| /* |
| * Driver for Disk-On-Chip 2000 and Millennium |
| * (c) 1999 Machine Vision Holdings, Inc. |
| * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> |
| * |
| * $Id: doc2000.c,v 1.46 2001/10/02 15:05:13 dwmw2 Exp $ |
| */ |
| |
| #include <common.h> |
| #include <config.h> |
| #include <command.h> |
| #include <malloc.h> |
| #include <asm/io.h> |
| #include <linux/mtd/nftl.h> |
| #include <linux/mtd/doc2000.h> |
| |
| #ifdef CFG_DOC_SUPPORT_2000 |
| #define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k) |
| #else |
| #define DoC_is_2000(doc) (0) |
| #endif |
| |
| #ifdef CFG_DOC_SUPPORT_MILLENNIUM |
| #define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil) |
| #else |
| #define DoC_is_Millennium(doc) (0) |
| #endif |
| |
| /* CFG_DOC_PASSIVE_PROBE: |
| In order to ensure that the BIOS checksum is correct at boot time, and |
| hence that the onboard BIOS extension gets executed, the DiskOnChip |
| goes into reset mode when it is read sequentially: all registers |
| return 0xff until the chip is woken up again by writing to the |
| DOCControl register. |
| |
| Unfortunately, this means that the probe for the DiskOnChip is unsafe, |
| because one of the first things it does is write to where it thinks |
| the DOCControl register should be - which may well be shared memory |
| for another device. I've had machines which lock up when this is |
| attempted. Hence the possibility to do a passive probe, which will fail |
| to detect a chip in reset mode, but is at least guaranteed not to lock |
| the machine. |
| |
| If you have this problem, uncomment the following line: |
| #define CFG_DOC_PASSIVE_PROBE |
| */ |
| |
| #undef DOC_DEBUG |
| #undef ECC_DEBUG |
| #undef PSYCHO_DEBUG |
| #undef NFTL_DEBUG |
| |
| static struct DiskOnChip doc_dev_desc[CFG_MAX_DOC_DEVICE]; |
| |
| /* Current DOC Device */ |
| static int curr_device = -1; |
| |
| /* Supported NAND flash devices */ |
| static struct nand_flash_dev nand_flash_ids[] = { |
| {"Toshiba TC5816BDC", NAND_MFR_TOSHIBA, 0x64, 21, 1, 2, 0x1000, 0}, |
| {"Toshiba TC5832DC", NAND_MFR_TOSHIBA, 0x6b, 22, 0, 2, 0x2000, 0}, |
| {"Toshiba TH58V128DC", NAND_MFR_TOSHIBA, 0x73, 24, 0, 2, 0x4000, 0}, |
| {"Toshiba TC58256FT/DC", NAND_MFR_TOSHIBA, 0x75, 25, 0, 2, 0x4000, 0}, |
| {"Toshiba TH58512FT", NAND_MFR_TOSHIBA, 0x76, 26, 0, 3, 0x4000, 0}, |
| {"Toshiba TC58V32DC", NAND_MFR_TOSHIBA, 0xe5, 22, 0, 2, 0x2000, 0}, |
| {"Toshiba TC58V64AFT/DC", NAND_MFR_TOSHIBA, 0xe6, 23, 0, 2, 0x2000, 0}, |
| {"Toshiba TC58V16BDC", NAND_MFR_TOSHIBA, 0xea, 21, 1, 2, 0x1000, 0}, |
| {"Toshiba TH58100FT", NAND_MFR_TOSHIBA, 0x79, 27, 0, 3, 0x4000, 0}, |
| {"Samsung KM29N16000", NAND_MFR_SAMSUNG, 0x64, 21, 1, 2, 0x1000, 0}, |
| {"Samsung unknown 4Mb", NAND_MFR_SAMSUNG, 0x6b, 22, 0, 2, 0x2000, 0}, |
| {"Samsung KM29U128T", NAND_MFR_SAMSUNG, 0x73, 24, 0, 2, 0x4000, 0}, |
| {"Samsung KM29U256T", NAND_MFR_SAMSUNG, 0x75, 25, 0, 2, 0x4000, 0}, |
| {"Samsung unknown 64Mb", NAND_MFR_SAMSUNG, 0x76, 26, 0, 3, 0x4000, 0}, |
| {"Samsung KM29W32000", NAND_MFR_SAMSUNG, 0xe3, 22, 0, 2, 0x2000, 0}, |
| {"Samsung unknown 4Mb", NAND_MFR_SAMSUNG, 0xe5, 22, 0, 2, 0x2000, 0}, |
| {"Samsung KM29U64000", NAND_MFR_SAMSUNG, 0xe6, 23, 0, 2, 0x2000, 0}, |
| {"Samsung KM29W16000", NAND_MFR_SAMSUNG, 0xea, 21, 1, 2, 0x1000, 0}, |
| {"Samsung K9F5616Q0C", NAND_MFR_SAMSUNG, 0x45, 25, 0, 2, 0x4000, 1}, |
| {"Samsung K9K1216Q0C", NAND_MFR_SAMSUNG, 0x46, 26, 0, 3, 0x4000, 1}, |
| {"Samsung K9F1G08U0M", NAND_MFR_SAMSUNG, 0xf1, 27, 0, 2, 0, 0}, |
| {NULL,} |
| }; |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| int do_doc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| { |
| int rcode = 0; |
| |
| switch (argc) { |
| case 0: |
| case 1: |
| printf ("Usage:\n%s\n", cmdtp->usage); |
| return 1; |
| case 2: |
| if (strcmp(argv[1],"info") == 0) { |
| int i; |
| |
| putc ('\n'); |
| |
| for (i=0; i<CFG_MAX_DOC_DEVICE; ++i) { |
| if(doc_dev_desc[i].ChipID == DOC_ChipID_UNKNOWN) |
| continue; /* list only known devices */ |
| printf ("Device %d: ", i); |
| doc_print(&doc_dev_desc[i]); |
| } |
| return 0; |
| |
| } else if (strcmp(argv[1],"device") == 0) { |
| if ((curr_device < 0) || (curr_device >= CFG_MAX_DOC_DEVICE)) { |
| puts ("\nno devices available\n"); |
| return 1; |
| } |
| printf ("\nDevice %d: ", curr_device); |
| doc_print(&doc_dev_desc[curr_device]); |
| return 0; |
| } |
| printf ("Usage:\n%s\n", cmdtp->usage); |
| return 1; |
| case 3: |
| if (strcmp(argv[1],"device") == 0) { |
| int dev = (int)simple_strtoul(argv[2], NULL, 10); |
| |
| printf ("\nDevice %d: ", dev); |
| if (dev >= CFG_MAX_DOC_DEVICE) { |
| puts ("unknown device\n"); |
| return 1; |
| } |
| doc_print(&doc_dev_desc[dev]); |
| /*doc_print (dev);*/ |
| |
| if (doc_dev_desc[dev].ChipID == DOC_ChipID_UNKNOWN) { |
| return 1; |
| } |
| |
| curr_device = dev; |
| |
| puts ("... is now current device\n"); |
| |
| return 0; |
| } |
| |
| printf ("Usage:\n%s\n", cmdtp->usage); |
| return 1; |
| default: |
| /* at least 4 args */ |
| |
| if (strcmp(argv[1],"read") == 0 || strcmp(argv[1],"write") == 0) { |
| ulong addr = simple_strtoul(argv[2], NULL, 16); |
| ulong off = simple_strtoul(argv[3], NULL, 16); |
| ulong size = simple_strtoul(argv[4], NULL, 16); |
| int cmd = (strcmp(argv[1],"read") == 0); |
| int ret, total; |
| |
| printf ("\nDOC %s: device %d offset %ld, size %ld ... ", |
| cmd ? "read" : "write", curr_device, off, size); |
| |
| ret = doc_rw(doc_dev_desc + curr_device, cmd, off, size, |
| (size_t *)&total, (u_char*)addr); |
| |
| printf ("%d bytes %s: %s\n", total, cmd ? "read" : "write", |
| ret ? "ERROR" : "OK"); |
| |
| return ret; |
| } else if (strcmp(argv[1],"erase") == 0) { |
| ulong off = simple_strtoul(argv[2], NULL, 16); |
| ulong size = simple_strtoul(argv[3], NULL, 16); |
| int ret; |
| |
| printf ("\nDOC erase: device %d offset %ld, size %ld ... ", |
| curr_device, off, size); |
| |
| ret = doc_erase (doc_dev_desc + curr_device, off, size); |
| |
| printf("%s\n", ret ? "ERROR" : "OK"); |
