| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * (C) Copyright 2000-2009 |
| * Wolfgang Denk, DENX Software Engineering, wd@denx.de. |
| */ |
| |
| #ifndef USE_HOSTCC |
| #include <bootm.h> |
| #include <bootstage.h> |
| #include <cli.h> |
| #include <command.h> |
| #include <cpu_func.h> |
| #include <env.h> |
| #include <errno.h> |
| #include <fdt_support.h> |
| #include <irq_func.h> |
| #include <lmb.h> |
| #include <log.h> |
| #include <malloc.h> |
| #include <mapmem.h> |
| #include <net.h> |
| #include <asm/cache.h> |
| #include <asm/global_data.h> |
| #include <asm/io.h> |
| #include <linux/sizes.h> |
| #include <tpm-v2.h> |
| #if defined(CONFIG_CMD_USB) |
| #include <usb.h> |
| #endif |
| #else |
| #include "mkimage.h" |
| #endif |
| |
| #include <bootm.h> |
| #include <image.h> |
| |
| #define MAX_CMDLINE_SIZE SZ_4K |
| |
| #define IH_INITRD_ARCH IH_ARCH_DEFAULT |
| |
| #ifndef USE_HOSTCC |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| struct bootm_headers images; /* pointers to os/initrd/fdt images */ |
| |
| __weak void board_quiesce_devices(void) |
| { |
| } |
| |
| #if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT) |
| /** |
| * image_get_kernel - verify legacy format kernel image |
| * @img_addr: in RAM address of the legacy format image to be verified |
| * @verify: data CRC verification flag |
| * |
| * image_get_kernel() verifies legacy image integrity and returns pointer to |
| * legacy image header if image verification was completed successfully. |
| * |
| * returns: |
| * pointer to a legacy image header if valid image was found |
| * otherwise return NULL |
| */ |
| static struct legacy_img_hdr *image_get_kernel(ulong img_addr, int verify) |
| { |
| struct legacy_img_hdr *hdr = (struct legacy_img_hdr *)img_addr; |
| |
| if (!image_check_magic(hdr)) { |
| puts("Bad Magic Number\n"); |
| bootstage_error(BOOTSTAGE_ID_CHECK_MAGIC); |
| return NULL; |
| } |
| bootstage_mark(BOOTSTAGE_ID_CHECK_HEADER); |
| |
| if (!image_check_hcrc(hdr)) { |
| puts("Bad Header Checksum\n"); |
| bootstage_error(BOOTSTAGE_ID_CHECK_HEADER); |
| return NULL; |
| } |
| |
| bootstage_mark(BOOTSTAGE_ID_CHECK_CHECKSUM); |
| image_print_contents(hdr); |
| |
| if (verify) { |
| puts(" Verifying Checksum ... "); |
| if (!image_check_dcrc(hdr)) { |
| printf("Bad Data CRC\n"); |
| bootstage_error(BOOTSTAGE_ID_CHECK_CHECKSUM); |
| return NULL; |
| } |
| puts("OK\n"); |
| } |
| bootstage_mark(BOOTSTAGE_ID_CHECK_ARCH); |
| |
| if (!image_check_target_arch(hdr)) { |
| printf("Unsupported Architecture 0x%x\n", image_get_arch(hdr)); |
| bootstage_error(BOOTSTAGE_ID_CHECK_ARCH); |
| return NULL; |
| } |
| return hdr; |
| } |
| #endif |
| |
| /** |
| * boot_get_kernel() - find kernel image |
| * |
| * @addr_fit: first argument to bootm: address, fit configuration, etc. |
| * @os_data: pointer to a ulong variable, will hold os data start address |
| * @os_len: pointer to a ulong variable, will hold os data length |
| * address and length, otherwise NULL |
| * pointer to image header if valid image was found, plus kernel start |
| * @kernp: image header if valid image was found, otherwise NULL |
| * |
