blob: 565a6af1404897e1c4ec4474da8372e74b29b11c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/**
* ufs.c - Universal Flash Storage (UFS) driver
*
* Taken from Linux Kernel v5.2 (drivers/scsi/ufs/ufshcd.c) and ported
* to u-boot.
*
* Copyright (C) 2019 Texas Instruments Incorporated - https://www.ti.com
*/
#include <bouncebuf.h>
#include <charset.h>
#include <dm.h>
#include <log.h>
#include <dm/device_compat.h>
#include <dm/devres.h>
#include <dm/lists.h>
#include <dm/device-internal.h>
#include <malloc.h>
#include <hexdump.h>
#include <scsi.h>
#include <asm/io.h>
#include <asm/dma-mapping.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include "ufs.h"
#define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\
UTP_TASK_REQ_COMPL |\
UFSHCD_ERROR_MASK)
/* maximum number of link-startup retries */
#define DME_LINKSTARTUP_RETRIES 3
/* maximum number of retries for a general UIC command */
#define UFS_UIC_COMMAND_RETRIES 3
/* Query request retries */
#define QUERY_REQ_RETRIES 3
/* Query request timeout */
#define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
/* maximum timeout in ms for a general UIC command */
#define UFS_UIC_CMD_TIMEOUT 1000
/* NOP OUT retries waiting for NOP IN response */
#define NOP_OUT_RETRIES 10
/* Timeout after 30 msecs if NOP OUT hangs without response */
#define NOP_OUT_TIMEOUT 30 /* msecs */
/* Only use one Task Tag for all requests */
#define TASK_TAG 0
/* Expose the flag value from utp_upiu_query.value */
#define MASK_QUERY_UPIU_FLAG_LOC 0xFF
#define MAX_PRDT_ENTRY 262144
/* maximum bytes per request */
#define UFS_MAX_BYTES (128 * 256 * 1024)
static inline bool ufshcd_is_hba_active(struct ufs_hba *hba);
static inline void ufshcd_hba_stop(struct ufs_hba *hba);
static int ufshcd_hba_enable(struct ufs_hba *hba);
/*
* ufshcd_wait_for_register - wait for register value to change
*/
static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
u32 val, unsigned long timeout_ms)
{
int err = 0;
unsigned long start = get_timer(0);
/* ignore bits that we don't intend to wait on */
val = val & mask;
while ((ufshcd_readl(hba, reg) & mask) != val) {
if (get_timer(start) > timeout_ms) {
if ((ufshcd_readl(hba, reg) & mask) != val)
err = -ETIMEDOUT;
break;
}
}
return err;
}
/**
* ufshcd_init_pwr_info - setting the POR (power on reset)
* values in hba power info
*/
static void ufshcd_init_pwr_info(struct ufs_hba *hba)
{
hba->pwr_info.gear_rx = UFS_PWM_G1;
hba->pwr_info.gear_tx = UFS_PWM_G1;
hba->pwr_info.lane_rx = 1;
hba->pwr_info.lane_tx = 1;
hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
hba->pwr_info.hs_rate = 0;
}
/**
* ufshcd_print_pwr_info - print power params as saved in hba
* power info
*/
static void ufshcd_print_pwr_info(struct ufs_hba *hba)
{
static const char * const names[] = {
"INVALID MODE",
"FAST MODE",
"SLOW_MODE",
"INVALID MODE",
"FASTAUTO_MODE",
"SLOWAUTO_MODE",
"INVALID MODE",
};
dev_err(hba->dev, "[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
names[hba->pwr_info.pwr_rx],
names[hba->pwr_info.pwr_tx],
hba->pwr_info.hs_rate);
}
/**
* ufshcd_ready_for_uic_cmd - Check if controller is ready
* to accept UIC commands
*/
static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
{
if (ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY)
return true;
else
return false;
}
/**
* ufshcd_get_uic_cmd_result - Get the UIC command result
*/
static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
{
return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
MASK_UIC_COMMAND_RESULT;
}
/**
* ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
*/
static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
{
return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
}
/**
* ufshcd_is_device_present - Check if any device connected to
* the host controller
*/
static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
{
return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) &
DEVICE_PRESENT) ? true : false;
}
/**
* ufshcd_send_uic_cmd - UFS Interconnect layer command API
*
*/
static int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
{
unsigned long start = 0;
u32 intr_status;
u32 enabled_intr_status;
if (!ufshcd_ready_for_uic_cmd(hba)) {
dev_err(hba->dev,
"Controller not ready to accept UIC commands\n");
return -EIO;
}
debug("sending uic command:%d\n", uic_cmd->command);
/* Write Args */
ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
/* Write UIC Cmd */
ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
REG_UIC_COMMAND);
start = get_timer(0);
do {
intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
enabled_intr_status = intr_status & hba->intr_mask;
ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
if (get_timer(start) > UFS_UIC_CMD_TIMEOUT) {
dev_err(hba->dev,
"Timedout waiting for UIC response\n");
return -ETIMEDOUT;
}
if (enabled_intr_status & UFSHCD_ERROR_MASK) {
dev_err(hba->dev, "Error in status:%08x\n",
enabled_intr_status);
return -1;
}
} while (!(enabled_intr_status & UFSHCD_UIC_MASK));
uic_cmd->argument2 = ufshcd_get_uic_cmd_result(hba);
uic_cmd->argument3 = ufshcd_get_dme_attr_val(hba);
debug("Sent successfully\n");
return 0;
}
/**
* ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
*
*/
int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel, u8 attr_set,
u32 mib_val, u8 peer)
{
struct uic_command uic_cmd = {0};
static const char *const action[] = {
"dme-set",
"dme-peer-set"
};
const char *set = action[!!peer];
int ret;
int retries = UFS_UIC_COMMAND_RETRIES;
uic_cmd.command = peer ?
UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
uic_cmd.argument1 = attr_sel;
uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
uic_cmd.argument3 = mib_val;
do {
/* for peer attributes we retry upon failure */
ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
if (ret)
dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
} while (ret && peer && --retries);
if (ret)
dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
set, UIC_GET_ATTR_ID(attr_sel), mib_val,
UFS_UIC_COMMAND_RETRIES - retries);
return ret;
}
/**
* ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
*
*/
int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
u32 *mib_val, u8 peer)
{
struct uic_command uic_cmd = {0};
static const char *const action[] = {
"dme-get",
"dme-peer-get"
};
const char *get = action[!!peer];
int ret;
int retries = UFS_UIC_COMMAND_RETRIES;
uic_cmd.command = peer ?
UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
uic_cmd.argument1 = attr_sel;
do {
/* for peer attributes we retry upon failure */
ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
if (ret)
dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
get, UIC_GET_ATTR_ID(attr_sel), ret);
} while (ret && peer && --retries);
if (ret)
dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
get, UIC_GET_ATTR_ID(attr_sel),
UFS_UIC_COMMAND_RETRIES - retries);
if (mib_val && !ret)
*mib_val = uic_cmd.argument3;
return ret;
}
static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
{
u32 tx_lanes, i, err = 0;
if (!peer)
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
&tx_lanes);
else
ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
&tx_lanes);
for (i = 0; i < tx_lanes; i++) {
if (!peer)
err = ufshcd_dme_set(hba,
UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
0);
else
err = ufshcd_dme_peer_set(hba,
UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
0);
if (err) {
dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d\n",
__func__, peer, i, err);
break;
}
}
return err;
}
static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
{
return ufshcd_disable_tx_lcc(hba, true);
}
/**
* ufshcd_dme_link_startup - Notify Unipro to perform link startup
*
*/
static int ufshcd_dme_link_startup(struct ufs_hba *hba)
{
struct uic_command uic_cmd = {0};
int ret;
uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
if (ret)
dev_dbg(hba->dev,
"dme-link-startup: error code %d\n", ret);
return ret;
}
/**
* ufshcd_disable_intr_aggr - Disables interrupt aggregation.
*
*/
static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
{
ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
}
/**
* ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
*/
static inline int ufshcd_get_lists_status(u32 reg)
{
return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
}
/**
* ufshcd_enable_run_stop_reg - Enable run-stop registers,
* When run-stop registers are set to 1, it indicates the
* host controller that it can process the requests
*/
static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
{
ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
REG_UTP_TASK_REQ_LIST_RUN_STOP);
ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
}
/**
* ufshcd_enable_intr - enable interrupts
*/
static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
{
u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
u32 rw;
if (hba->version == UFSHCI_VERSION_10) {
rw = set & INTERRUPT_MASK_RW_VER_10;
set = rw | ((set ^ intrs) & intrs);
} else {
set |= intrs;
}
ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
hba->intr_mask = set;
}
/**
* ufshcd_make_hba_operational - Make UFS controller operational
*
* To bring UFS host controller to operational state,
* 1. Enable required interrupts
* 2. Configure interrupt aggregation
* 3. Program UTRL and UTMRL base address
* 4. Configure run-stop-registers
*
*/
static int ufshcd_make_hba_operational(struct ufs_hba *hba)
{
int err = 0;
u32 reg;
/* Enable required interrupts */
ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
/* Disable interrupt aggregation */
ufshcd_disable_intr_aggr(hba);
/* Configure UTRL and UTMRL base address registers */
ufshcd_writel(hba, lower_32_bits((dma_addr_t)hba->utrdl),
REG_UTP_TRANSFER_REQ_LIST_BASE_L);
ufshcd_writel(hba, upper_32_bits((dma_addr_t)hba->utrdl),
REG_UTP_TRANSFER_REQ_LIST_BASE_H);
ufshcd_writel(hba, lower_32_bits((dma_addr_t)hba->utmrdl),
REG_UTP_TASK_REQ_LIST_BASE_L);
ufshcd_writel(hba, upper_32_bits((dma_addr_t)hba->utmrdl),
REG_UTP_TASK_REQ_LIST_BASE_H);
/*
* UCRDY, UTMRLDY and UTRLRDY bits must be 1
*/
reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
if (!(ufshcd_get_lists_status(reg))) {
ufshcd_enable_run_stop_reg(hba);
} else {
dev_err(hba->dev,
"Host controller not ready to process requests\n");
err = -EIO;
goto out;
}
out:
return err;
}
/**
* ufshcd_link_startup - Initialize unipro link startup
*/
static int ufshcd_link_startup(struct ufs_hba *hba)
{
int ret;
int retries = DME_LINKSTARTUP_RETRIES;
bool link_startup_again = true;
link_startup:
do {
ufshcd_ops_link_startup_notify(hba, PRE_CHANGE);
ret = ufshcd_dme_link_startup(hba);
/* check if device is detected by inter-connect layer */
if (!ret && !ufshcd_is_device_present(hba)) {
dev_err(hba->dev, "%s: Device not present\n", __func__);
ret = -ENXIO;
goto out;
}
/*
* DME link lost indication is only received when link is up,
* but we can't be sure if the link is up until link startup
* succeeds. So reset the local Uni-Pro and try again.
*/
if (ret && ufshcd_hba_enable(hba))
goto out;
} while (ret && retries--);
if (ret)
/* failed to get the link up... retire */
goto out;
if (link_startup_again) {
link_startup_again = false;
retries = DME_LINKSTARTUP_RETRIES;
goto link_startup;
}
/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
ufshcd_init_pwr_info(hba);
if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
ret = ufshcd_disable_device_tx_lcc(hba);
if (ret)
goto out;
}
/* Include any host controller configuration via UIC commands */
ret = ufshcd_ops_link_startup_notify(hba, POST_CHANGE);
if (ret)
goto out;
/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
ret = ufshcd_make_hba_operational(hba);
out:
if (ret)
dev_err(hba->dev, "link startup failed %d\n", ret);
return ret;
}
/**
* ufshcd_hba_stop - Send controller to reset state
*/
static inline void ufshcd_hba_stop(struct ufs_hba *hba)
{
int err;
ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE);
err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
CONTROLLER_ENABLE, CONTROLLER_DISABLE,
10);
if (err)
dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
}
/**
* ufshcd_is_hba_active - Get controller state
*/
static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
{
return (ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE)
? false : true;
}
/**
* ufshcd_hba_start - Start controller initialization sequence
*/
static inline void ufshcd_hba_start(struct ufs_hba *hba)
{
ufshcd_writel(hba, CONTROLLER_ENABLE, REG_CONTROLLER_ENABLE);
}
/**
* ufshcd_hba_enable - initialize the controller
*/
static int ufshcd_hba_enable(struct ufs_hba *hba)
{
int retry;
if (!ufshcd_is_hba_active(hba))
/* change controller state to "reset state" */
ufshcd_hba_stop(hba);
ufshcd_ops_hce_enable_notify(hba, PRE_CHANGE);
/* start controller initialization sequence */
ufshcd_hba_start(hba);
/*
* To initialize a UFS host controller HCE bit must be set to 1.
* During initialization the HCE bit value changes from 1->0->1.
* When the host controller completes initialization sequence
* it sets the value of HCE bit to 1. The same HCE bit is read back
* to check if the controller has completed initialization sequence.
* So without this delay the value HCE = 1, set in the previous
* instruction might be read back.
* This delay can be changed based on the controller.