| |
| return ret; |
| } else { |
| printf ("Usage:\n%s\n", cmdtp->usage); |
| rcode = 1; |
| } |
| |
| return rcode; |
| } |
| } |
| U_BOOT_CMD( |
| doc, 5, 1, do_doc, |
| "doc - Disk-On-Chip sub-system\n", |
| "info - show available DOC devices\n" |
| "doc device [dev] - show or set current device\n" |
| "doc read addr off size\n" |
| "doc write addr off size - read/write `size'" |
| " bytes starting at offset `off'\n" |
| " to/from memory address `addr'\n" |
| "doc erase off size - erase `size' bytes of DOC from offset `off'\n" |
| ); |
| |
| int do_docboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| { |
| char *boot_device = NULL; |
| char *ep; |
| int dev; |
| ulong cnt; |
| ulong addr; |
| ulong offset = 0; |
| image_header_t *hdr; |
| int rcode = 0; |
| |
| show_boot_progress (34); |
| switch (argc) { |
| case 1: |
| addr = CFG_LOAD_ADDR; |
| boot_device = getenv ("bootdevice"); |
| break; |
| case 2: |
| addr = simple_strtoul(argv[1], NULL, 16); |
| boot_device = getenv ("bootdevice"); |
| break; |
| case 3: |
| addr = simple_strtoul(argv[1], NULL, 16); |
| boot_device = argv[2]; |
| break; |
| case 4: |
| addr = simple_strtoul(argv[1], NULL, 16); |
| boot_device = argv[2]; |
| offset = simple_strtoul(argv[3], NULL, 16); |
| break; |
| default: |
| printf ("Usage:\n%s\n", cmdtp->usage); |
| show_boot_progress (-35); |
| return 1; |
| } |
| |
| show_boot_progress (35); |
| if (!boot_device) { |
| puts ("\n** No boot device **\n"); |
| show_boot_progress (-36); |
| return 1; |
| } |
| show_boot_progress (36); |
| |
| dev = simple_strtoul(boot_device, &ep, 16); |
| |
| if ((dev >= CFG_MAX_DOC_DEVICE) || |
| (doc_dev_desc[dev].ChipID == DOC_ChipID_UNKNOWN)) { |
| printf ("\n** Device %d not available\n", dev); |
| show_boot_progress (-37); |
| return 1; |
| } |
| show_boot_progress (37); |
| |
| printf ("\nLoading from device %d: %s at 0x%lX (offset 0x%lX)\n", |
| dev, doc_dev_desc[dev].name, doc_dev_desc[dev].physadr, |
| offset); |
| |
| if (doc_rw (doc_dev_desc + dev, 1, offset, |
| SECTORSIZE, NULL, (u_char *)addr)) { |
| printf ("** Read error on %d\n", dev); |
| show_boot_progress (-38); |
| return 1; |
| } |
| show_boot_progress (38); |
| |
| switch (genimg_get_format ((void *)addr)) { |
| case IMAGE_FORMAT_LEGACY: |
| hdr = (image_header_t *)addr; |
| |
| if (image_check_magic (hdr)) { |
| |
| image_print_contents (hdr); |
| |
| cnt = image_get_image_size (hdr); |
| cnt -= SECTORSIZE; |
| } else { |
| puts ("\n** Bad Magic Number **\n"); |
| show_boot_progress (-39); |
| return 1; |
| } |
| break; |
| #if defined(CONFIG_FIT) |
| case IMAGE_FORMAT_FIT: |
| fit_unsupported ("docboot"); |
| return 1; |
| #endif |
| default: |
| puts ("** Unknown image type\n"); |
| return 1; |
| } |
| show_boot_progress (39); |
| |
| if (doc_rw (doc_dev_desc + dev, 1, offset + SECTORSIZE, cnt, |
| NULL, (u_char *)(addr+SECTORSIZE))) { |
| printf ("** Read error on %d\n", dev); |
| show_boot_progress (-40); |
| return 1; |
| } |
| show_boot_progress (40); |
| |
| /* Loading ok, update default load address */ |
| |
| load_addr = addr; |
| |
| /* Check if we should attempt an auto-start */ |
| if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) { |
| char *local_args[2]; |
| extern int do_bootm (cmd_tbl_t *, int, int, char *[]); |
| |
| local_args[0] = argv[0]; |
| local_args[1] = NULL; |
| |
| printf ("Automatic boot of image at addr 0x%08lX ...\n", addr); |
| |
| do_bootm (cmdtp, 0, 1, local_args); |
| rcode = 1; |
| } |
| return rcode; |
| } |
| |
| U_BOOT_CMD( |
| docboot, 4, 1, do_docboot, |
| "docboot - boot from DOC device\n", |
| "loadAddr dev\n" |
| ); |
| |
| int doc_rw (struct DiskOnChip* this, int cmd, |
| loff_t from, size_t len, |
| size_t * retlen, u_char * buf) |
| { |
| int noecc, ret = 0, n, total = 0; |
| char eccbuf[6]; |
| |
| while(len) { |
| /* The ECC will not be calculated correctly if |
| less than 512 is written or read */ |
| noecc = (from != (from | 0x1ff) + 1) || (len < 0x200); |
| |
| if (cmd) |
| ret = doc_read_ecc(this, from, len, |
| (size_t *)&n, (u_char*)buf, |
| noecc ? (uchar *)NULL : (uchar *)eccbuf); |
| else |
| ret = doc_write_ecc(this, from, len, |
| (size_t *)&n, (u_char*)buf, |
| noecc ? (uchar *)NULL : (uchar *)eccbuf); |
| |
| if (ret) |
| break; |
| |
| from += n; |
| buf += n; |
| total += n; |
| len -= n; |
| } |
| |
| if (retlen) |
| *retlen = total; |
| |
| return ret; |
| } |
| |
| void doc_print(struct DiskOnChip *this) { |
| printf("%s at 0x%lX,\n" |
| "\t %d chip%s %s, size %d MB, \n" |
| "\t total size %ld MB, sector size %ld kB\n", |
| this->name, this->physadr, this->numchips, |
| this->numchips>1 ? "s" : "", this->chips_name, |
| 1 << (this->chipshift - 20), |
| this->totlen >> 20, this->erasesize >> 10); |
| |
| if (this->nftl_found) { |
| struct NFTLrecord *nftl = &this->nftl; |
| unsigned long bin_size, flash_size; |
| |
| bin_size = nftl->nb_boot_blocks * this->erasesize; |
| flash_size = (nftl->nb_blocks - nftl->nb_boot_blocks) * this->erasesize; |
| |
| printf("\t NFTL boot record:\n" |
| "\t Binary partition: size %ld%s\n" |
| "\t Flash disk partition: size %ld%s, offset 0x%lx\n", |
| bin_size > (1 << 20) ? bin_size >> 20 : bin_size >> 10, |
| bin_size > (1 << 20) ? "MB" : "kB", |
| flash_size > (1 << 20) ? flash_size >> 20 : flash_size >> 10, |
| flash_size > (1 << 20) ? "MB" : "kB", bin_size); |
| } else { |
| puts ("\t No NFTL boot record found.\n"); |
| } |
| } |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| /* This function is needed to avoid calls of the __ashrdi3 function. */ |
| static int shr(int val, int shift) { |
| return val >> shift; |
| } |
| |
| /* Perform the required delay cycles by reading from the appropriate register */ |
| static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles) |
| { |
| volatile char dummy; |
| int i; |
| |
| for (i = 0; i < cycles; i++) { |
| if (DoC_is_Millennium(doc)) |
| dummy = ReadDOC(doc->virtadr, NOP); |
| else |
| dummy = ReadDOC(doc->virtadr, DOCStatus); |