| * boot_get_kernel() tries to find a kernel image, verifies its integrity |
| * and locates kernel data. |
| * |
| * Return: 0 on success, -ve on error. -EPROTOTYPE means that the image is in |
| * a wrong or unsupported format |
| */ |
| static int boot_get_kernel(const char *addr_fit, struct bootm_headers *images, |
| ulong *os_data, ulong *os_len, const void **kernp) |
| { |
| #if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT) |
| struct legacy_img_hdr *hdr; |
| #endif |
| ulong img_addr; |
| const void *buf; |
| const char *fit_uname_config = NULL, *fit_uname_kernel = NULL; |
| #if CONFIG_IS_ENABLED(FIT) |
| int os_noffset; |
| #endif |
| |
| #ifdef CONFIG_ANDROID_BOOT_IMAGE |
| const void *boot_img; |
| const void *vendor_boot_img; |
| #endif |
| img_addr = genimg_get_kernel_addr_fit(addr_fit, &fit_uname_config, |
| &fit_uname_kernel); |
| |
| if (IS_ENABLED(CONFIG_CMD_BOOTM_PRE_LOAD)) |
| img_addr += image_load_offset; |
| |
| bootstage_mark(BOOTSTAGE_ID_CHECK_MAGIC); |
| |
| /* check image type, for FIT images get FIT kernel node */ |
| *os_data = *os_len = 0; |
| buf = map_sysmem(img_addr, 0); |
| switch (genimg_get_format(buf)) { |
| #if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT) |
| case IMAGE_FORMAT_LEGACY: |
| printf("## Booting kernel from Legacy Image at %08lx ...\n", |
| img_addr); |
| hdr = image_get_kernel(img_addr, images->verify); |
| if (!hdr) |
| return -EINVAL; |
| bootstage_mark(BOOTSTAGE_ID_CHECK_IMAGETYPE); |
| |
| /* get os_data and os_len */ |
| switch (image_get_type(hdr)) { |
| case IH_TYPE_KERNEL: |
| case IH_TYPE_KERNEL_NOLOAD: |
| *os_data = image_get_data(hdr); |
| *os_len = image_get_data_size(hdr); |
| break; |
| case IH_TYPE_MULTI: |
| image_multi_getimg(hdr, 0, os_data, os_len); |
| break; |
| case IH_TYPE_STANDALONE: |
| *os_data = image_get_data(hdr); |
| *os_len = image_get_data_size(hdr); |
| break; |
| default: |
| bootstage_error(BOOTSTAGE_ID_CHECK_IMAGETYPE); |
| return -EPROTOTYPE; |
| } |
| |
| /* |
| * copy image header to allow for image overwrites during |
| * kernel decompression. |
| */ |
| memmove(&images->legacy_hdr_os_copy, hdr, |
| sizeof(struct legacy_img_hdr)); |
| |
| /* save pointer to image header */ |
| images->legacy_hdr_os = hdr; |
| |
| images->legacy_hdr_valid = 1; |
| bootstage_mark(BOOTSTAGE_ID_DECOMP_IMAGE); |
| break; |
| #endif |
| #if CONFIG_IS_ENABLED(FIT) |
| case IMAGE_FORMAT_FIT: |
| os_noffset = fit_image_load(images, img_addr, |
| &fit_uname_kernel, &fit_uname_config, |
| IH_ARCH_DEFAULT, IH_TYPE_KERNEL, |
| BOOTSTAGE_ID_FIT_KERNEL_START, |
| FIT_LOAD_IGNORED, os_data, os_len); |
| if (os_noffset < 0) |
| return -ENOENT; |
| |
| images->fit_hdr_os = map_sysmem(img_addr, 0); |
| images->fit_uname_os = fit_uname_kernel; |
| images->fit_uname_cfg = fit_uname_config; |
| images->fit_noffset_os = os_noffset; |
| break; |
| #endif |
| #ifdef CONFIG_ANDROID_BOOT_IMAGE |
| case IMAGE_FORMAT_ANDROID: { |
| int ret; |
| |
| boot_img = buf; |
| vendor_boot_img = NULL; |
| if (IS_ENABLED(CONFIG_CMD_ABOOTIMG)) { |
| boot_img = map_sysmem(get_abootimg_addr(), 0); |
| vendor_boot_img = map_sysmem(get_avendor_bootimg_addr(), 0); |
