| /* |
| * EFI application memory management |
| * |
| * Copyright (c) 2016 Alexander Graf |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <common.h> |
| #include <efi_loader.h> |
| #include <malloc.h> |
| #include <asm/global_data.h> |
| #include <libfdt_env.h> |
| #include <linux/list_sort.h> |
| #include <inttypes.h> |
| #include <watchdog.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| struct efi_mem_list { |
| struct list_head link; |
| struct efi_mem_desc desc; |
| }; |
| |
| #define EFI_CARVE_NO_OVERLAP -1 |
| #define EFI_CARVE_LOOP_AGAIN -2 |
| #define EFI_CARVE_OVERLAPS_NONRAM -3 |
| |
| /* This list contains all memory map items */ |
| LIST_HEAD(efi_mem); |
| |
| #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER |
| void *efi_bounce_buffer; |
| #endif |
| |
| /* |
| * U-Boot services each EFI AllocatePool request as a separate |
| * (multiple) page allocation. We have to track the number of pages |
| * to be able to free the correct amount later. |
| * EFI requires 8 byte alignment for pool allocations, so we can |
| * prepend each allocation with an 64 bit header tracking the |
| * allocation size, and hand out the remainder to the caller. |
| */ |
| struct efi_pool_allocation { |
| u64 num_pages; |
| char data[]; |
| }; |
| |
| /* |
| * Sorts the memory list from highest address to lowest address |
| * |
| * When allocating memory we should always start from the highest |
| * address chunk, so sort the memory list such that the first list |
| * iterator gets the highest address and goes lower from there. |
| */ |
| static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b) |
| { |
| struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link); |
| struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link); |
| |
| if (mema->desc.physical_start == memb->desc.physical_start) |
| return 0; |
| else if (mema->desc.physical_start < memb->desc.physical_start) |
| return 1; |
| else |
| return -1; |
| } |
| |
| static void efi_mem_sort(void) |
| { |
| list_sort(NULL, &efi_mem, efi_mem_cmp); |
| } |
| |
| /* |
| * Unmaps all memory occupied by the carve_desc region from the |
| * list entry pointed to by map. |
| * |
| * Returns EFI_CARVE_NO_OVERLAP if the regions don't overlap. |
| * Returns EFI_CARVE_OVERLAPS_NONRAM if the carve and map overlap, |
| * and the map contains anything but free ram. |
| * (only when overlap_only_ram is true) |
| * Returns EFI_CARVE_LOOP_AGAIN if the mapping list should be traversed |
| * again, as it has been altered |
| * Returns the number of overlapping pages. The pages are removed from |
| * the mapping list. |
| * |
| * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility |
| * to readd the already carved out pages to the mapping. |
| */ |
| static int efi_mem_carve_out(struct efi_mem_list *map, |
| struct efi_mem_desc *carve_desc, |
| bool overlap_only_ram) |
| { |
| struct efi_mem_list *newmap; |
| struct efi_mem_desc *map_desc = &map->desc; |
| uint64_t map_start = map_desc->physical_start; |
| uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT); |
| uint64_t carve_start = carve_desc->physical_start; |
| uint64_t carve_end = carve_start + |
| (carve_desc->num_pages << EFI_PAGE_SHIFT); |
| |
| /* check whether we're overlapping */ |
| if ((carve_end <= map_start) || (carve_start >= map_end)) |
| return EFI_CARVE_NO_OVERLAP; |
| |
