DMA_MINALIGN); |
| addr &= ~(ARCH_DMA_MINALIGN - 1); |
| flush_dcache_range(addr, end); |
| |
| writew(length, &fec->tbd_base[fec->tbd_index].data_length); |
| writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer); |
| |
| /* |
| * update BD's status now |
| * This block: |
| * - is always the last in a chain (means no chain) |
| * - should transmitt the CRC |
| * - might be the last BD in the list, so the address counter should |
| * wrap (-> keep the WRAP flag) |
| */ |
| status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP; |
| status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY; |
| writew(status, &fec->tbd_base[fec->tbd_index].status); |
| |
| /* |
| * Flush data cache. This code flushes both TX descriptors to RAM. |
| * After this code, the descriptors will be safely in RAM and we |
| * can start DMA. |
| */ |
| size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); |
| addr = (uint32_t)fec->tbd_base; |
| flush_dcache_range(addr, addr + size); |
| |
| /* |
| * Below we read the DMA descriptor's last four bytes back from the |
| * DRAM. This is important in order to make sure that all WRITE |
| * operations on the bus that were triggered by previous cache FLUSH |
| * have completed. |
| * |
| * Otherwise, on MX28, it is possible to observe a corruption of the |
| * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM |
| * for the bus structure of MX28. The scenario is as follows: |
| * |
| * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going |
| * to DRAM due to flush_dcache_range() |
| * 2) ARM core writes the FEC registers via AHB_ARB2 |
| * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3 |
| * |
| * Note that 2) does sometimes finish before 1) due to reordering of |
| * WRITE accesses on the AHB bus, therefore triggering 3) before the |
| * DMA descriptor is fully written into DRAM. This results in occasional |
| * corruption of the DMA descriptor. |
| */ |
| readl(addr + size - 4); |
| |
| /* |
| * Enable SmartDMA transmit task |
| */ |
| fec_tx_task_enable(fec); |
| |
| /* |
| * Wait until frame is sent. On each turn of the wait cycle, we must |
| * invalidate data cache to see what's really in RAM. Also, we need |
| * barrier here. |
| */ |
| while (--timeout) { |
| if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR)) |
| break; |
| } |
| |
| if (!timeout) |
| ret = -EINVAL; |
| |
| invalidate_dcache_range(addr, addr + size); |
| if (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) |
| ret = -EINVAL; |
| |
| debug("fec_send: status 0x%x index %d ret %i\n", |
| readw(&fec->tbd_base[fec->tbd_index].status), |
| fec->tbd_index, ret); |
| /* for next transmission use the other buffer */ |
| if (fec->tbd_index) |
| fec->tbd_index = 0; |
| else |
| fec->tbd_index = 1; |
| |
| return ret; |
| } |
| |
| /** |
| * Pull one frame from the card |
| * @param[in] dev Our ethernet device to handle |
| * @return Length of packet read |
| */ |
| static int fec_recv(struct eth_device *dev) |
| { |
| struct fec_priv *fec = (struct fec_priv *)dev->priv; |
| struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index]; |
| unsigned long ievent; |
| int frame_length, len = 0; |
| struct nbuf *frame; |
| uint16_t bd_status; |
| uint32_t addr, size, end; |
| int i; |
| uchar buff[FEC_MAX_PKT_SIZE] __aligned(ARCH_DMA_MINALIGN); |
| |
| /* |
| * Check if any critical events have happened |
| */ |
| ievent = readl(&fec->eth->ievent); |
| writel(ievent, &fec->eth->ievent); |
| debug("fec_recv: ievent 0x%lx\n", ievent); |
| if (ievent & FEC_IEVENT_BABR) { |
| fec_halt(dev); |
| fec_init(dev, fec->bd); |
| printf("some error: 0x%08lx\n", ievent); |
| return 0; |
| } |