| } |
| printf("## Booting Android Image at 0x%08lx ...\n", img_addr); |
| ret = android_image_get_kernel(boot_img, vendor_boot_img, |
| images->verify, os_data, os_len); |
| if (IS_ENABLED(CONFIG_CMD_ABOOTIMG)) { |
| unmap_sysmem(vendor_boot_img); |
| unmap_sysmem(boot_img); |
| } |
| if (ret) |
| return ret; |
| break; |
| } |
| #endif |
| default: |
| bootstage_error(BOOTSTAGE_ID_CHECK_IMAGETYPE); |
| return -EPROTOTYPE; |
| } |
| |
| debug(" kernel data at 0x%08lx, len = 0x%08lx (%ld)\n", |
| *os_data, *os_len, *os_len); |
| *kernp = buf; |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_LMB |
| static void boot_start_lmb(struct bootm_headers *images) |
| { |
| phys_addr_t mem_start; |
| phys_size_t mem_size; |
| |
| mem_start = env_get_bootm_low(); |
| mem_size = env_get_bootm_size(); |
| |
| lmb_init_and_reserve_range(&images->lmb, mem_start, |
| mem_size, NULL); |
| } |
| #else |
| #define lmb_reserve(lmb, base, size) |
| static inline void boot_start_lmb(struct bootm_headers *images) { } |
| #endif |
| |
| static int bootm_start(void) |
| { |
| memset((void *)&images, 0, sizeof(images)); |
| images.verify = env_get_yesno("verify"); |
| |
| boot_start_lmb(&images); |
| |
| bootstage_mark_name(BOOTSTAGE_ID_BOOTM_START, "bootm_start"); |
| images.state = BOOTM_STATE_START; |
| |
| return 0; |
| } |
| |
| static ulong bootm_data_addr(const char *addr_str) |
| { |
| ulong addr; |
| |
| if (addr_str) |
| addr = hextoul(addr_str, NULL); |
| else |
| addr = image_load_addr; |
| |
| return addr; |
| } |
| |
| /** |
| * bootm_pre_load() - Handle the pre-load processing |
| * |
| * This can be used to do a full signature check of the image, for example. |
| * It calls image_pre_load() with the data address of the image to check. |
| * |
| * @addr_str: String containing load address in hex, or NULL to use |
| * image_load_addr |
| * Return: 0 if OK, CMD_RET_FAILURE on failure |
| */ |
| static int bootm_pre_load(const char *addr_str) |
| { |
| ulong data_addr = bootm_data_addr(addr_str); |
| int ret = 0; |
| |
| if (IS_ENABLED(CONFIG_CMD_BOOTM_PRE_LOAD)) |
| ret = image_pre_load(data_addr); |
| |
| if (ret) |
| ret = CMD_RET_FAILURE; |
| |
| return ret; |
| } |
| |
| /** |
| * bootm_find_os(): Find the OS to boot |
| * |
| * @cmd_name: Command name that started this boot, e.g. "bootm" |
| * @addr_fit: Address and/or FIT specifier (first arg of bootm command) |
| * Return: 0 on success, -ve on error |
| */ |
| static int bootm_find_os(const char *cmd_name, const char *addr_fit) |
| { |
| const void *os_hdr; |
| #ifdef CONFIG_ANDROID_BOOT_IMAGE |
| const void *vendor_boot_img; |
| const void *boot_img; |
| #endif |
| bool ep_found = false; |
| int ret; |
| |
| /* get kernel image header, start address and length */ |
| ret = boot_get_kernel(addr_fit, &images, &images.os.image_start, |
| &images.os.image_len, &os_hdr); |
| if (ret) { |
| if (ret == -EPROTOTYPE) |
| printf("Wrong Image Type for %s command\n", cmd_name); |
| |
| printf("ERROR %dE: can't get kernel image!\n", ret); |
| return 1; |
| } |
| |
| /* get image parameters */ |
| switch (genimg_get_format(os_hdr)) { |