*/
mdelay(1);
/* wait for the host controller to complete initialization */
retry = 10;
while (ufshcd_is_hba_active(hba)) {
if (retry) {
retry--;
} else {
dev_err(hba->dev, "Controller enable failed\n");
return -EIO;
}
mdelay(5);
}
/* enable UIC related interrupts */
ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
ufshcd_ops_hce_enable_notify(hba, POST_CHANGE);
return 0;
}
/**
* ufshcd_host_memory_configure - configure local reference block with
* memory offsets
*/
static void ufshcd_host_memory_configure(struct ufs_hba *hba)
{
struct utp_transfer_req_desc *utrdlp;
dma_addr_t cmd_desc_dma_addr;
u16 response_offset;
u16 prdt_offset;
utrdlp = hba->utrdl;
cmd_desc_dma_addr = (dma_addr_t)hba->ucdl;
utrdlp->command_desc_base_addr_lo =
cpu_to_le32(lower_32_bits(cmd_desc_dma_addr));
utrdlp->command_desc_base_addr_hi =
cpu_to_le32(upper_32_bits(cmd_desc_dma_addr));
response_offset = offsetof(struct utp_transfer_cmd_desc, response_upiu);
prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
utrdlp->response_upiu_offset = cpu_to_le16(response_offset >> 2);
utrdlp->prd_table_offset = cpu_to_le16(prdt_offset >> 2);
utrdlp->response_upiu_length = cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
hba->ucd_req_ptr = (struct utp_upiu_req *)hba->ucdl;
hba->ucd_rsp_ptr =
(struct utp_upiu_rsp *)&hba->ucdl->response_upiu;
hba->ucd_prdt_ptr =
(struct ufshcd_sg_entry *)&hba->ucdl->prd_table;
}
/**
* ufshcd_memory_alloc - allocate memory for host memory space data structures
*/
static int ufshcd_memory_alloc(struct ufs_hba *hba)
{
/* Allocate one Transfer Request Descriptor
* Should be aligned to 1k boundary.
*/
hba->utrdl = memalign(1024,
ALIGN(sizeof(struct utp_transfer_req_desc),
ARCH_DMA_MINALIGN));
if (!hba->utrdl) {
dev_err(hba->dev, "Transfer Descriptor memory allocation failed\n");
return -ENOMEM;
}
/* Allocate one Command Descriptor
* Should be aligned to 1k boundary.
*/
hba->ucdl = memalign(1024,
ALIGN(sizeof(struct utp_transfer_cmd_desc),
ARCH_DMA_MINALIGN));
if (!hba->ucdl) {
dev_err(hba->dev, "Command descriptor memory allocation failed\n");
return -ENOMEM;
}
return 0;
}
/**
* ufshcd_get_intr_mask - Get the interrupt bit mask
*/
static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
{
u32 intr_mask = 0;
switch (hba->version) {
case UFSHCI_VERSION_10:
intr_mask = INTERRUPT_MASK_ALL_VER_10;
break;
case UFSHCI_VERSION_11:
case UFSHCI_VERSION_20:
intr_mask = INTERRUPT_MASK_ALL_VER_11;
break;
case UFSHCI_VERSION_21:
default:
intr_mask = INTERRUPT_MASK_ALL_VER_21;
break;
}
return intr_mask;
}
/**
* ufshcd_get_ufs_version - Get the UFS version supported by the HBA
*/
static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
{
return ufshcd_readl(hba, REG_UFS_VERSION);
}
/**
* ufshcd_get_upmcrs - Get the power mode change request status
*/
static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
{
return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
}
/**
* ufshcd_cache_flush - Flush cache
*
* Flush cache in aligned address..address+size range.
*/
static void ufshcd_cache_flush(void *addr, unsigned long size)
{
uintptr_t start_addr = (uintptr_t)addr & ~(ARCH_DMA_MINALIGN - 1);
uintptr_t end_addr = ALIGN((uintptr_t)addr + size, ARCH_DMA_MINALIGN);
flush_dcache_range(start_addr, end_addr);
}
/**
* ufshcd_cache_invalidate - Invalidate cache
*
* Invalidate cache in aligned address..address+size range.
*/
static void ufshcd_cache_invalidate(void *addr, unsigned long size)
{
uintptr_t start_addr = (uintptr_t)addr & ~(ARCH_DMA_MINALIGN - 1);
uintptr_t end_addr = ALIGN((uintptr_t)addr + size, ARCH_DMA_MINALIGN);
invalidate_dcache_range(start_addr, end_addr);
}
/**
* ufshcd_prepare_req_desc_hdr() - Fills the requests header
* descriptor according to request
*/
static void ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba,
u32 *upiu_flags,
enum dma_data_direction cmd_dir)
{
struct utp_transfer_req_desc *req_desc = hba->utrdl;
u32 data_direction;
u32 dword_0;
if (cmd_dir == DMA_FROM_DEVICE) {
data_direction = UTP_DEVICE_TO_HOST;
*upiu_flags = UPIU_CMD_FLAGS_READ;
} else if (cmd_dir == DMA_TO_DEVICE) {
data_direction = UTP_HOST_TO_DEVICE;
*upiu_flags = UPIU_CMD_FLAGS_WRITE;
} else {
data_direction = UTP_NO_DATA_TRANSFER;
*upiu_flags = UPIU_CMD_FLAGS_NONE;
}
dword_0 = data_direction | (0x1 << UPIU_COMMAND_TYPE_OFFSET);
/* Enable Interrupt for command */
dword_0 |= UTP_REQ_DESC_INT_CMD;
/* Transfer request descriptor header fields */
req_desc->header.dword_0 = cpu_to_le32(dword_0);
/* dword_1 is reserved, hence it is set to 0 */
req_desc->header.dword_1 = 0;
/*
* assigning invalid value for command status. Controller
* updates OCS on command completion, with the command
* status
*/
req_desc->header.dword_2 =
cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
/* dword_3 is reserved, hence it is set to 0 */
req_desc->header.dword_3 = 0;
req_desc->prd_table_length = 0;
ufshcd_cache_flush(req_desc, sizeof(*req_desc));
}
static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
u32 upiu_flags)
{
struct utp_upiu_req *ucd_req_ptr = hba->ucd_req_ptr;
struct ufs_query *query = &hba->dev_cmd.query;
u16 len = be16_to_cpu(query->request.upiu_req.length);
/* Query request header */
ucd_req_ptr->header.dword_0 =
UPIU_HEADER_DWORD(UPIU_TRANSACTION_QUERY_REQ,
upiu_flags, 0, TASK_TAG);
ucd_req_ptr->header.dword_1 =
UPIU_HEADER_DWORD(0, query->request.query_func,
0, 0);
/* Data segment length only need for WRITE_DESC */
if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
ucd_req_ptr->header.dword_2 =
UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
else
ucd_req_ptr->header.dword_2 = 0;
/* Copy the Query Request buffer as is */
memcpy(&ucd_req_ptr->qr, &query->request.upiu_req, QUERY_OSF_SIZE);
/* Copy the Descriptor */
if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC) {
memcpy(ucd_req_ptr + 1, query->descriptor, len);
ufshcd_cache_flush(ucd_req_ptr, 2 * sizeof(*ucd_req_ptr));
} else {
ufshcd_cache_flush(ucd_req_ptr, sizeof(*ucd_req_ptr));
}
memset(hba->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
ufshcd_cache_flush(hba->ucd_rsp_ptr, sizeof(*hba->ucd_rsp_ptr));