| } |
| |
| } |
| |
| /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ |
| static int _DoC_WaitReady(struct DiskOnChip *doc) |
| { |
| unsigned long docptr = doc->virtadr; |
| unsigned long start = get_timer(0); |
| |
| #ifdef PSYCHO_DEBUG |
| puts ("_DoC_WaitReady called for out-of-line wait\n"); |
| #endif |
| |
| /* Out-of-line routine to wait for chip response */ |
| while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { |
| #ifdef CFG_DOC_SHORT_TIMEOUT |
| /* it seems that after a certain time the DoC deasserts |
| * the CDSN_CTRL_FR_B although it is not ready... |
| * using a short timout solve this (timer increments every ms) */ |
| if (get_timer(start) > 10) { |
| return DOC_ETIMEOUT; |
| } |
| #else |
| if (get_timer(start) > 10 * 1000) { |
| puts ("_DoC_WaitReady timed out.\n"); |
| return DOC_ETIMEOUT; |
| } |
| #endif |
| udelay(1); |
| } |
| |
| return 0; |
| } |
| |
| static int DoC_WaitReady(struct DiskOnChip *doc) |
| { |
| unsigned long docptr = doc->virtadr; |
| /* This is inline, to optimise the common case, where it's ready instantly */ |
| int ret = 0; |
| |
| /* 4 read form NOP register should be issued in prior to the read from CDSNControl |
| see Software Requirement 11.4 item 2. */ |
| DoC_Delay(doc, 4); |
| |
| if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) |
| /* Call the out-of-line routine to wait */ |
| ret = _DoC_WaitReady(doc); |
| |
| /* issue 2 read from NOP register after reading from CDSNControl register |
| see Software Requirement 11.4 item 2. */ |
| DoC_Delay(doc, 2); |
| |
| return ret; |
| } |
| |
| /* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to |
| bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is |
| required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ |
| |
| static inline int DoC_Command(struct DiskOnChip *doc, unsigned char command, |
| unsigned char xtraflags) |
| { |
| unsigned long docptr = doc->virtadr; |
| |
| if (DoC_is_2000(doc)) |
| xtraflags |= CDSN_CTRL_FLASH_IO; |
| |
| /* Assert the CLE (Command Latch Enable) line to the flash chip */ |
| WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl); |
| DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ |
| |
| if (DoC_is_Millennium(doc)) |
| WriteDOC(command, docptr, CDSNSlowIO); |
| |
| /* Send the command */ |
| WriteDOC_(command, docptr, doc->ioreg); |
| |
| /* Lower the CLE line */ |
| WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl); |
| DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ |
| |
| /* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */ |
| return DoC_WaitReady(doc); |
| } |
| |
| /* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to |
| bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is |
| required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ |
| |
| static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs, |
| unsigned char xtraflags1, unsigned char xtraflags2) |
| { |
| unsigned long docptr; |
| int i; |
| |
| docptr = doc->virtadr; |
| |
| if (DoC_is_2000(doc)) |
| xtraflags1 |= CDSN_CTRL_FLASH_IO; |
| |
| /* Assert the ALE (Address Latch Enable) line to the flash chip */ |
| WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl); |
| |
| DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ |
| |
| /* Send the address */ |
| /* Devices with 256-byte page are addressed as: |
| Column (bits 0-7), Page (bits 8-15, 16-23, 24-31) |
| * there is no device on the market with page256 |
| and more than 24 bits. |
| Devices with 512-byte page are addressed as: |
| Column (bits 0-7), Page (bits 9-16, 17-24, 25-31) |
| * 25-31 is sent only if the chip support it. |
| * bit 8 changes the read command to be sent |
| (NAND_CMD_READ0 or NAND_CMD_READ1). |
| */ |
| |
| if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) { |
| if (DoC_is_Millennium(doc)) |
| WriteDOC(ofs & 0xff, docptr, CDSNSlowIO); |
| WriteDOC_(ofs & 0xff, docptr, doc->ioreg); |
| } |
| |
| if (doc->page256) { |
| ofs = ofs >> 8; |
| } else { |
| ofs = ofs >> 9; |
| } |
| |
| if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) { |
| for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) { |
| if (DoC_is_Millennium(doc)) |
| WriteDOC(ofs & 0xff, docptr, CDSNSlowIO); |
| WriteDOC_(ofs & 0xff, docptr, doc->ioreg); |
| } |
| } |
| |
| DoC_Delay(doc, 2); /* Needed for some slow flash chips. mf. */ |
| |
| /* FIXME: The SlowIO's for millennium could be replaced by |
| a single WritePipeTerm here. mf. */ |
| |
| /* Lower the ALE line */ |
| WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr, |
| CDSNControl); |
| |
| DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ |
| |
| /* Wait for the chip to respond - Software requirement 11.4.1 */ |
| return DoC_WaitReady(doc); |
| } |
| |
| /* Read a buffer from DoC, taking care of Millennium oddities */ |
| static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len) |
| { |
| volatile int dummy; |
| int modulus = 0xffff; |
| unsigned long docptr; |
| int i; |
| |
| docptr = doc->virtadr; |
| |
| if (len <= 0) |
| return; |
| |
| if (DoC_is_Millennium(doc)) { |
| /* Read the data via the internal pipeline through CDSN IO register, |
| see Pipelined Read Operations 11.3 */ |
| dummy = ReadDOC(docptr, ReadPipeInit); |
| |
| /* Millennium should use the LastDataRead register - Pipeline Reads */ |
| len--; |
| |
| /* This is needed for correctly ECC calculation */ |
| modulus = 0xff; |
| } |
| |
| for (i = 0; i < len; i++) |
| buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus)); |
| |
| if (DoC_is_Millennium(doc)) { |
| buf[i] = ReadDOC(docptr, LastDataRead); |
| } |
| } |
| |
| /* Write a buffer to DoC, taking care of Millennium oddities */ |
| static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len) |
| { |
| unsigned long docptr; |
| int i; |
| |
| docptr = doc->virtadr; |
| |
| if (len <= 0) |
| return; |
| |
| for (i = 0; i < len; i++) |
| WriteDOC_(buf[i], docptr, doc->ioreg + i); |
| |
| if (DoC_is_Millennium(doc)) { |