| #if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT) |
| case IMAGE_FORMAT_LEGACY: |
| images.os.type = image_get_type(os_hdr); |
| images.os.comp = image_get_comp(os_hdr); |
| images.os.os = image_get_os(os_hdr); |
| |
| images.os.end = image_get_image_end(os_hdr); |
| images.os.load = image_get_load(os_hdr); |
| images.os.arch = image_get_arch(os_hdr); |
| break; |
| #endif |
| #if CONFIG_IS_ENABLED(FIT) |
| case IMAGE_FORMAT_FIT: |
| if (fit_image_get_type(images.fit_hdr_os, |
| images.fit_noffset_os, |
| &images.os.type)) { |
| puts("Can't get image type!\n"); |
| bootstage_error(BOOTSTAGE_ID_FIT_TYPE); |
| return 1; |
| } |
| |
| if (fit_image_get_comp(images.fit_hdr_os, |
| images.fit_noffset_os, |
| &images.os.comp)) { |
| puts("Can't get image compression!\n"); |
| bootstage_error(BOOTSTAGE_ID_FIT_COMPRESSION); |
| return 1; |
| } |
| |
| if (fit_image_get_os(images.fit_hdr_os, images.fit_noffset_os, |
| &images.os.os)) { |
| puts("Can't get image OS!\n"); |
| bootstage_error(BOOTSTAGE_ID_FIT_OS); |
| return 1; |
| } |
| |
| if (fit_image_get_arch(images.fit_hdr_os, |
| images.fit_noffset_os, |
| &images.os.arch)) { |
| puts("Can't get image ARCH!\n"); |
| return 1; |
| } |
| |
| images.os.end = fit_get_end(images.fit_hdr_os); |
| |
| if (fit_image_get_load(images.fit_hdr_os, images.fit_noffset_os, |
| &images.os.load)) { |
| puts("Can't get image load address!\n"); |
| bootstage_error(BOOTSTAGE_ID_FIT_LOADADDR); |
| return 1; |
| } |
| break; |
| #endif |
| #ifdef CONFIG_ANDROID_BOOT_IMAGE |
| case IMAGE_FORMAT_ANDROID: |
| boot_img = os_hdr; |
| vendor_boot_img = NULL; |
| if (IS_ENABLED(CONFIG_CMD_ABOOTIMG)) { |
| boot_img = map_sysmem(get_abootimg_addr(), 0); |
| vendor_boot_img = map_sysmem(get_avendor_bootimg_addr(), 0); |
| } |
| images.os.type = IH_TYPE_KERNEL; |
| images.os.comp = android_image_get_kcomp(boot_img, vendor_boot_img); |
| images.os.os = IH_OS_LINUX; |
| images.os.end = android_image_get_end(boot_img, vendor_boot_img); |
| images.os.load = android_image_get_kload(boot_img, vendor_boot_img); |
| images.ep = images.os.load; |
| ep_found = true; |
| if (IS_ENABLED(CONFIG_CMD_ABOOTIMG)) { |
| unmap_sysmem(vendor_boot_img); |
| unmap_sysmem(boot_img); |
| } |
| break; |
| #endif |
| default: |
| puts("ERROR: unknown image format type!\n"); |
| return 1; |
| } |
| |
| /* If we have a valid setup.bin, we will use that for entry (x86) */ |
| if (images.os.arch == IH_ARCH_I386 || |
| images.os.arch == IH_ARCH_X86_64) { |
| ulong len; |
| |
| ret = boot_get_setup(&images, IH_ARCH_I386, &images.ep, &len); |
| if (ret < 0 && ret != -ENOENT) { |
| puts("Could not find a valid setup.bin for x86\n"); |
| return 1; |
| } |
| /* Kernel entry point is the setup.bin */ |
| } else if (images.legacy_hdr_valid) { |
| images.ep = image_get_ep(&images.legacy_hdr_os_copy); |
| #if CONFIG_IS_ENABLED(FIT) |
| } else if (images.fit_uname_os) { |
| int ret; |
| |
| ret = fit_image_get_entry(images.fit_hdr_os, |
| images.fit_noffset_os, &images.ep); |
| if (ret) { |
| puts("Can't get entry point property!\n"); |
| return 1; |
| } |
| #endif |
| } else if (!ep_found) { |
| puts("Could not find kernel entry point!\n"); |