| if (ievent & FEC_IEVENT_HBERR) { |
| /* Heartbeat error */ |
| writel(0x00000001 | readl(&fec->eth->x_cntrl), |
| &fec->eth->x_cntrl); |
| } |
| if (ievent & FEC_IEVENT_GRA) { |
| /* Graceful stop complete */ |
| if (readl(&fec->eth->x_cntrl) & 0x00000001) { |
| fec_halt(dev); |
| writel(~0x00000001 & readl(&fec->eth->x_cntrl), |
| &fec->eth->x_cntrl); |
| fec_init(dev, fec->bd); |
| } |
| } |
| |
| /* |
| * Read the buffer status. Before the status can be read, the data cache |
| * must be invalidated, because the data in RAM might have been changed |
| * by DMA. The descriptors are properly aligned to cachelines so there's |
| * no need to worry they'd overlap. |
| * |
| * WARNING: By invalidating the descriptor here, we also invalidate |
| * the descriptors surrounding this one. Therefore we can NOT change the |
| * contents of this descriptor nor the surrounding ones. The problem is |
| * that in order to mark the descriptor as processed, we need to change |
| * the descriptor. The solution is to mark the whole cache line when all |
| * descriptors in the cache line are processed. |
| */ |
| addr = (uint32_t)rbd; |
| addr &= ~(ARCH_DMA_MINALIGN - 1); |
| size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN); |
| invalidate_dcache_range(addr, addr + size); |
| |
| bd_status = readw(&rbd->status); |
| debug("fec_recv: status 0x%x\n", bd_status); |
| |
| if (!(bd_status & FEC_RBD_EMPTY)) { |
| if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) && |
| ((readw(&rbd->data_length) - 4) > 14)) { |
| /* |
| * Get buffer address and size |
| */ |
| frame = (struct nbuf *)readl(&rbd->data_pointer); |
| frame_length = readw(&rbd->data_length) - 4; |
| /* |
| * Invalidate data cache over the buffer |
| */ |
| addr = (uint32_t)frame; |
| end = roundup(addr + frame_length, ARCH_DMA_MINALIGN); |
| addr &= ~(ARCH_DMA_MINALIGN - 1); |
| invalidate_dcache_range(addr, end); |
| |
| /* |
| * Fill the buffer and pass it to upper layers |
| */ |
| #ifdef CONFIG_FEC_MXC_SWAP_PACKET |
| swap_packet((uint32_t *)frame->data, frame_length); |
| #endif |
| memcpy(buff, frame->data, frame_length); |
| NetReceive(buff, frame_length); |
| len = frame_length; |
| } else { |
| if (bd_status & FEC_RBD_ERR) |
| printf("error frame: 0x%08lx 0x%08x\n", |
| (ulong)rbd->data_pointer, |
| bd_status); |
| } |
| |
| /* |
| * Free the current buffer, restart the engine and move forward |
| * to the next buffer. Here we check if the whole cacheline of |
| * descriptors was already processed and if so, we mark it free |
| * as whole. |
| */ |
| size = RXDESC_PER_CACHELINE - 1; |
| if ((fec->rbd_index & size) == size) { |
| i = fec->rbd_index - size; |
| addr = (uint32_t)&fec->rbd_base[i]; |
| for (; i <= fec->rbd_index ; i++) { |
| fec_rbd_clean(i == (FEC_RBD_NUM - 1), |
| &fec->rbd_base[i]); |
| } |
| flush_dcache_range(addr, |
| addr + ARCH_DMA_MINALIGN); |
| } |
| |
| fec_rx_task_enable(fec); |
| fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM; |
| } |
| debug("fec_recv: stop\n"); |
| |
| return len; |
| } |
| |
| static void fec_set_dev_name(char *dest, int dev_id) |
| { |
| sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id); |
| } |
| |
| #ifdef CONFIG_PHYLIB |
| int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, |
| struct mii_dev *bus, struct phy_device *phydev) |
| #else |
| static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, |
| struct mii_dev *bus, int phy_id) |
| #endif |
| { |
| struct eth_device *edev; |
| struct fec_priv *fec; |
| unsigned char ethaddr[6]; |
| uint32_t start; |
| int ret = 0; |
| |
| /* create and fill edev struct */ |
| edev = (struct eth_device *)malloc(sizeof(struct eth_device)); |