| WriteDOC(0x00, docptr, WritePipeTerm); |
| } |
| } |
| |
| |
| /* DoC_SelectChip: Select a given flash chip within the current floor */ |
| |
| static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip) |
| { |
| unsigned long docptr = doc->virtadr; |
| |
| /* Software requirement 11.4.4 before writing DeviceSelect */ |
| /* Deassert the CE line to eliminate glitches on the FCE# outputs */ |
| WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl); |
| DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ |
| |
| /* Select the individual flash chip requested */ |
| WriteDOC(chip, docptr, CDSNDeviceSelect); |
| DoC_Delay(doc, 4); |
| |
| /* Reassert the CE line */ |
| WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr, |
| CDSNControl); |
| DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ |
| |
| /* Wait for it to be ready */ |
| return DoC_WaitReady(doc); |
| } |
| |
| /* DoC_SelectFloor: Select a given floor (bank of flash chips) */ |
| |
| static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor) |
| { |
| unsigned long docptr = doc->virtadr; |
| |
| /* Select the floor (bank) of chips required */ |
| WriteDOC(floor, docptr, FloorSelect); |
| |
| /* Wait for the chip to be ready */ |
| return DoC_WaitReady(doc); |
| } |
| |
| /* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */ |
| |
| static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip) |
| { |
| int mfr, id, i; |
| volatile char dummy; |
| |
| /* Page in the required floor/chip */ |
| DoC_SelectFloor(doc, floor); |
| DoC_SelectChip(doc, chip); |
| |
| /* Reset the chip */ |
| if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) { |
| #ifdef DOC_DEBUG |
| printf("DoC_Command (reset) for %d,%d returned true\n", |
| floor, chip); |
| #endif |
| return 0; |
| } |
| |
| |
| /* Read the NAND chip ID: 1. Send ReadID command */ |
| if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) { |
| #ifdef DOC_DEBUG |
| printf("DoC_Command (ReadID) for %d,%d returned true\n", |
| floor, chip); |
| #endif |
| return 0; |
| } |
| |
| /* Read the NAND chip ID: 2. Send address byte zero */ |
| DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0); |
| |
| /* Read the manufacturer and device id codes from the device */ |
| |
| /* CDSN Slow IO register see Software Requirement 11.4 item 5. */ |
| dummy = ReadDOC(doc->virtadr, CDSNSlowIO); |
| DoC_Delay(doc, 2); |
| mfr = ReadDOC_(doc->virtadr, doc->ioreg); |
| |
| /* CDSN Slow IO register see Software Requirement 11.4 item 5. */ |
| dummy = ReadDOC(doc->virtadr, CDSNSlowIO); |
| DoC_Delay(doc, 2); |
| id = ReadDOC_(doc->virtadr, doc->ioreg); |
| |
| /* No response - return failure */ |
| if (mfr == 0xff || mfr == 0) |
| return 0; |
| |
| /* Check it's the same as the first chip we identified. |
| * M-Systems say that any given DiskOnChip device should only |
| * contain _one_ type of flash part, although that's not a |
| * hardware restriction. */ |
| if (doc->mfr) { |
| if (doc->mfr == mfr && doc->id == id) |
| return 1; /* This is another the same the first */ |
| else |
| printf("Flash chip at floor %d, chip %d is different:\n", |
| floor, chip); |
| } |
| |
| /* Print and store the manufacturer and ID codes. */ |
| for (i = 0; nand_flash_ids[i].name != NULL; i++) { |
| if (mfr == nand_flash_ids[i].manufacture_id && |
| id == nand_flash_ids[i].model_id) { |
| #ifdef DOC_DEBUG |
| printf("Flash chip found: Manufacturer ID: %2.2X, " |
| "Chip ID: %2.2X (%s)\n", mfr, id, |
| nand_flash_ids[i].name); |
| #endif |
| if (!doc->mfr) { |
| doc->mfr = mfr; |
| doc->id = id; |
| doc->chipshift = |
| nand_flash_ids[i].chipshift; |
| doc->page256 = nand_flash_ids[i].page256; |
| doc->pageadrlen = |
| nand_flash_ids[i].pageadrlen; |
| doc->erasesize = |
| nand_flash_ids[i].erasesize; |
| doc->chips_name = |
| nand_flash_ids[i].name; |
| return 1; |
| } |
| return 0; |
| } |
| } |
| |
| |
| #ifdef DOC_DEBUG |
| /* We haven't fully identified the chip. Print as much as we know. */ |
| printf("Unknown flash chip found: %2.2X %2.2X\n", |
| id, mfr); |
| #endif |
| |
| return 0; |
| } |
| |
| /* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */ |
| |
| static void DoC_ScanChips(struct DiskOnChip *this) |
| { |
| int floor, chip; |
| int numchips[MAX_FLOORS]; |
| int maxchips = MAX_CHIPS; |
| int ret = 1; |
| |
| this->numchips = 0; |
| this->mfr = 0; |
| this->id = 0; |
| |
| if (DoC_is_Millennium(this)) |
| maxchips = MAX_CHIPS_MIL; |
| |
| /* For each floor, find the number of valid chips it contains */ |
| for (floor = 0; floor < MAX_FLOORS; floor++) { |
| ret = 1; |
| numchips[floor] = 0; |
| for (chip = 0; chip < maxchips && ret != 0; chip++) { |
| |
| ret = DoC_IdentChip(this, floor, chip); |
| if (ret) { |
| numchips[floor]++; |
| this->numchips++; |
| } |
| } |
| } |
| |
| /* If there are none at all that we recognise, bail */ |
| if (!this->numchips) { |
| puts ("No flash chips recognised.\n"); |
| return; |
| } |
| |
| /* Allocate an array to hold the information for each chip */ |
| this->chips = malloc(sizeof(struct Nand) * this->numchips); |
| if (!this->chips) { |
| puts ("No memory for allocating chip info structures\n"); |
| return; |
| } |
| |
| ret = 0; |
| |
| /* Fill out the chip array with {floor, chipno} for each |
| * detected chip in the device. */ |
| for (floor = 0; floor < MAX_FLOORS; floor++) { |
| for (chip = 0; chip < numchips[floor]; chip++) { |
| this->chips[ret].floor = floor; |
| this->chips[ret].chip = chip; |
| this->chips[ret].curadr = 0; |
| this->chips[ret].curmode = 0x50; |
| ret++; |
| } |
| } |
| |
| /* Calculate and print the total size of the device */ |
| this->totlen = this->numchips * (1 << this->chipshift); |
| |
| #ifdef DOC_DEBUG |
| printf("%d flash chips found. Total DiskOnChip size: %ld MB\n", |
| this->numchips, this->totlen >> 20); |
| #endif |
| } |
| |
| /* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the |
| * various device information of the NFTL partition and Bad Unit Table. Update |