| return 1; |
| } |
| |
| if (images.os.type == IH_TYPE_KERNEL_NOLOAD) { |
| images.os.load = images.os.image_start; |
| images.ep += images.os.image_start; |
| } |
| |
| images.os.start = map_to_sysmem(os_hdr); |
| |
| return 0; |
| } |
| |
| /** |
| * check_overlap() - Check if an image overlaps the OS |
| * |
| * @name: Name of image to check (used to print error) |
| * @base: Base address of image |
| * @end: End address of image (+1) |
| * @os_start: Start of OS |
| * @os_size: Size of OS in bytes |
| * Return: 0 if OK, -EXDEV if the image overlaps the OS |
| */ |
| static int check_overlap(const char *name, ulong base, ulong end, |
| ulong os_start, ulong os_size) |
| { |
| ulong os_end; |
| |
| if (!base) |
| return 0; |
| os_end = os_start + os_size; |
| |
| if ((base >= os_start && base < os_end) || |
| (end > os_start && end <= os_end) || |
| (base < os_start && end >= os_end)) { |
| printf("ERROR: %s image overlaps OS image (OS=%lx..%lx)\n", |
| name, os_start, os_end); |
| |
| return -EXDEV; |
| } |
| |
| return 0; |
| } |
| |
| int bootm_find_images(ulong img_addr, const char *conf_ramdisk, |
| const char *conf_fdt, ulong start, ulong size) |
| { |
| const char *select = conf_ramdisk; |
| char addr_str[17]; |
| void *buf; |
| int ret; |
| |
| if (IS_ENABLED(CONFIG_ANDROID_BOOT_IMAGE)) { |
| /* Look for an Android boot image */ |
| buf = map_sysmem(images.os.start, 0); |
| if (buf && genimg_get_format(buf) == IMAGE_FORMAT_ANDROID) { |
| strcpy(addr_str, simple_xtoa(img_addr)); |
| select = addr_str; |
| } |
| } |
| |
| if (conf_ramdisk) |
| select = conf_ramdisk; |
| |
| /* find ramdisk */ |
| ret = boot_get_ramdisk(select, &images, IH_INITRD_ARCH, |
| &images.rd_start, &images.rd_end); |
| if (ret) { |
| puts("Ramdisk image is corrupt or invalid\n"); |
| return 1; |
| } |
| |
| /* check if ramdisk overlaps OS image */ |
| if (check_overlap("RD", images.rd_start, images.rd_end, start, size)) |
| return 1; |
| |
| if (CONFIG_IS_ENABLED(OF_LIBFDT)) { |
| buf = map_sysmem(img_addr, 0); |
| |
| /* find flattened device tree */ |
| ret = boot_get_fdt(buf, conf_fdt, IH_ARCH_DEFAULT, &images, |
| &images.ft_addr, &images.ft_len); |
| if (ret) { |
| puts("Could not find a valid device tree\n"); |
| return 1; |
| } |
| |
| /* check if FDT overlaps OS image */ |
| if (check_overlap("FDT", map_to_sysmem(images.ft_addr), |
| images.ft_len, start, size)) |
| return 1; |
| |
| if (IS_ENABLED(CONFIG_CMD_FDT)) |
| set_working_fdt_addr(map_to_sysmem(images.ft_addr)); |
| } |
| |
| #if CONFIG_IS_ENABLED(FIT) |
| if (IS_ENABLED(CONFIG_FPGA)) { |
| /* find bitstreams */ |
| ret = boot_get_fpga(&images); |
| if (ret) { |
| printf("FPGA image is corrupted or invalid\n"); |
| return 1; |
| } |
| } |
| |
| /* find all of the loadables */ |
| ret = boot_get_loadable(&images); |
| if (ret) { |
| printf("Loadable(s) is corrupt or invalid\n"); |
| return 1; |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| static int bootm_find_other(ulong img_addr, const char *conf_ramdisk, |
| const char *conf_fdt) |
| { |
| if ((images.os.type == IH_TYPE_KERNEL || |
| images.os.type == IH_TYPE_KERNEL_NOLOAD || |