}
static inline void ufshcd_prepare_utp_nop_upiu(struct ufs_hba *hba)
{
struct utp_upiu_req *ucd_req_ptr = hba->ucd_req_ptr;
memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
/* command descriptor fields */
ucd_req_ptr->header.dword_0 =
UPIU_HEADER_DWORD(UPIU_TRANSACTION_NOP_OUT, 0, 0, TASK_TAG);
/* clear rest of the fields of basic header */
ucd_req_ptr->header.dword_1 = 0;
ucd_req_ptr->header.dword_2 = 0;
memset(hba->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
ufshcd_cache_flush(ucd_req_ptr, sizeof(*ucd_req_ptr));
ufshcd_cache_flush(hba->ucd_rsp_ptr, sizeof(*hba->ucd_rsp_ptr));
}
/**
* ufshcd_comp_devman_upiu - UFS Protocol Information Unit(UPIU)
* for Device Management Purposes
*/
static int ufshcd_comp_devman_upiu(struct ufs_hba *hba,
enum dev_cmd_type cmd_type)
{
u32 upiu_flags;
int ret = 0;
hba->dev_cmd.type = cmd_type;
ufshcd_prepare_req_desc_hdr(hba, &upiu_flags, DMA_NONE);
switch (cmd_type) {
case DEV_CMD_TYPE_QUERY:
ufshcd_prepare_utp_query_req_upiu(hba, upiu_flags);
break;
case DEV_CMD_TYPE_NOP:
ufshcd_prepare_utp_nop_upiu(hba);
break;
default:
ret = -EINVAL;
}
return ret;
}
static int ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag)
{
unsigned long start;
u32 intr_status;
u32 enabled_intr_status;
ufshcd_writel(hba, 1 << task_tag, REG_UTP_TRANSFER_REQ_DOOR_BELL);
start = get_timer(0);
do {
intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
enabled_intr_status = intr_status & hba->intr_mask;
ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
if (get_timer(start) > QUERY_REQ_TIMEOUT) {
dev_err(hba->dev,
"Timedout waiting for UTP response\n");
return -ETIMEDOUT;
}
if (enabled_intr_status & UFSHCD_ERROR_MASK) {
dev_err(hba->dev, "Error in status:%08x\n",
enabled_intr_status);
return -1;
}
} while (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL));
return 0;
}
/**
* ufshcd_get_req_rsp - returns the TR response transaction type
*/
static inline int ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
{
ufshcd_cache_invalidate(ucd_rsp_ptr, sizeof(*ucd_rsp_ptr));
return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
}
/**
* ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
*
*/
static inline int ufshcd_get_tr_ocs(struct ufs_hba *hba)
{
struct utp_transfer_req_desc *req_desc = hba->utrdl;
ufshcd_cache_invalidate(req_desc, sizeof(*req_desc));
return le32_to_cpu(req_desc->header.dword_2) & MASK_OCS;
}
static inline int ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
{
return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
}
static int ufshcd_check_query_response(struct ufs_hba *hba)
{
struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
/* Get the UPIU response */
query_res->response = ufshcd_get_rsp_upiu_result(hba->ucd_rsp_ptr) >>
UPIU_RSP_CODE_OFFSET;
return query_res->response;
}
/**
* ufshcd_copy_query_response() - Copy the Query Response and the data
* descriptor
*/
static int ufshcd_copy_query_response(struct ufs_hba *hba)
{
struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
memcpy(&query_res->upiu_res, &hba->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
/* Get the descriptor */
if (hba->dev_cmd.query.descriptor &&
hba->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
u8 *descp = (u8 *)hba->ucd_rsp_ptr +
GENERAL_UPIU_REQUEST_SIZE;
u16 resp_len;
u16 buf_len;
/* data segment length */
resp_len = be32_to_cpu(hba->ucd_rsp_ptr->header.dword_2) &
MASK_QUERY_DATA_SEG_LEN;
buf_len =
be16_to_cpu(hba->dev_cmd.query.request.upiu_req.length);
if (likely(buf_len >= resp_len)) {
memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
} else {
dev_warn(hba->dev,
"%s: Response size is bigger than buffer\n",
__func__);
return -EINVAL;
}
}
return 0;
}
/**
* ufshcd_exec_dev_cmd - API for sending device management requests
*/
static int ufshcd_exec_dev_cmd(struct ufs_hba *hba, enum dev_cmd_type cmd_type,
int timeout)
{
int err;
int resp;
err = ufshcd_comp_devman_upiu(hba, cmd_type);
if (err)
return err;
err = ufshcd_send_command(hba, TASK_TAG);
if (err)
return err;
err = ufshcd_get_tr_ocs(hba);
if (err) {
dev_err(hba->dev, "Error in OCS:%d\n", err);
return -EINVAL;
}
resp = ufshcd_get_req_rsp(hba->ucd_rsp_ptr);
switch (resp) {
case UPIU_TRANSACTION_NOP_IN:
break;
case UPIU_TRANSACTION_QUERY_RSP:
err = ufshcd_check_query_response(hba);
if (!err)
err = ufshcd_copy_query_response(hba);
break;
case UPIU_TRANSACTION_REJECT_UPIU:
/* TODO: handle Reject UPIU Response */
err = -EPERM;
dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
__func__);
break;
default:
err = -EINVAL;
dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
__func__, resp);
}
return err;
}
/**
* ufshcd_init_query() - init the query response and request parameters
*/
static inline void ufshcd_init_query(struct ufs_hba *hba,
struct ufs_query_req **request,
struct ufs_query_res **response,
enum query_opcode opcode,
u8 idn, u8 index, u8 selector)
{
*request = &hba->dev_cmd.query.request;
*response = &hba->dev_cmd.query.response;
memset(*request, 0, sizeof(struct ufs_query_req));
memset(*response, 0, sizeof(struct ufs_query_res));
(*request)->upiu_req.opcode = opcode;
(*request)->upiu_req.idn = idn;
(*request)->upiu_req.index = index;
(*request)->upiu_req.selector = selector;
}
/**
* ufshcd_query_flag() - API function for sending flag query requests
*/
int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
enum flag_idn idn, bool *flag_res)
{
struct ufs_query_req *request = NULL;
struct ufs_query_res *response = NULL;
int err, index = 0, selector = 0;
int timeout = QUERY_REQ_TIMEOUT;
ufshcd_init_query(hba, &request, &response, opcode, idn, index,
selector);
switch (opcode) {
case UPIU_QUERY_OPCODE_SET_FLAG:
case UPIU_QUERY_OPCODE_CLEAR_FLAG:
case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
break;
case UPIU_QUERY_OPCODE_READ_FLAG:
request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
if (!flag_res) {
/* No dummy reads */
dev_err(hba->dev, "%s: Invalid argument for read request\n",
__func__);
err = -EINVAL;
goto out;
}
break;
default:
dev_err(hba->dev,