| * the ReplUnitTable[] table accroding to the Bad Unit Table. ReplUnitTable[] |
| * is used for management of Erase Unit in other routines in nftl.c and nftlmount.c |
| */ |
| static int find_boot_record(struct NFTLrecord *nftl) |
| { |
| struct nftl_uci1 h1; |
| struct nftl_oob oob; |
| unsigned int block, boot_record_count = 0; |
| int retlen; |
| u8 buf[SECTORSIZE]; |
| struct NFTLMediaHeader *mh = &nftl->MediaHdr; |
| unsigned int i; |
| |
| nftl->MediaUnit = BLOCK_NIL; |
| nftl->SpareMediaUnit = BLOCK_NIL; |
| |
| /* search for a valid boot record */ |
| for (block = 0; block < nftl->nb_blocks; block++) { |
| int ret; |
| |
| /* Check for ANAND header first. Then can whinge if it's found but later |
| checks fail */ |
| if ((ret = doc_read_ecc(nftl->mtd, block * nftl->EraseSize, SECTORSIZE, |
| (size_t *)&retlen, buf, NULL))) { |
| static int warncount = 5; |
| |
| if (warncount) { |
| printf("Block read at 0x%x failed\n", block * nftl->EraseSize); |
| if (!--warncount) |
| puts ("Further failures for this block will not be printed\n"); |
| } |
| continue; |
| } |
| |
| if (retlen < 6 || memcmp(buf, "ANAND", 6)) { |
| /* ANAND\0 not found. Continue */ |
| #ifdef PSYCHO_DEBUG |
| printf("ANAND header not found at 0x%x\n", block * nftl->EraseSize); |
| #endif |
| continue; |
| } |
| |
| #ifdef NFTL_DEBUG |
| printf("ANAND header found at 0x%x\n", block * nftl->EraseSize); |
| #endif |
| |
| /* To be safer with BIOS, also use erase mark as discriminant */ |
| if ((ret = doc_read_oob(nftl->mtd, block * nftl->EraseSize + SECTORSIZE + 8, |
| 8, (size_t *)&retlen, (uchar *)&h1) < 0)) { |
| #ifdef NFTL_DEBUG |
| printf("ANAND header found at 0x%x, but OOB data read failed\n", |
| block * nftl->EraseSize); |
| #endif |
| continue; |
| } |
| |
| /* OK, we like it. */ |
| |
| if (boot_record_count) { |
| /* We've already processed one. So we just check if |
| this one is the same as the first one we found */ |
| if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) { |
| #ifdef NFTL_DEBUG |
| printf("NFTL Media Headers at 0x%x and 0x%x disagree.\n", |
| nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize); |
| #endif |
| /* if (debug) Print both side by side */ |
| return -1; |
| } |
| if (boot_record_count == 1) |
| nftl->SpareMediaUnit = block; |
| |
| boot_record_count++; |
| continue; |
| } |
| |
| /* This is the first we've seen. Copy the media header structure into place */ |
| memcpy(mh, buf, sizeof(struct NFTLMediaHeader)); |
| |
| /* Do some sanity checks on it */ |
| if (mh->UnitSizeFactor == 0) { |
| #ifdef NFTL_DEBUG |
| puts ("UnitSizeFactor 0x00 detected.\n" |
| "This violates the spec but we think we know what it means...\n"); |
| #endif |
| } else if (mh->UnitSizeFactor != 0xff) { |
| printf ("Sorry, we don't support UnitSizeFactor " |
| "of != 1 yet.\n"); |
| return -1; |
| } |
| |
| nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN); |
| if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) { |
| printf ("NFTL Media Header sanity check failed:\n" |
| "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n", |
| nftl->nb_boot_blocks, nftl->nb_blocks); |
| return -1; |
| } |
| |
| nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize; |
| if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) { |
| printf ("NFTL Media Header sanity check failed:\n" |
| "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n", |
| nftl->numvunits, |
| nftl->nb_blocks, |
| nftl->nb_boot_blocks); |
| return -1; |
| } |
| |
| nftl->nr_sects = nftl->numvunits * (nftl->EraseSize / SECTORSIZE); |
| |
| /* If we're not using the last sectors in the device for some reason, |
| reduce nb_blocks accordingly so we forget they're there */ |
| nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN); |
| |
| /* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */ |
| for (i = 0; i < nftl->nb_blocks; i++) { |
| if ((i & (SECTORSIZE - 1)) == 0) { |
| /* read one sector for every SECTORSIZE of blocks */ |
| if ((ret = doc_read_ecc(nftl->mtd, block * nftl->EraseSize + |
| i + SECTORSIZE, SECTORSIZE, |
| (size_t *)&retlen, buf, (uchar *)&oob)) < 0) { |
| puts ("Read of bad sector table failed\n"); |
| return -1; |
| } |
| } |
| /* mark the Bad Erase Unit as RESERVED in ReplUnitTable */ |
| if (buf[i & (SECTORSIZE - 1)] != 0xff) |
| nftl->ReplUnitTable[i] = BLOCK_RESERVED; |
| } |
| |
| nftl->MediaUnit = block; |
| boot_record_count++; |
| |
| } /* foreach (block) */ |
| |
| return boot_record_count?0:-1; |
| } |
| |
| /* This routine is made available to other mtd code via |
| * inter_module_register. It must only be accessed through |
| * inter_module_get which will bump the use count of this module. The |
| * addresses passed back in mtd are valid as long as the use count of |
| * this module is non-zero, i.e. between inter_module_get and |
| * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000. |
| */ |
| static void DoC2k_init(struct DiskOnChip* this) |
| { |
| struct NFTLrecord *nftl; |
| |
| switch (this->ChipID) { |
| case DOC_ChipID_Doc2k: |
| this->name = "DiskOnChip 2000"; |
| this->ioreg = DoC_2k_CDSN_IO; |
| break; |
| case DOC_ChipID_DocMil: |
| this->name = "DiskOnChip Millennium"; |
| this->ioreg = DoC_Mil_CDSN_IO; |
| break; |
| } |
| |
| #ifdef DOC_DEBUG |
| printf("%s found at address 0x%lX\n", this->name, |
| this->physadr); |
| #endif |
| |
| this->totlen = 0; |
| this->numchips = 0; |
| |
| this->curfloor = -1; |
| this->curchip = -1; |
| |
| /* Ident all the chips present. */ |
| DoC_ScanChips(this); |
| if ((!this->numchips) || (!this->chips)) |
| return; |
| |
| nftl = &this->nftl; |
| |
| /* Get physical parameters */ |
| nftl->EraseSize = this->erasesize; |
| nftl->nb_blocks = this->totlen / this->erasesize; |
| nftl->mtd = this; |
| |
| if (find_boot_record(nftl) != 0) |
| this->nftl_found = 0; |
| else |
| this->nftl_found = 1; |
| |
| printf("%s @ 0x%lX, %ld MB\n", this->name, this->physadr, this->totlen >> 20); |
| } |
| |
| int doc_read_ecc(struct DiskOnChip* this, loff_t from, size_t len, |