| images.os.type == IH_TYPE_MULTI) && |
| (images.os.os == IH_OS_LINUX || images.os.os == IH_OS_VXWORKS || |
| images.os.os == IH_OS_EFI || images.os.os == IH_OS_TEE)) { |
| return bootm_find_images(img_addr, conf_ramdisk, conf_fdt, 0, |
| 0); |
| } |
| |
| return 0; |
| } |
| #endif /* USE_HOSTC */ |
| |
| #if !defined(USE_HOSTCC) || defined(CONFIG_FIT_SIGNATURE) |
| /** |
| * handle_decomp_error() - display a decompression error |
| * |
| * This function tries to produce a useful message. In the case where the |
| * uncompressed size is the same as the available space, we can assume that |
| * the image is too large for the buffer. |
| * |
| * @comp_type: Compression type being used (IH_COMP_...) |
| * @uncomp_size: Number of bytes uncompressed |
| * @buf_size: Number of bytes the decompresion buffer was |
| * @ret: errno error code received from compression library |
| * Return: Appropriate BOOTM_ERR_ error code |
| */ |
| static int handle_decomp_error(int comp_type, size_t uncomp_size, |
| size_t buf_size, int ret) |
| { |
| const char *name = genimg_get_comp_name(comp_type); |
| |
| /* ENOSYS means unimplemented compression type, don't reset. */ |
| if (ret == -ENOSYS) |
| return BOOTM_ERR_UNIMPLEMENTED; |
| |
| if (uncomp_size >= buf_size) |
| printf("Image too large: increase CONFIG_SYS_BOOTM_LEN\n"); |
| else |
| printf("%s: uncompress error %d\n", name, ret); |
| |
| /* |
| * The decompression routines are now safe, so will not write beyond |
| * their bounds. Probably it is not necessary to reset, but maintain |
| * the current behaviour for now. |
| */ |
| printf("Must RESET board to recover\n"); |
| #ifndef USE_HOSTCC |
| bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE); |
| #endif |
| |
| return BOOTM_ERR_RESET; |
| } |
| #endif |
| |
| #ifndef USE_HOSTCC |
| static int bootm_load_os(struct bootm_headers *images, int boot_progress) |
| { |
| struct image_info os = images->os; |
| ulong load = os.load; |
| ulong load_end; |
| ulong blob_start = os.start; |
| ulong blob_end = os.end; |
| ulong image_start = os.image_start; |
| ulong image_len = os.image_len; |
| ulong flush_start = ALIGN_DOWN(load, ARCH_DMA_MINALIGN); |
| bool no_overlap; |
| void *load_buf, *image_buf; |
| int err; |
| |
| /* |
| * For a "noload" compressed kernel we need to allocate a buffer large |
| * enough to decompress in to and use that as the load address now. |
| * Assume that the kernel compression is at most a factor of 4 since |
| * zstd almost achieves that. |
| * Use an alignment of 2MB since this might help arm64 |
| */ |
| if (os.type == IH_TYPE_KERNEL_NOLOAD && os.comp != IH_COMP_NONE) { |
| ulong req_size = ALIGN(image_len * 4, SZ_1M); |
| |
| load = lmb_alloc(&images->lmb, req_size, SZ_2M); |
| if (!load) |
| return 1; |
| os.load = load; |
| images->ep = load; |
| debug("Allocated %lx bytes at %lx for kernel (size %lx) decompression\n", |
| req_size, load, image_len); |
| } |
| |
| load_buf = map_sysmem(load, 0); |
| image_buf = map_sysmem(os.image_start, image_len); |
| err = image_decomp(os.comp, load, os.image_start, os.type, |
| load_buf, image_buf, image_len, |
| CONFIG_SYS_BOOTM_LEN, &load_end); |