| /* We're overlapping with non-RAM, warn the caller if desired */ |
| if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY)) |
| return EFI_CARVE_OVERLAPS_NONRAM; |
| |
| /* Sanitize carve_start and carve_end to lie within our bounds */ |
| carve_start = max(carve_start, map_start); |
| carve_end = min(carve_end, map_end); |
| |
| /* Carving at the beginning of our map? Just move it! */ |
| if (carve_start == map_start) { |
| if (map_end == carve_end) { |
| /* Full overlap, just remove map */ |
| list_del(&map->link); |
| } |
| |
| map_desc->physical_start = carve_end; |
| map_desc->num_pages = (map_end - carve_end) >> EFI_PAGE_SHIFT; |
| return (carve_end - carve_start) >> EFI_PAGE_SHIFT; |
| } |
| |
| /* |
| * Overlapping maps, just split the list map at carve_start, |
| * it will get moved or removed in the next iteration. |
| * |
| * [ map_desc |__carve_start__| newmap ] |
| */ |
| |
| /* Create a new map from [ carve_start ... map_end ] */ |
| newmap = calloc(1, sizeof(*newmap)); |
| newmap->desc = map->desc; |
| newmap->desc.physical_start = carve_start; |
| newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT; |
| /* Insert before current entry (descending address order) */ |
| list_add_tail(&newmap->link, &map->link); |
| |
| /* Shrink the map to [ map_start ... carve_start ] */ |
| map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT; |
| |
| return EFI_CARVE_LOOP_AGAIN; |
| } |
| |
| uint64_t efi_add_memory_map(uint64_t start, uint64_t pages, int memory_type, |
| bool overlap_only_ram) |
| { |
| struct list_head *lhandle; |
| struct efi_mem_list *newlist; |
| bool carve_again; |
| uint64_t carved_pages = 0; |
| |
| debug("%s: 0x%" PRIx64 " 0x%" PRIx64 " %d %s\n", __func__, |
| start, pages, memory_type, overlap_only_ram ? "yes" : "no"); |
| |
| if (!pages) |
| return start; |
| |
| newlist = calloc(1, sizeof(*newlist)); |
| newlist->desc.type = memory_type; |
| newlist->desc.physical_start = start; |
| newlist->desc.virtual_start = start; |
| newlist->desc.num_pages = pages; |
| |
| switch (memory_type) { |
| case EFI_RUNTIME_SERVICES_CODE: |
| case EFI_RUNTIME_SERVICES_DATA: |
| newlist->desc.attribute = (1 << EFI_MEMORY_WB_SHIFT) | |
| (1ULL << EFI_MEMORY_RUNTIME_SHIFT); |
| break; |
| case EFI_MMAP_IO: |
| newlist->desc.attribute = 1ULL << EFI_MEMORY_RUNTIME_SHIFT; |
| break; |
| default: |
| newlist->desc.attribute = 1 << EFI_MEMORY_WB_SHIFT; |
| break; |
| } |
| |
| /* Add our new map */ |
| do { |
| carve_again = false; |
| list_for_each(lhandle, &efi_mem) { |
| struct efi_mem_list *lmem; |
| int r; |
| |
| lmem = list_entry(lhandle, struct efi_mem_list, link); |
| r = efi_mem_carve_out(lmem, &newlist->desc, |
| overlap_only_ram); |
| switch (r) { |
| case EFI_CARVE_OVERLAPS_NONRAM: |
| /* |
| * The user requested to only have RAM overlaps, |
| * but we hit a non-RAM region. Error out. |
| */ |
| return 0; |
| case EFI_CARVE_NO_OVERLAP: |
| /* Just ignore this list entry */ |
| break; |
| case EFI_CARVE_LOOP_AGAIN: |
| /* |
| * We split an entry, but need to loop through |
| * the list again to actually carve it. |
| */ |
| carve_again = true; |
| break; |
| default: |
| /* We carved a number of pages */ |
| carved_pages += r; |
| carve_again = true; |
| break; |
| } |
| |
| if (carve_again) { |
| /* The list changed, we need to start over */ |
| break; |
| } |
| } |
| } while (carve_again); |
| |
| if (overlap_only_ram && (carved_pages != pages)) { |