| size_t * retlen, u_char * buf, u_char * eccbuf) |
| { |
| unsigned long docptr; |
| struct Nand *mychip; |
| unsigned char syndrome[6]; |
| volatile char dummy; |
| int i, len256 = 0, ret=0; |
| |
| docptr = this->virtadr; |
| |
| /* Don't allow read past end of device */ |
| if (from >= this->totlen) { |
| puts ("Out of flash\n"); |
| return DOC_EINVAL; |
| } |
| |
| /* Don't allow a single read to cross a 512-byte block boundary */ |
| if (from + len > ((from | 0x1ff) + 1)) |
| len = ((from | 0x1ff) + 1) - from; |
| |
| /* The ECC will not be calculated correctly if less than 512 is read */ |
| if (len != 0x200 && eccbuf) |
| printf("ECC needs a full sector read (adr: %lx size %lx)\n", |
| (long) from, (long) len); |
| |
| #ifdef PSYCHO_DEBUG |
| printf("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len); |
| #endif |
| |
| /* Find the chip which is to be used and select it */ |
| mychip = &this->chips[shr(from, this->chipshift)]; |
| |
| if (this->curfloor != mychip->floor) { |
| DoC_SelectFloor(this, mychip->floor); |
| DoC_SelectChip(this, mychip->chip); |
| } else if (this->curchip != mychip->chip) { |
| DoC_SelectChip(this, mychip->chip); |
| } |
| |
| this->curfloor = mychip->floor; |
| this->curchip = mychip->chip; |
| |
| DoC_Command(this, |
| (!this->page256 |
| && (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0, |
| CDSN_CTRL_WP); |
| DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP, |
| CDSN_CTRL_ECC_IO); |
| |
| if (eccbuf) { |
| /* Prime the ECC engine */ |
| WriteDOC(DOC_ECC_RESET, docptr, ECCConf); |
| WriteDOC(DOC_ECC_EN, docptr, ECCConf); |
| } else { |
| /* disable the ECC engine */ |
| WriteDOC(DOC_ECC_RESET, docptr, ECCConf); |
| WriteDOC(DOC_ECC_DIS, docptr, ECCConf); |
| } |
| |
| /* treat crossing 256-byte sector for 2M x 8bits devices */ |
| if (this->page256 && from + len > (from | 0xff) + 1) { |
| len256 = (from | 0xff) + 1 - from; |
| DoC_ReadBuf(this, buf, len256); |
| |
| DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP); |
| DoC_Address(this, ADDR_COLUMN_PAGE, from + len256, |
| CDSN_CTRL_WP, CDSN_CTRL_ECC_IO); |
| } |
| |
| DoC_ReadBuf(this, &buf[len256], len - len256); |
| |
| /* Let the caller know we completed it */ |
| *retlen = len; |
| |
| if (eccbuf) { |
| /* Read the ECC data through the DiskOnChip ECC logic */ |
| /* Note: this will work even with 2M x 8bit devices as */ |
| /* they have 8 bytes of OOB per 256 page. mf. */ |
| DoC_ReadBuf(this, eccbuf, 6); |
| |
| /* Flush the pipeline */ |
| if (DoC_is_Millennium(this)) { |
| dummy = ReadDOC(docptr, ECCConf); |
| dummy = ReadDOC(docptr, ECCConf); |
| i = ReadDOC(docptr, ECCConf); |
| } else { |
| dummy = ReadDOC(docptr, 2k_ECCStatus); |
| dummy = ReadDOC(docptr, 2k_ECCStatus); |
| i = ReadDOC(docptr, 2k_ECCStatus); |
| } |
| |
| /* Check the ECC Status */ |
| if (i & 0x80) { |
| int nb_errors; |
| /* There was an ECC error */ |
| #ifdef ECC_DEBUG |
| printf("DiskOnChip ECC Error: Read at %lx\n", (long)from); |
| #endif |
| /* Read the ECC syndrom through the DiskOnChip ECC logic. |
| These syndrome will be all ZERO when there is no error */ |
| for (i = 0; i < 6; i++) { |
| syndrome[i] = |
| ReadDOC(docptr, ECCSyndrome0 + i); |
| } |
| nb_errors = doc_decode_ecc(buf, syndrome); |
| |
| #ifdef ECC_DEBUG |
| printf("Errors corrected: %x\n", nb_errors); |
| #endif |
| if (nb_errors < 0) { |
| /* We return error, but have actually done the read. Not that |
| this can be told to user-space, via sys_read(), but at least |
| MTD-aware stuff can know about it by checking *retlen */ |
| printf("ECC Errors at %lx\n", (long)from); |
| ret = DOC_EECC; |
| } |
| } |
| |
| #ifdef PSYCHO_DEBUG |
| printf("ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", |
| (long)from, eccbuf[0], eccbuf[1], eccbuf[2], |
| eccbuf[3], eccbuf[4], eccbuf[5]); |
| #endif |
| |
| /* disable the ECC engine */ |
| WriteDOC(DOC_ECC_DIS, docptr , ECCConf); |
| } |
| |
| /* according to 11.4.1, we need to wait for the busy line |
| * drop if we read to the end of the page. */ |
| if(0 == ((from + *retlen) & 0x1ff)) |
| { |
| DoC_WaitReady(this); |
| } |
| |
| return ret; |
| } |
| |
| int doc_write_ecc(struct DiskOnChip* this, loff_t to, size_t len, |
| size_t * retlen, const u_char * buf, |
| u_char * eccbuf) |
| { |
| int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */ |
| unsigned long docptr; |
| volatile char dummy; |
| int len256 = 0; |
| struct Nand *mychip; |
| |
| docptr = this->virtadr; |
| |
| /* Don't allow write past end of device */ |
| if (to >= this->totlen) { |
| puts ("Out of flash\n"); |
| return DOC_EINVAL; |
| } |
| |
| /* Don't allow a single write to cross a 512-byte block boundary */ |
| if (to + len > ((to | 0x1ff) + 1)) |
| len = ((to | 0x1ff) + 1) - to; |
| |
| /* The ECC will not be calculated correctly if less than 512 is written */ |
| if (len != 0x200 && eccbuf) |
| printf("ECC needs a full sector write (adr: %lx size %lx)\n", |
| (long) to, (long) len); |
| |
| /* printf("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */ |
| |
| /* Find the chip which is to be used and select it */ |
| mychip = &this->chips[shr(to, this->chipshift)]; |
| |
| if (this->curfloor != mychip->floor) { |
| DoC_SelectFloor(this, mychip->floor); |
| DoC_SelectChip(this, mychip->chip); |
| } else if (this->curchip != mychip->chip) { |
| DoC_SelectChip(this, mychip->chip); |
| } |
| |
| this->curfloor = mychip->floor; |
| this->curchip = mychip->chip; |
| |
| /* Set device to main plane of flash */ |
| DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP); |
| DoC_Command(this, |
| (!this->page256 |
| && (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0, |
| CDSN_CTRL_WP); |
| |
| DoC_Command(this, NAND_CMD_SEQIN, 0); |
| DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO); |
| |
| if (eccbuf) { |
| /* Prime the ECC engine */ |
| WriteDOC(DOC_ECC_RESET, docptr, ECCConf); |
| WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); |
| } else { |
| /* disable the ECC engine */ |