| if (err) { |
| err = handle_decomp_error(os.comp, load_end - load, |
| CONFIG_SYS_BOOTM_LEN, err); |
| bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE); |
| return err; |
| } |
| /* We need the decompressed image size in the next steps */ |
| images->os.image_len = load_end - load; |
| |
| flush_cache(flush_start, ALIGN(load_end, ARCH_DMA_MINALIGN) - flush_start); |
| |
| debug(" kernel loaded at 0x%08lx, end = 0x%08lx\n", load, load_end); |
| bootstage_mark(BOOTSTAGE_ID_KERNEL_LOADED); |
| |
| no_overlap = (os.comp == IH_COMP_NONE && load == image_start); |
| |
| if (!no_overlap && load < blob_end && load_end > blob_start) { |
| debug("images.os.start = 0x%lX, images.os.end = 0x%lx\n", |
| blob_start, blob_end); |
| debug("images.os.load = 0x%lx, load_end = 0x%lx\n", load, |
| load_end); |
| |
| /* Check what type of image this is. */ |
| if (images->legacy_hdr_valid) { |
| if (image_get_type(&images->legacy_hdr_os_copy) |
| == IH_TYPE_MULTI) |
| puts("WARNING: legacy format multi component image overwritten\n"); |
| return BOOTM_ERR_OVERLAP; |
| } else { |
| puts("ERROR: new format image overwritten - must RESET the board to recover\n"); |
| bootstage_error(BOOTSTAGE_ID_OVERWRITTEN); |
| return BOOTM_ERR_RESET; |
| } |
| } |
| |
| if (IS_ENABLED(CONFIG_CMD_BOOTI) && images->os.arch == IH_ARCH_ARM64 && |
| images->os.os == IH_OS_LINUX) { |
| ulong relocated_addr; |
| ulong image_size; |
| int ret; |
| |
| ret = booti_setup(load, &relocated_addr, &image_size, false); |
| if (ret) { |
| printf("Failed to prep arm64 kernel (err=%d)\n", ret); |
| return BOOTM_ERR_RESET; |
| } |
| |
| /* Handle BOOTM_STATE_LOADOS */ |
| if (relocated_addr != load) { |
| printf("Moving Image from 0x%lx to 0x%lx, end=%lx\n", |
| load, relocated_addr, |
| relocated_addr + image_size); |
| memmove((void *)relocated_addr, load_buf, image_size); |
| } |
| |
| images->ep = relocated_addr; |
| images->os.start = relocated_addr; |
| images->os.end = relocated_addr + image_size; |
| } |
| |
| lmb_reserve(&images->lmb, images->os.load, (load_end - |
| images->os.load)); |
| return 0; |
| } |
| |
| /** |
| * bootm_disable_interrupts() - Disable interrupts in preparation for load/boot |
| * |
| * Return: interrupt flag (0 if interrupts were disabled, non-zero if they were |
| * enabled) |
| */ |
| ulong bootm_disable_interrupts(void) |
| { |
| ulong iflag; |
| |
| /* |
| * We have reached the point of no return: we are going to |
| * overwrite all exception vector code, so we cannot easily |
| * recover from any failures any more... |
| */ |
| iflag = disable_interrupts(); |
| #ifdef CONFIG_NETCONSOLE |
| /* Stop the ethernet stack if NetConsole could have left it up */ |
| eth_halt(); |
| #endif |
| |
| #if defined(CONFIG_CMD_USB) |
| /* |
| * turn off USB to prevent the host controller from writing to the |
| * SDRAM while Linux is booting. This could happen (at least for OHCI |
| * controller), because the HCCA (Host Controller Communication Area) |
| * lies within the SDRAM and the host controller writes continously to |
| * this area (as busmaster!). The HccaFrameNumber is for example |
| * updated every 1 ms within the HCCA structure in SDRAM! For more |