"%s: Expected query flag opcode but got = %d\n",
__func__, opcode);
err = -EINVAL;
goto out;
}
err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
if (err) {
dev_err(hba->dev,
"%s: Sending flag query for idn %d failed, err = %d\n",
__func__, idn, err);
goto out;
}
if (flag_res)
*flag_res = (be32_to_cpu(response->upiu_res.value) &
MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
out:
return err;
}
static int ufshcd_query_flag_retry(struct ufs_hba *hba,
enum query_opcode opcode,
enum flag_idn idn, bool *flag_res)
{
int ret;
int retries;
for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
ret = ufshcd_query_flag(hba, opcode, idn, flag_res);
if (ret)
dev_dbg(hba->dev,
"%s: failed with error %d, retries %d\n",
__func__, ret, retries);
else
break;
}
if (ret)
dev_err(hba->dev,
"%s: query attribute, opcode %d, idn %d, failed with error %d after %d retires\n",
__func__, opcode, idn, ret, retries);
return ret;
}
static int __ufshcd_query_descriptor(struct ufs_hba *hba,
enum query_opcode opcode,
enum desc_idn idn, u8 index, u8 selector,
u8 *desc_buf, int *buf_len)
{
struct ufs_query_req *request = NULL;
struct ufs_query_res *response = NULL;
int err;
if (!desc_buf) {
dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
__func__, opcode);
err = -EINVAL;
goto out;
}
if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
__func__, *buf_len);
err = -EINVAL;
goto out;
}
ufshcd_init_query(hba, &request, &response, opcode, idn, index,
selector);
hba->dev_cmd.query.descriptor = desc_buf;
request->upiu_req.length = cpu_to_be16(*buf_len);
switch (opcode) {
case UPIU_QUERY_OPCODE_WRITE_DESC:
request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
break;
case UPIU_QUERY_OPCODE_READ_DESC:
request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
break;
default:
dev_err(hba->dev, "%s: Expected query descriptor opcode but got = 0x%.2x\n",
__func__, opcode);
err = -EINVAL;
goto out;
}
err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
if (err) {
dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
__func__, opcode, idn, index, err);
goto out;
}
hba->dev_cmd.query.descriptor = NULL;
*buf_len = be16_to_cpu(response->upiu_res.length);
out:
return err;
}
/**
* ufshcd_query_descriptor_retry - API function for sending descriptor requests
*/
int ufshcd_query_descriptor_retry(struct ufs_hba *hba, enum query_opcode opcode,
enum desc_idn idn, u8 index, u8 selector,
u8 *desc_buf, int *buf_len)
{
int err;
int retries;
for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
err = __ufshcd_query_descriptor(hba, opcode, idn, index,
selector, desc_buf, buf_len);
if (!err || err == -EINVAL)
break;
}
return err;
}
/**
* ufshcd_read_desc_length - read the specified descriptor length from header
*/
static int ufshcd_read_desc_length(struct ufs_hba *hba, enum desc_idn desc_id,
int desc_index, int *desc_length)
{
int ret;
u8 header[QUERY_DESC_HDR_SIZE];
int header_len = QUERY_DESC_HDR_SIZE;
if (desc_id >= QUERY_DESC_IDN_MAX)
return -EINVAL;
ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
desc_id, desc_index, 0, header,
&header_len);
if (ret) {
dev_err(hba->dev, "%s: Failed to get descriptor header id %d\n",
__func__, desc_id);
return ret;
} else if (desc_id != header[QUERY_DESC_DESC_TYPE_OFFSET]) {
dev_warn(hba->dev, "%s: descriptor header id %d and desc_id %d mismatch\n",
__func__, header[QUERY_DESC_DESC_TYPE_OFFSET],
desc_id);
ret = -EINVAL;
}
*desc_length = header[QUERY_DESC_LENGTH_OFFSET];
return ret;
}
static void ufshcd_init_desc_sizes(struct ufs_hba *hba)
{
int err;
err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_DEVICE, 0,
&hba->desc_size.dev_desc);
if (err)
hba->desc_size.dev_desc = QUERY_DESC_DEVICE_DEF_SIZE;
err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_POWER, 0,
&hba->desc_size.pwr_desc);
if (err)
hba->desc_size.pwr_desc = QUERY_DESC_POWER_DEF_SIZE;
err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_INTERCONNECT, 0,
&hba->desc_size.interc_desc);
if (err)
hba->desc_size.interc_desc = QUERY_DESC_INTERCONNECT_DEF_SIZE;
err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_CONFIGURATION, 0,
&hba->desc_size.conf_desc);
if (err)
hba->desc_size.conf_desc = QUERY_DESC_CONFIGURATION_DEF_SIZE;
err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_UNIT, 0,
&hba->desc_size.unit_desc);
if (err)
hba->desc_size.unit_desc = QUERY_DESC_UNIT_DEF_SIZE;
err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_GEOMETRY, 0,
&hba->desc_size.geom_desc);
if (err)
hba->desc_size.geom_desc = QUERY_DESC_GEOMETRY_DEF_SIZE;
err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_HEALTH, 0,
&hba->desc_size.hlth_desc);
if (err)
hba->desc_size.hlth_desc = QUERY_DESC_HEALTH_DEF_SIZE;
}
/**
* ufshcd_map_desc_id_to_length - map descriptor IDN to its length
*
*/
int ufshcd_map_desc_id_to_length(struct ufs_hba *hba, enum desc_idn desc_id,
int *desc_len)
{
switch (desc_id) {
case QUERY_DESC_IDN_DEVICE:
*desc_len = hba->desc_size.dev_desc;
break;
case QUERY_DESC_IDN_POWER:
*desc_len = hba->desc_size.pwr_desc;
break;
case QUERY_DESC_IDN_GEOMETRY:
*desc_len = hba->desc_size.geom_desc;
break;
case QUERY_DESC_IDN_CONFIGURATION:
*desc_len = hba->desc_size.conf_desc;
break;
case QUERY_DESC_IDN_UNIT:
*desc_len = hba->desc_size.unit_desc;
break;
case QUERY_DESC_IDN_INTERCONNECT:
*desc_len = hba->desc_size.interc_desc;
break;
case QUERY_DESC_IDN_STRING:
*desc_len = QUERY_DESC_MAX_SIZE;
break;
case QUERY_DESC_IDN_HEALTH:
*desc_len = hba->desc_size.hlth_desc;
break;
case QUERY_DESC_IDN_RFU_0:
case QUERY_DESC_IDN_RFU_1:
*desc_len = 0;
break;
default:
*desc_len = 0;
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(ufshcd_map_desc_id_to_length);
/**
* ufshcd_read_desc_param - read the specified descriptor parameter
*
*/
int ufshcd_read_desc_param(struct ufs_hba *hba, enum desc_idn desc_id,
int desc_index, u8 param_offset, u8 *param_read_buf,
u8 param_size)
{
int ret;
u8 *desc_buf;
int buff_len;
bool is_kmalloc = true;
/* Safety check */
if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
return -EINVAL;
/* Get the max length of descriptor from structure filled up at probe
* time.