| WriteDOC(DOC_ECC_RESET, docptr, ECCConf); |
| WriteDOC(DOC_ECC_DIS, docptr, ECCConf); |
| } |
| |
| /* treat crossing 256-byte sector for 2M x 8bits devices */ |
| if (this->page256 && to + len > (to | 0xff) + 1) { |
| len256 = (to | 0xff) + 1 - to; |
| DoC_WriteBuf(this, buf, len256); |
| |
| DoC_Command(this, NAND_CMD_PAGEPROG, 0); |
| |
| DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); |
| /* There's an implicit DoC_WaitReady() in DoC_Command */ |
| |
| dummy = ReadDOC(docptr, CDSNSlowIO); |
| DoC_Delay(this, 2); |
| |
| if (ReadDOC_(docptr, this->ioreg) & 1) { |
| puts ("Error programming flash\n"); |
| /* Error in programming */ |
| *retlen = 0; |
| return DOC_EIO; |
| } |
| |
| DoC_Command(this, NAND_CMD_SEQIN, 0); |
| DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0, |
| CDSN_CTRL_ECC_IO); |
| } |
| |
| DoC_WriteBuf(this, &buf[len256], len - len256); |
| |
| if (eccbuf) { |
| WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr, |
| CDSNControl); |
| |
| if (DoC_is_Millennium(this)) { |
| WriteDOC(0, docptr, NOP); |
| WriteDOC(0, docptr, NOP); |
| WriteDOC(0, docptr, NOP); |
| } else { |
| WriteDOC_(0, docptr, this->ioreg); |
| WriteDOC_(0, docptr, this->ioreg); |
| WriteDOC_(0, docptr, this->ioreg); |
| } |
| |
| /* Read the ECC data through the DiskOnChip ECC logic */ |
| for (di = 0; di < 6; di++) { |
| eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di); |
| } |
| |
| /* Reset the ECC engine */ |
| WriteDOC(DOC_ECC_DIS, docptr, ECCConf); |
| |
| #ifdef PSYCHO_DEBUG |
| printf |
| ("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", |
| (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], |
| eccbuf[4], eccbuf[5]); |
| #endif |
| } |
| |
| DoC_Command(this, NAND_CMD_PAGEPROG, 0); |
| |
| DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); |
| /* There's an implicit DoC_WaitReady() in DoC_Command */ |
| |
| dummy = ReadDOC(docptr, CDSNSlowIO); |
| DoC_Delay(this, 2); |
| |
| if (ReadDOC_(docptr, this->ioreg) & 1) { |
| puts ("Error programming flash\n"); |
| /* Error in programming */ |
| *retlen = 0; |
| return DOC_EIO; |
| } |
| |
| /* Let the caller know we completed it */ |
| *retlen = len; |
| |
| if (eccbuf) { |
| unsigned char x[8]; |
| size_t dummy; |
| int ret; |
| |
| /* Write the ECC data to flash */ |
| for (di=0; di<6; di++) |
| x[di] = eccbuf[di]; |
| |
| x[6]=0x55; |
| x[7]=0x55; |
| |
| ret = doc_write_oob(this, to, 8, &dummy, x); |
| return ret; |
| } |
| return 0; |
| } |
| |
| int doc_read_oob(struct DiskOnChip* this, loff_t ofs, size_t len, |
| size_t * retlen, u_char * buf) |
| { |
| int len256 = 0, ret; |
| unsigned long docptr; |
| struct Nand *mychip; |
| |
| docptr = this->virtadr; |
| |
| mychip = &this->chips[shr(ofs, this->chipshift)]; |
| |
| if (this->curfloor != mychip->floor) { |
| DoC_SelectFloor(this, mychip->floor); |
| DoC_SelectChip(this, mychip->chip); |
| } else if (this->curchip != mychip->chip) { |
| DoC_SelectChip(this, mychip->chip); |
| } |
| this->curfloor = mychip->floor; |
| this->curchip = mychip->chip; |
| |
| /* update address for 2M x 8bit devices. OOB starts on the second */ |
| /* page to maintain compatibility with doc_read_ecc. */ |
| if (this->page256) { |
| if (!(ofs & 0x8)) |
| ofs += 0x100; |
| else |
| ofs -= 0x8; |
| } |
| |
| DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); |
| DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0); |
| |
| /* treat crossing 8-byte OOB data for 2M x 8bit devices */ |
| /* Note: datasheet says it should automaticaly wrap to the */ |
| /* next OOB block, but it didn't work here. mf. */ |
| if (this->page256 && ofs + len > (ofs | 0x7) + 1) { |
| len256 = (ofs | 0x7) + 1 - ofs; |
| DoC_ReadBuf(this, buf, len256); |
| |
| DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); |
| DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), |
| CDSN_CTRL_WP, 0); |
| } |
| |
| DoC_ReadBuf(this, &buf[len256], len - len256); |
| |
| *retlen = len; |
| /* Reading the full OOB data drops us off of the end of the page, |
| * causing the flash device to go into busy mode, so we need |
| * to wait until ready 11.4.1 and Toshiba TC58256FT docs */ |
| |
| ret = DoC_WaitReady(this); |
| |
| return ret; |
| |
| } |
| |
| int doc_write_oob(struct DiskOnChip* this, loff_t ofs, size_t len, |
| size_t * retlen, const u_char * buf) |
| { |
| int len256 = 0; |
| unsigned long docptr = this->virtadr; |
| struct Nand *mychip = &this->chips[shr(ofs, this->chipshift)]; |
| volatile int dummy; |
| |
| #ifdef PSYCHO_DEBUG |
| printf("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n", |
| (long)ofs, len, buf[0], buf[1], buf[2], buf[3], |
| buf[8], buf[9], buf[14],buf[15]); |
| #endif |
| |
| /* Find the chip which is to be used and select it */ |
| if (this->curfloor != mychip->floor) { |
| DoC_SelectFloor(this, mychip->floor); |
| DoC_SelectChip(this, mychip->chip); |
| } else if (this->curchip != mychip->chip) { |
| DoC_SelectChip(this, mychip->chip); |
| } |
| this->curfloor = mychip->floor; |
| this->curchip = mychip->chip; |
| |
| /* disable the ECC engine */ |
| WriteDOC (DOC_ECC_RESET, docptr, ECCConf); |
| WriteDOC (DOC_ECC_DIS, docptr, ECCConf); |
| |
| /* Reset the chip, see Software Requirement 11.4 item 1. */ |
| DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP); |
| |
| /* issue the Read2 command to set the pointer to the Spare Data Area. */ |
| DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); |
| |
| /* update address for 2M x 8bit devices. OOB starts on the second */ |
| /* page to maintain compatibility with doc_read_ecc. */ |
| if (this->page256) { |
| if (!(ofs & 0x8)) |
| ofs += 0x100; |
| else |
| ofs -= 0x8; |
| } |
| |
| /* issue the Serial Data In command to initial the Page Program process */ |
| DoC_Command(this, NAND_CMD_SEQIN, 0); |
| DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0); |
| |
| /* treat crossing 8-byte OOB data for 2M x 8bit devices */ |
| /* Note: datasheet says it should automaticaly wrap to the */ |