| /* |
| * The payload wanted to have RAM overlaps, but we overlapped |
| * with an unallocated region. Error out. |
| */ |
| return 0; |
| } |
| |
| /* Add our new map */ |
| list_add_tail(&newlist->link, &efi_mem); |
| |
| /* And make sure memory is listed in descending order */ |
| efi_mem_sort(); |
| |
| return start; |
| } |
| |
| static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr) |
| { |
| struct list_head *lhandle; |
| |
| list_for_each(lhandle, &efi_mem) { |
| struct efi_mem_list *lmem = list_entry(lhandle, |
| struct efi_mem_list, link); |
| struct efi_mem_desc *desc = &lmem->desc; |
| uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT; |
| uint64_t desc_end = desc->physical_start + desc_len; |
| uint64_t curmax = min(max_addr, desc_end); |
| uint64_t ret = curmax - len; |
| |
| /* We only take memory from free RAM */ |
| if (desc->type != EFI_CONVENTIONAL_MEMORY) |
| continue; |
| |
| /* Out of bounds for max_addr */ |
| if ((ret + len) > max_addr) |
| continue; |
| |
| /* Out of bounds for upper map limit */ |
| if ((ret + len) > desc_end) |
| continue; |
| |
| /* Out of bounds for lower map limit */ |
| if (ret < desc->physical_start) |
| continue; |
| |
| /* Return the highest address in this map within bounds */ |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| efi_status_t efi_allocate_pages(int type, int memory_type, |
| unsigned long pages, uint64_t *memory) |
| { |
| u64 len = pages << EFI_PAGE_SHIFT; |
| efi_status_t r = EFI_SUCCESS; |
| uint64_t addr; |
| |
| switch (type) { |
| case 0: |
| /* Any page */ |
| addr = efi_find_free_memory(len, gd->start_addr_sp); |
| if (!addr) { |
| r = EFI_NOT_FOUND; |
| break; |
| } |
| break; |
| case 1: |
| /* Max address */ |
| addr = efi_find_free_memory(len, *memory); |
| if (!addr) { |
| r = EFI_NOT_FOUND; |
| break; |
| } |
| break; |
| case 2: |
| /* Exact address, reserve it. The addr is already in *memory. */ |
| addr = *memory; |
| break; |
| default: |
| /* UEFI doesn't specify other allocation types */ |
| r = EFI_INVALID_PARAMETER; |
| break; |
| } |
| |
| if (r == EFI_SUCCESS) { |
| uint64_t ret; |
| |
| /* Reserve that map in our memory maps */ |
| ret = efi_add_memory_map(addr, pages, memory_type, true); |
| if (ret == addr) { |
| *memory = addr; |
| } else { |
| /* Map would overlap, bail out */ |
| r = EFI_OUT_OF_RESOURCES; |
| } |
| } |
| |
| return r; |
| } |
| |
| void *efi_alloc(uint64_t len, int memory_type) |
| { |
| uint64_t ret = 0; |
| uint64_t pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT; |
| efi_status_t r; |
| |
| r = efi_allocate_pages(0, memory_type, pages, &ret); |
| if (r == EFI_SUCCESS) |
| return (void*)(uintptr_t)ret; |
| |
| return NULL; |
| } |
| |
| efi_status_t efi_free_pages(uint64_t memory, unsigned long pages) |
| { |
| uint64_t r = 0; |
| |
| r = efi_add_memory_map(memory, pages, EFI_CONVENTIONAL_MEMORY, false); |
| /* Merging of adjacent free regions is missing */ |
| |
| if (r == memory) |
| return EFI_SUCCESS; |
| |
| return EFI_NOT_FOUND; |
| } |
| |
| efi_status_t efi_allocate_pool(int pool_type, unsigned long size, |
| void **buffer) |
| { |
| efi_status_t r; |
| efi_physical_addr_t t; |
| u64 num_pages = (size + sizeof(u64) + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT; |
| |
| if (size == 0) { |
| *buffer = NULL; |
| return EFI_SUCCESS; |
| } |
| |