| if (!edev) { |
| puts("fec_mxc: not enough malloc memory for eth_device\n"); |
| ret = -ENOMEM; |
| goto err1; |
| } |
| |
| fec = (struct fec_priv *)malloc(sizeof(struct fec_priv)); |
| if (!fec) { |
| puts("fec_mxc: not enough malloc memory for fec_priv\n"); |
| ret = -ENOMEM; |
| goto err2; |
| } |
| |
| memset(edev, 0, sizeof(*edev)); |
| memset(fec, 0, sizeof(*fec)); |
| |
| edev->priv = fec; |
| edev->init = fec_init; |
| edev->send = fec_send; |
| edev->recv = fec_recv; |
| edev->halt = fec_halt; |
| edev->write_hwaddr = fec_set_hwaddr; |
| |
| fec->eth = (struct ethernet_regs *)base_addr; |
| fec->bd = bd; |
| |
| fec->xcv_type = CONFIG_FEC_XCV_TYPE; |
| |
| /* Reset chip. */ |
| writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl); |
| start = get_timer(0); |
| while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) { |
| if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { |
| printf("FEC MXC: Timeout reseting chip\n"); |
| goto err3; |
| } |
| udelay(10); |
| } |
| |
| fec_reg_setup(fec); |
| fec_set_dev_name(edev->name, dev_id); |
| fec->dev_id = (dev_id == -1) ? 0 : dev_id; |
| fec->bus = bus; |
| fec_mii_setspeed(bus->priv); |
| #ifdef CONFIG_PHYLIB |
| fec->phydev = phydev; |
| phy_connect_dev(phydev, edev); |
| /* Configure phy */ |
| phy_config(phydev); |
| #else |
| fec->phy_id = phy_id; |
| #endif |
| eth_register(edev); |
| |
| if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) { |
| debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr); |
| memcpy(edev->enetaddr, ethaddr, 6); |
| if (!getenv("ethaddr")) |
| eth_setenv_enetaddr("ethaddr", ethaddr); |
| } |
| return ret; |
| err3: |
| free(fec); |
| err2: |
| free(edev); |
| err1: |
| return ret; |
| } |
| |
| struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id) |
| { |
| struct ethernet_regs *eth = (struct ethernet_regs *)base_addr; |
| struct mii_dev *bus; |
| int ret; |
| |
| bus = mdio_alloc(); |
| if (!bus) { |
| printf("mdio_alloc failed\n"); |
| return NULL; |
| } |
| bus->read = fec_phy_read; |
| bus->write = fec_phy_write; |
| bus->priv = eth; |
| fec_set_dev_name(bus->name, dev_id); |
| |
| ret = mdio_register(bus); |
| if (ret) { |
| printf("mdio_register failed\n"); |
| free(bus); |
| return NULL; |
| } |
| fec_mii_setspeed(eth); |
| return bus; |
| } |
| |
| int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr) |
| { |
| uint32_t base_mii; |
| struct mii_dev *bus = NULL; |
| #ifdef CONFIG_PHYLIB |
| struct phy_device *phydev = NULL; |
| #endif |
| int ret; |
| |
| #ifdef CONFIG_MX28 |
| /* |
| * The i.MX28 has two ethernet interfaces, but they are not equal. |
| * Only the first one can access the MDIO bus. |
| */ |
| base_mii = MXS_ENET0_BASE; |
| #else |
| base_mii = addr; |
| #endif |
| debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr); |
| bus = fec_get_miibus(base_mii, dev_id); |
| if (!bus) |
| return -ENOMEM; |
| #ifdef CONFIG_PHYLIB |
| phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII); |
| if (!phydev) { |
| free(bus); |
| return -ENOMEM; |
| } |
| ret = fec_probe(bd, dev_id, addr, bus, phydev); |
| #else |
| ret = fec_probe(bd, dev_id, addr, bus, phy_id); |
| #endif |
| if (ret) { |
| #ifdef CONFIG_PHYLIB |
| free(phydev); |
| #endif |
| free(bus); |
| } |
| return ret; |
| } |
| |
| #ifdef CONFIG_FEC_MXC_PHYADDR |
| int fecmxc_initialize(bd_t *bd) |
| { |
| return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR, |
| IMX_FEC_BASE); |
| } |
| #endif |
| |
| #ifndef CONFIG_PHYLIB |
| int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int)) |
| { |
| struct fec_priv *fec = (struct fec_priv *)dev->priv; |
| fec->mii_postcall = cb; |
| return 0; |
| } |
| #endif |