| /* next OOB block, but it didn't work here. mf. */ |
| if (this->page256 && ofs + len > (ofs | 0x7) + 1) { |
| len256 = (ofs | 0x7) + 1 - ofs; |
| DoC_WriteBuf(this, buf, len256); |
| |
| DoC_Command(this, NAND_CMD_PAGEPROG, 0); |
| DoC_Command(this, NAND_CMD_STATUS, 0); |
| /* DoC_WaitReady() is implicit in DoC_Command */ |
| |
| dummy = ReadDOC(docptr, CDSNSlowIO); |
| DoC_Delay(this, 2); |
| |
| if (ReadDOC_(docptr, this->ioreg) & 1) { |
| puts ("Error programming oob data\n"); |
| /* There was an error */ |
| *retlen = 0; |
| return DOC_EIO; |
| } |
| DoC_Command(this, NAND_CMD_SEQIN, 0); |
| DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0); |
| } |
| |
| DoC_WriteBuf(this, &buf[len256], len - len256); |
| |
| DoC_Command(this, NAND_CMD_PAGEPROG, 0); |
| DoC_Command(this, NAND_CMD_STATUS, 0); |
| /* DoC_WaitReady() is implicit in DoC_Command */ |
| |
| dummy = ReadDOC(docptr, CDSNSlowIO); |
| DoC_Delay(this, 2); |
| |
| if (ReadDOC_(docptr, this->ioreg) & 1) { |
| puts ("Error programming oob data\n"); |
| /* There was an error */ |
| *retlen = 0; |
| return DOC_EIO; |
| } |
| |
| *retlen = len; |
| return 0; |
| |
| } |
| |
| int doc_erase(struct DiskOnChip* this, loff_t ofs, size_t len) |
| { |
| volatile int dummy; |
| unsigned long docptr; |
| struct Nand *mychip; |
| |
| if (ofs & (this->erasesize-1) || len & (this->erasesize-1)) { |
| puts ("Offset and size must be sector aligned\n"); |
| return DOC_EINVAL; |
| } |
| |
| docptr = this->virtadr; |
| |
| /* FIXME: Do this in the background. Use timers or schedule_task() */ |
| while(len) { |
| mychip = &this->chips[shr(ofs, this->chipshift)]; |
| |
| if (this->curfloor != mychip->floor) { |
| DoC_SelectFloor(this, mychip->floor); |
| DoC_SelectChip(this, mychip->chip); |
| } else if (this->curchip != mychip->chip) { |
| DoC_SelectChip(this, mychip->chip); |
| } |
| this->curfloor = mychip->floor; |
| this->curchip = mychip->chip; |
| |
| DoC_Command(this, NAND_CMD_ERASE1, 0); |
| DoC_Address(this, ADDR_PAGE, ofs, 0, 0); |
| DoC_Command(this, NAND_CMD_ERASE2, 0); |
| |
| DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); |
| |
| dummy = ReadDOC(docptr, CDSNSlowIO); |
| DoC_Delay(this, 2); |
| |
| if (ReadDOC_(docptr, this->ioreg) & 1) { |
| printf("Error erasing at 0x%lx\n", (long)ofs); |
| /* There was an error */ |
| goto callback; |
| } |
| ofs += this->erasesize; |
| len -= this->erasesize; |
| } |
| |
| callback: |
| return 0; |
| } |
| |
| static inline int doccheck(unsigned long potential, unsigned long physadr) |
| { |
| unsigned long window=potential; |
| unsigned char tmp, ChipID; |
| #ifndef DOC_PASSIVE_PROBE |
| unsigned char tmp2; |
| #endif |
| |
| /* Routine copied from the Linux DOC driver */ |
| |
| #ifdef CFG_DOCPROBE_55AA |
| /* Check for 0x55 0xAA signature at beginning of window, |
| this is no longer true once we remove the IPL (for Millennium */ |
| if (ReadDOC(window, Sig1) != 0x55 || ReadDOC(window, Sig2) != 0xaa) |
| return 0; |
| #endif /* CFG_DOCPROBE_55AA */ |
| |
| #ifndef DOC_PASSIVE_PROBE |
| /* It's not possible to cleanly detect the DiskOnChip - the |
| * bootup procedure will put the device into reset mode, and |
| * it's not possible to talk to it without actually writing |
| * to the DOCControl register. So we store the current contents |
| * of the DOCControl register's location, in case we later decide |
| * that it's not a DiskOnChip, and want to put it back how we |
| * found it. |
| */ |
| tmp2 = ReadDOC(window, DOCControl); |
| |
| /* Reset the DiskOnChip ASIC */ |
| WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, |
| window, DOCControl); |
| WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, |
| window, DOCControl); |
| |
| /* Enable the DiskOnChip ASIC */ |
| WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, |
| window, DOCControl); |
| WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, |
| window, DOCControl); |
| #endif /* !DOC_PASSIVE_PROBE */ |
| |
| ChipID = ReadDOC(window, ChipID); |
| |
| switch (ChipID) { |
| case DOC_ChipID_Doc2k: |
| /* Check the TOGGLE bit in the ECC register */ |
| tmp = ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT; |
| if ((ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT) != tmp) |
| return ChipID; |
| break; |
| |
| case DOC_ChipID_DocMil: |
| /* Check the TOGGLE bit in the ECC register */ |
| tmp = ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT; |
| if ((ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT) != tmp) |
| return ChipID; |
| break; |
| |
| default: |
| #ifndef CFG_DOCPROBE_55AA |
| /* |
| * if the ID isn't the DoC2000 or DoCMillenium ID, so we can assume |
| * the DOC is missing |
| */ |
| # if 0 |
| printf("Possible DiskOnChip with unknown ChipID %2.2X found at 0x%lx\n", |
| ChipID, physadr); |
| # endif |
| #endif |
| #ifndef DOC_PASSIVE_PROBE |
| /* Put back the contents of the DOCControl register, in case it's not |
| * actually a DiskOnChip. |
| */ |
| WriteDOC(tmp2, window, DOCControl); |
| #endif |
| return 0; |
| } |
| |
| puts ("DiskOnChip failed TOGGLE test, dropping.\n"); |
| |
| #ifndef DOC_PASSIVE_PROBE |
| /* Put back the contents of the DOCControl register: it's not a DiskOnChip */ |
| WriteDOC(tmp2, window, DOCControl); |
| #endif |
| return 0; |
| } |
| |
| void doc_probe(unsigned long physadr) |
| { |
| struct DiskOnChip *this = NULL; |
| int i=0, ChipID; |
| |
| if ((ChipID = doccheck(physadr, physadr))) { |
| |
| for (i=0; i<CFG_MAX_DOC_DEVICE; i++) { |
| if (doc_dev_desc[i].ChipID == DOC_ChipID_UNKNOWN) { |
| this = doc_dev_desc + i; |
| break; |
| } |
| } |
| |
| if (!this) { |
| puts ("Cannot allocate memory for data structures.\n"); |
| return; |
| } |
| |
| if (curr_device == -1) |
| curr_device = i; |
| |
| memset((char *)this, 0, sizeof(struct DiskOnChip)); |
| |
| this->virtadr = physadr; |
| this->physadr = physadr; |
| this->ChipID = ChipID; |
| |
| DoC2k_init(this); |
| } else { |
| puts ("No DiskOnChip found\n"); |
| } |
| } |