| r = efi_allocate_pages(0, pool_type, num_pages, &t); |
| |
| if (r == EFI_SUCCESS) { |
| struct efi_pool_allocation *alloc = (void *)(uintptr_t)t; |
| alloc->num_pages = num_pages; |
| *buffer = alloc->data; |
| } |
| |
| return r; |
| } |
| |
| efi_status_t efi_free_pool(void *buffer) |
| { |
| efi_status_t r; |
| struct efi_pool_allocation *alloc; |
| |
| alloc = container_of(buffer, struct efi_pool_allocation, data); |
| /* Sanity check, was the supplied address returned by allocate_pool */ |
| assert(((uintptr_t)alloc & EFI_PAGE_MASK) == 0); |
| |
| r = efi_free_pages((uintptr_t)alloc, alloc->num_pages); |
| |
| return r; |
| } |
| |
| efi_status_t efi_get_memory_map(unsigned long *memory_map_size, |
| struct efi_mem_desc *memory_map, |
| unsigned long *map_key, |
| unsigned long *descriptor_size, |
| uint32_t *descriptor_version) |
| { |
| ulong map_size = 0; |
| int map_entries = 0; |
| struct list_head *lhandle; |
| unsigned long provided_map_size = *memory_map_size; |
| |
| list_for_each(lhandle, &efi_mem) |
| map_entries++; |
| |
| map_size = map_entries * sizeof(struct efi_mem_desc); |
| |
| *memory_map_size = map_size; |
| |
| if (descriptor_size) |
| *descriptor_size = sizeof(struct efi_mem_desc); |
| |
| if (descriptor_version) |
| *descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION; |
| |
| if (provided_map_size < map_size) |
| return EFI_BUFFER_TOO_SMALL; |
| |
| /* Copy list into array */ |
| if (memory_map) { |
| /* Return the list in ascending order */ |
| memory_map = &memory_map[map_entries - 1]; |
| list_for_each(lhandle, &efi_mem) { |
| struct efi_mem_list *lmem; |
| |
| lmem = list_entry(lhandle, struct efi_mem_list, link); |
| *memory_map = lmem->desc; |
| memory_map--; |
| } |
| } |
| |
| return EFI_SUCCESS; |
| } |
| |
| int efi_memory_init(void) |
| { |
| unsigned long runtime_start, runtime_end, runtime_pages; |
| unsigned long uboot_start, uboot_pages; |
| unsigned long uboot_stack_size = 16 * 1024 * 1024; |
| int i; |
| |
| /* Add RAM */ |
| for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) { |
| u64 ram_start = gd->bd->bi_dram[i].start; |
| u64 ram_size = gd->bd->bi_dram[i].size; |
| u64 start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK; |
| u64 pages = (ram_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT; |
| |
| efi_add_memory_map(start, pages, EFI_CONVENTIONAL_MEMORY, |
| false); |
| } |
| |
| /* Add U-Boot */ |
| uboot_start = (gd->start_addr_sp - uboot_stack_size) & ~EFI_PAGE_MASK; |
| uboot_pages = (gd->ram_top - uboot_start) >> EFI_PAGE_SHIFT; |
| efi_add_memory_map(uboot_start, uboot_pages, EFI_LOADER_DATA, false); |
| |
| /* Add Runtime Services */ |
| runtime_start = (ulong)&__efi_runtime_start & ~EFI_PAGE_MASK; |
| runtime_end = (ulong)&__efi_runtime_stop; |
| runtime_end = (runtime_end + EFI_PAGE_MASK) & ~EFI_PAGE_MASK; |
| runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT; |
| efi_add_memory_map(runtime_start, runtime_pages, |
| EFI_RUNTIME_SERVICES_CODE, false); |
| |
| #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER |
| /* Request a 32bit 64MB bounce buffer region */ |
| uint64_t efi_bounce_buffer_addr = 0xffffffff; |
| |
| if (efi_allocate_pages(1, EFI_LOADER_DATA, |
| (64 * 1024 * 1024) >> EFI_PAGE_SHIFT, |
| &efi_bounce_buffer_addr) != EFI_SUCCESS) |
| return -1; |
| |
| efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr; |
| #endif |
| |
| return 0; |
| } |