*/
ret = ufshcd_map_desc_id_to_length(hba, desc_id, &buff_len);
/* Sanity checks */
if (ret || !buff_len) {
dev_err(hba->dev, "%s: Failed to get full descriptor length\n",
__func__);
return ret;
}
/* Check whether we need temp memory */
if (param_offset != 0 || param_size < buff_len) {
desc_buf = kmalloc(buff_len, GFP_KERNEL);
if (!desc_buf)
return -ENOMEM;
} else {
desc_buf = param_read_buf;
is_kmalloc = false;
}
/* Request for full descriptor */
ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
desc_id, desc_index, 0, desc_buf,
&buff_len);
if (ret) {
dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
__func__, desc_id, desc_index, param_offset, ret);
goto out;
}
/* Sanity check */
if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
ret = -EINVAL;
goto out;
}
/* Check wherher we will not copy more data, than available */
if (is_kmalloc && param_size > buff_len)
param_size = buff_len;
if (is_kmalloc)
memcpy(param_read_buf, &desc_buf[param_offset], param_size);
out:
if (is_kmalloc)
kfree(desc_buf);
return ret;
}
/* replace non-printable or non-ASCII characters with spaces */
static inline void ufshcd_remove_non_printable(uint8_t *val)
{
if (!val)
return;
if (*val < 0x20 || *val > 0x7e)
*val = ' ';
}
/**
* ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
* state) and waits for it to take effect.
*
*/
static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
{
unsigned long start = 0;
u8 status;
int ret;
ret = ufshcd_send_uic_cmd(hba, cmd);
if (ret) {
dev_err(hba->dev,
"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
cmd->command, cmd->argument3, ret);
return ret;
}
start = get_timer(0);
do {
status = ufshcd_get_upmcrs(hba);
if (get_timer(start) > UFS_UIC_CMD_TIMEOUT) {
dev_err(hba->dev,
"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
cmd->command, status);
ret = (status != PWR_OK) ? status : -1;
break;
}
} while (status != PWR_LOCAL);
return ret;
}
/**
* ufshcd_uic_change_pwr_mode - Perform the UIC power mode change
* using DME_SET primitives.
*/
static int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
{
struct uic_command uic_cmd = {0};
int ret;
uic_cmd.command = UIC_CMD_DME_SET;
uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
uic_cmd.argument3 = mode;
ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
return ret;
}
static
void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufs_hba *hba,
struct scsi_cmd *pccb, u32 upiu_flags)
{
struct utp_upiu_req *ucd_req_ptr = hba->ucd_req_ptr;
unsigned int cdb_len;
/* command descriptor fields */
ucd_req_ptr->header.dword_0 =
UPIU_HEADER_DWORD(UPIU_TRANSACTION_COMMAND, upiu_flags,
pccb->lun, TASK_TAG);
ucd_req_ptr->header.dword_1 =
UPIU_HEADER_DWORD(UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
/* Total EHS length and Data segment length will be zero */
ucd_req_ptr->header.dword_2 = 0;
ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(pccb->datalen);
cdb_len = min_t(unsigned short, pccb->cmdlen, UFS_CDB_SIZE);
memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
memcpy(ucd_req_ptr->sc.cdb, pccb->cmd, cdb_len);
memset(hba->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
ufshcd_cache_flush(ucd_req_ptr, sizeof(*ucd_req_ptr));
ufshcd_cache_flush(hba->ucd_rsp_ptr, sizeof(*hba->ucd_rsp_ptr));
}
static inline void prepare_prdt_desc(struct ufshcd_sg_entry *entry,
unsigned char *buf, ulong len)
{
entry->size = cpu_to_le32(len) | GENMASK(1, 0);
entry->base_addr = cpu_to_le32(lower_32_bits((unsigned long)buf));
entry->upper_addr = cpu_to_le32(upper_32_bits((unsigned long)buf));
}
static void prepare_prdt_table(struct ufs_hba *hba, struct scsi_cmd *pccb)
{
struct utp_transfer_req_desc *req_desc = hba->utrdl;
struct ufshcd_sg_entry *prd_table = hba->ucd_prdt_ptr;
ulong datalen = pccb->datalen;
int table_length;
u8 *buf;
int i;
if (!datalen) {
req_desc->prd_table_length = 0;
ufshcd_cache_flush(req_desc, sizeof(*req_desc));
return;
}
table_length = DIV_ROUND_UP(pccb->datalen, MAX_PRDT_ENTRY);
buf = pccb->pdata;
i = table_length;
while (--i) {
prepare_prdt_desc(&prd_table[table_length - i - 1], buf,
MAX_PRDT_ENTRY - 1);
buf += MAX_PRDT_ENTRY;
datalen -= MAX_PRDT_ENTRY;
}
prepare_prdt_desc(&prd_table[table_length - i - 1], buf, datalen - 1);
req_desc->prd_table_length = table_length;
ufshcd_cache_flush(prd_table, sizeof(*prd_table) * table_length);
ufshcd_cache_flush(req_desc, sizeof(*req_desc));
}
static int ufs_scsi_exec(struct udevice *scsi_dev, struct scsi_cmd *pccb)
{
struct ufs_hba *hba = dev_get_uclass_priv(scsi_dev->parent);
u32 upiu_flags;
int ocs, result = 0;
u8 scsi_status;
ufshcd_prepare_req_desc_hdr(hba, &upiu_flags, pccb->dma_dir);
ufshcd_prepare_utp_scsi_cmd_upiu(hba, pccb, upiu_flags);
prepare_prdt_table(hba, pccb);
ufshcd_cache_flush(pccb->pdata, pccb->datalen);
ufshcd_send_command(hba, TASK_TAG);
ufshcd_cache_invalidate(pccb->pdata, pccb->datalen);
ocs = ufshcd_get_tr_ocs(hba);
switch (ocs) {
case OCS_SUCCESS:
result = ufshcd_get_req_rsp(hba->ucd_rsp_ptr);
switch (result) {
case UPIU_TRANSACTION_RESPONSE:
result = ufshcd_get_rsp_upiu_result(hba->ucd_rsp_ptr);
scsi_status = result & MASK_SCSI_STATUS;
if (scsi_status)
return -EINVAL;
break;
case UPIU_TRANSACTION_REJECT_UPIU:
/* TODO: handle Reject UPIU Response */
dev_err(hba->dev,
"Reject UPIU not fully implemented\n");
return -EINVAL;
default:
dev_err(hba->dev,
"Unexpected request response code = %x\n",
result);
return -EINVAL;
}
break;
default:
dev_err(hba->dev, "OCS error from controller = %x\n", ocs);
return -EINVAL;
}
return 0;
}
static inline int ufshcd_read_desc(struct ufs_hba *hba, enum desc_idn desc_id,
int desc_index, u8 *buf, u32 size)
{
return ufshcd_read_desc_param(hba, desc_id, desc_index, 0, buf, size);
}
static int ufshcd_read_device_desc(struct ufs_hba *hba, u8 *buf, u32 size)
{
return ufshcd_read_desc(hba, QUERY_DESC_IDN_DEVICE, 0, buf, size);
}
/**
* ufshcd_read_string_desc - read string descriptor
*
*/
int ufshcd_read_string_desc(struct ufs_hba *hba, int desc_index,
u8 *buf, u32 size, bool ascii)
{
int err = 0;
err = ufshcd_read_desc(hba, QUERY_DESC_IDN_STRING, desc_index, buf,
size);
if (err) {
dev_err(hba->dev, "%s: reading String Desc failed after %d retries. err = %d\n",
__func__, QUERY_REQ_RETRIES, err);
goto out;
}
if (ascii) {
int desc_len;
int ascii_len;
int i;
u8 *buff_ascii;
desc_len = buf[0];
/* remove header and divide by 2 to move from UTF16 to UTF8 */
ascii_len = (desc_len - QUERY_DESC_HDR_SIZE) / 2 + 1;
if (size < ascii_len + QUERY_DESC_HDR_SIZE) {
dev_err(hba->dev, "%s: buffer allocated size is too small\n",
__func__);
err = -ENOMEM;
goto out;
}
buff_ascii = kmalloc(ascii_len, GFP_KERNEL);
if (!buff_ascii) {
err = -ENOMEM;
goto out;
}
/*
* the descriptor contains string in UTF16 format
* we need to convert to utf-8 so it can be displayed
*/
utf16_to_utf8(buff_ascii,
(uint16_t *)&buf[QUERY_DESC_HDR_SIZE], ascii_len);
/* replace non-printable or non-ASCII characters with spaces */
for (i = 0; i < ascii_len; i++)
ufshcd_remove_non_printable(&buff_ascii[i]);
memset(buf + QUERY_DESC_HDR_SIZE, 0,
size - QUERY_DESC_HDR_SIZE);
memcpy(buf + QUERY_DESC_HDR_SIZE, buff_ascii, ascii_len);
buf[QUERY_DESC_LENGTH_OFFSET] = ascii_len + QUERY_DESC_HDR_SIZE;
kfree(buff_ascii);
}
out:
return err;
}
static int ufs_get_device_desc(struct ufs_hba *hba,
struct ufs_dev_desc *dev_desc)
{
int err;
size_t buff_len;
u8 model_index;
u8 *desc_buf;
buff_len = max_t(size_t, hba->desc_size.dev_desc,
QUERY_DESC_MAX_SIZE + 1);
desc_buf = kmalloc(buff_len, GFP_KERNEL);
if (!desc_buf) {
err = -ENOMEM;
goto out;
}
err = ufshcd_read_device_desc(hba, desc_buf, hba->desc_size.dev_desc);
if (err) {
dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
__func__, err);
goto out;
}
/*
* getting vendor (manufacturerID) and Bank Index in big endian
* format
*/
dev_desc->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
/* Zero-pad entire buffer for string termination. */
memset(desc_buf, 0, buff_len);
err = ufshcd_read_string_desc(hba, model_index, desc_buf,
QUERY_DESC_MAX_SIZE, true/*ASCII*/);
if (err) {
dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
__func__, err);
goto out;
}
desc_buf[QUERY_DESC_MAX_SIZE] = '\0';
strlcpy(dev_desc->model, (char *)(desc_buf + QUERY_DESC_HDR_SIZE),
min_t(u8, desc_buf[QUERY_DESC_LENGTH_OFFSET],
MAX_MODEL_LEN));
/* Null terminate the model string */
dev_desc->model[MAX_MODEL_LEN] = '\0';
out:
kfree(desc_buf);
return err;
}
/**
* ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
*/
static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
{
struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
if (hba->max_pwr_info.is_valid)
return 0;
if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
pwr_info->pwr_tx = FASTAUTO_MODE;
pwr_info->pwr_rx = FASTAUTO_MODE;
} else {
pwr_info->pwr_tx = FAST_MODE;
pwr_info->pwr_rx = FAST_MODE;
}
pwr_info->hs_rate = PA_HS_MODE_B;
/* Get the connected lane count */
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
&pwr_info->lane_rx);
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
&pwr_info->lane_tx);
if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
__func__, pwr_info->lane_rx, pwr_info->lane_tx);
return -EINVAL;
}
/*
* First, get the maximum gears of HS speed.
* If a zero value, it means there is no HSGEAR capability.
* Then, get the maximum gears of PWM speed.
*/
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
if (!pwr_info->gear_rx) {
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
&pwr_info->gear_rx);
if (!pwr_info->gear_rx) {
dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
__func__, pwr_info->gear_rx);
return -EINVAL;
}
pwr_info->pwr_rx = SLOW_MODE;
}
ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
&pwr_info->gear_tx);
if (!pwr_info->gear_tx) {
ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
&pwr_info->gear_tx);
if (!pwr_info->gear_tx) {
dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
__func__, pwr_info->gear_tx);
return -EINVAL;
}
pwr_info->pwr_tx = SLOW_MODE;
}
hba->max_pwr_info.is_valid = true;
return 0;
}
static int ufshcd_change_power_mode(struct ufs_hba *hba,
struct ufs_pa_layer_attr *pwr_mode)
{
int ret;
/* if already configured to the requested pwr_mode */
if (pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
dev_dbg(hba->dev, "%s: power already configured\n", __func__);
return 0;
}
/*
* Configure attributes for power mode change with below.
* - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
* - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
* - PA_HSSERIES
*/
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
pwr_mode->lane_rx);
if (pwr_mode->pwr_rx == FASTAUTO_MODE || pwr_mode->pwr_rx == FAST_MODE)
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), TRUE);
else
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), FALSE);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
pwr_mode->lane_tx);
if (pwr_mode->pwr_tx == FASTAUTO_MODE || pwr_mode->pwr_tx == FAST_MODE)
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), TRUE);
else
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), FALSE);
if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
pwr_mode->pwr_tx == FASTAUTO_MODE ||
pwr_mode->pwr_rx == FAST_MODE ||
pwr_mode->pwr_tx == FAST_MODE)
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
pwr_mode->hs_rate);
ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4 |
pwr_mode->pwr_tx);
if (ret) {
dev_err(hba->dev,
"%s: power mode change failed %d\n", __func__, ret);
return ret;
}
/* Copy new Power Mode to power info */
memcpy(&hba->pwr_info, pwr_mode, sizeof(struct ufs_pa_layer_attr));
return ret;
}
/**
* ufshcd_verify_dev_init() - Verify device initialization
*
*/
static int ufshcd_verify_dev_init(struct ufs_hba *hba)
{
int retries;
int err;
for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
NOP_OUT_TIMEOUT);
if (!err || err == -ETIMEDOUT)
break;
dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
}
if (err)
dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
return err;
}
/**
* ufshcd_complete_dev_init() - checks device readiness
*/
static int ufshcd_complete_dev_init(struct ufs_hba *hba)
{
int i;
int err;
bool flag_res = 1;
err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
QUERY_FLAG_IDN_FDEVICEINIT, NULL);
if (err) {
dev_err(hba->dev,
"%s setting fDeviceInit flag failed with error %d\n",
__func__, err);
goto out;
}
/* poll for max. 1000 iterations for fDeviceInit flag to clear */
for (i = 0; i < 1000 && !err && flag_res; i++)
err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
QUERY_FLAG_IDN_FDEVICEINIT,
&flag_res);
if (err)
dev_err(hba->dev,
"%s reading fDeviceInit flag failed with error %d\n",
__func__, err);
else if (flag_res)
dev_err(hba->dev,
"%s fDeviceInit was not cleared by the device\n",
__func__);
out:
return err;
}
static void ufshcd_def_desc_sizes(struct ufs_hba *hba)
{
hba->desc_size.dev_desc = QUERY_DESC_DEVICE_DEF_SIZE;
hba->desc_size.pwr_desc = QUERY_DESC_POWER_DEF_SIZE;
hba->desc_size.interc_desc = QUERY_DESC_INTERCONNECT_DEF_SIZE;
hba->desc_size.conf_desc = QUERY_DESC_CONFIGURATION_DEF_SIZE;
hba->desc_size.unit_desc = QUERY_DESC_UNIT_DEF_SIZE;
hba->desc_size.geom_desc = QUERY_DESC_GEOMETRY_DEF_SIZE;
hba->desc_size.hlth_desc = QUERY_DESC_HEALTH_DEF_SIZE;
}
int ufs_start(struct ufs_hba *hba)
{
struct ufs_dev_desc card = {0};
int ret;
ret = ufshcd_link_startup(hba);
if (ret)
return ret;
ret = ufshcd_verify_dev_init(hba);
if (ret)
return ret;
ret = ufshcd_complete_dev_init(hba);
if (ret)
return ret;
/* Init check for device descriptor sizes */
ufshcd_init_desc_sizes(hba);
ret = ufs_get_device_desc(hba, &card);
if (ret) {
dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
__func__, ret);
return ret;
}
if (ufshcd_get_max_pwr_mode(hba)) {
dev_err(hba->dev,
"%s: Failed getting max supported power mode\n",
__func__);
} else {
ret = ufshcd_change_power_mode(hba, &hba->max_pwr_info.info);
if (ret) {
dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
__func__, ret);
return ret;
}
printf("Device at %s up at:", hba->dev->name);
ufshcd_print_pwr_info(hba);
}
return 0;
}
int ufshcd_probe(struct udevice *ufs_dev, struct ufs_hba_ops *hba_ops)
{
struct ufs_hba *hba = dev_get_uclass_priv(ufs_dev);
struct scsi_plat *scsi_plat;
struct udevice *scsi_dev;
void __iomem *mmio_base;
int err;
device_find_first_child(ufs_dev, &scsi_dev);
if (!scsi_dev)
return -ENODEV;
scsi_plat = dev_get_uclass_plat(scsi_dev);
scsi_plat->max_id = UFSHCD_MAX_ID;
scsi_plat->max_lun = UFS_MAX_LUNS;
scsi_plat->max_bytes_per_req = UFS_MAX_BYTES;
hba->dev = ufs_dev;
hba->ops = hba_ops;
if (device_is_on_pci_bus(ufs_dev)) {
mmio_base = dm_pci_map_bar(ufs_dev, PCI_BASE_ADDRESS_0, 0, 0,
PCI_REGION_TYPE, PCI_REGION_MEM);
} else {
mmio_base = dev_read_addr_ptr(ufs_dev);
}
hba->mmio_base = mmio_base;
/* Set descriptor lengths to specification defaults */
ufshcd_def_desc_sizes(hba);
ufshcd_ops_init(hba);
/* Read capabilties registers */
hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
/* Get UFS version supported by the controller */
hba->version = ufshcd_get_ufs_version(hba);
if (hba->version != UFSHCI_VERSION_10 &&
hba->version != UFSHCI_VERSION_11 &&
hba->version != UFSHCI_VERSION_20 &&
hba->version != UFSHCI_VERSION_21 &&
hba->version != UFSHCI_VERSION_30 &&
hba->version != UFSHCI_VERSION_31)
dev_err(hba->dev, "invalid UFS version 0x%x\n",
hba->version);
/* Get Interrupt bit mask per version */
hba->intr_mask = ufshcd_get_intr_mask(hba);
/* Allocate memory for host memory space */
err = ufshcd_memory_alloc(hba);
if (err) {
dev_err(hba->dev, "Memory allocation failed\n");
return err;
}
/* Configure Local data structures */
ufshcd_host_memory_configure(hba);
/*
* In order to avoid any spurious interrupt immediately after
* registering UFS controller interrupt handler, clear any pending UFS
* interrupt status and disable all the UFS interrupts.
*/
ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
REG_INTERRUPT_STATUS);
ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
err = ufshcd_hba_enable(hba);
if (err) {
dev_err(hba->dev, "Host controller enable failed\n");
return err;
}
err = ufs_start(hba);
if (err)
return err;
return 0;
}
int ufs_scsi_bind(struct udevice *ufs_dev, struct udevice **scsi_devp)
{
int ret = device_bind_driver(ufs_dev, "ufs_scsi", "ufs_scsi",
scsi_devp);
return ret;
}
#if IS_ENABLED(CONFIG_BOUNCE_BUFFER)
static int ufs_scsi_buffer_aligned(struct udevice *scsi_dev, struct bounce_buffer *state)
{
#ifdef CONFIG_PHYS_64BIT
struct ufs_hba *hba = dev_get_uclass_priv(scsi_dev->parent);
uintptr_t ubuf = (uintptr_t)state->user_buffer;
size_t len = state->len_aligned;
/* Check if below 32bit boundary */
if ((hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS) &&
((ubuf >> 32) || (ubuf + len) >> 32)) {
dev_dbg(scsi_dev, "Buffer above 32bit boundary %lx-%lx\n",
ubuf, ubuf + len);
return 0;
}
#endif
return 1;
}
#endif /* CONFIG_BOUNCE_BUFFER */
static struct scsi_ops ufs_ops = {
.exec = ufs_scsi_exec,
#if IS_ENABLED(CONFIG_BOUNCE_BUFFER)
.buffer_aligned = ufs_scsi_buffer_aligned,
#endif /* CONFIG_BOUNCE_BUFFER */
};
int ufs_probe_dev(int index)
{
struct udevice *dev;
return uclass_get_device(UCLASS_UFS, index, &dev);
}
int ufs_probe(void)
{
struct udevice *dev;
int ret, i;
for (i = 0;; i++) {
ret = uclass_get_device(UCLASS_UFS, i, &dev);
if (ret == -ENODEV)
break;
}
return 0;
}
U_BOOT_DRIVER(ufs_scsi) = {
.id = UCLASS_SCSI,
.name = "ufs_scsi",
.ops = &ufs_ops,
};