| * details see the OpenHCI specification. |
| */ |
| usb_stop(); |
| #endif |
| return iflag; |
| } |
| |
| #define CONSOLE_ARG "console=" |
| #define NULL_CONSOLE (CONSOLE_ARG "ttynull") |
| #define CONSOLE_ARG_SIZE sizeof(NULL_CONSOLE) |
| |
| /** |
| * fixup_silent_linux() - Handle silencing the linux boot if required |
| * |
| * This uses the silent_linux envvar to control whether to add/set a "console=" |
| * parameter to the command line |
| * |
| * @buf: Buffer containing the string to process |
| * @maxlen: Maximum length of buffer |
| * Return: 0 if OK, -ENOSPC if @maxlen is too small |
| */ |
| static int fixup_silent_linux(char *buf, int maxlen) |
| { |
| int want_silent; |
| char *cmdline; |
| int size; |
| |
| /* |
| * Move the input string to the end of buffer. The output string will be |
| * built up at the start. |
| */ |
| size = strlen(buf) + 1; |
| if (size * 2 > maxlen) |
| return -ENOSPC; |
| cmdline = buf + maxlen - size; |
| memmove(cmdline, buf, size); |
| /* |
| * Only fix cmdline when requested. The environment variable can be: |
| * |
| * no - we never fixup |
| * yes - we always fixup |
| * unset - we rely on the console silent flag |
| */ |
| want_silent = env_get_yesno("silent_linux"); |
| if (want_silent == 0) |
| return 0; |
| else if (want_silent == -1 && !(gd->flags & GD_FLG_SILENT)) |
| return 0; |
| |
| debug("before silent fix-up: %s\n", cmdline); |
| if (*cmdline) { |
| char *start = strstr(cmdline, CONSOLE_ARG); |
| |
| /* Check space for maximum possible new command line */ |
| if (size + CONSOLE_ARG_SIZE > maxlen) |
| return -ENOSPC; |
| |
| if (start) { |
| char *end = strchr(start, ' '); |
| int start_bytes; |
| |
| start_bytes = start - cmdline; |
| strncpy(buf, cmdline, start_bytes); |
| strncpy(buf + start_bytes, NULL_CONSOLE, CONSOLE_ARG_SIZE); |
| if (end) |
| strcpy(buf + start_bytes + CONSOLE_ARG_SIZE - 1, end); |
| else |
| buf[start_bytes + CONSOLE_ARG_SIZE] = '\0'; |
| } else { |
| sprintf(buf, "%s %s", cmdline, NULL_CONSOLE); |
| } |
| if (buf + strlen(buf) >= cmdline) |
| return -ENOSPC; |
| } else { |
| if (maxlen < CONSOLE_ARG_SIZE) |
| return -ENOSPC; |
| strcpy(buf, NULL_CONSOLE); |
| } |
| debug("after silent fix-up: %s\n", buf); |
| |
| return 0; |
| } |
| |
| /** |
| * process_subst() - Handle substitution of ${...} fields in the environment |
| * |
| * Handle variable substitution in the provided buffer |
| * |
| * @buf: Buffer containing the string to process |
| * @maxlen: Maximum length of buffer |
| * Return: 0 if OK, -ENOSPC if @maxlen is too small |
| */ |
| static int process_subst(char *buf, int maxlen) |
| { |
| char *cmdline; |
| int size; |
| int ret; |
| |
| /* Move to end of buffer */ |
| size = strlen(buf) + 1; |
| cmdline = buf + maxlen - size; |
| if (buf + size > cmdline) |
| return -ENOSPC; |
| memmove(cmdline, buf, size); |
| |
| ret = cli_simple_process_macros(cmdline, buf, cmdline - buf); |
| |
| return ret; |
| } |
| |
| int bootm_process_cmdline(char *buf, int maxlen, int flags) |
| { |
| int ret; |
| |
| /* Check config first to enable compiler to eliminate code */ |
| if (IS_ENABLED(CONFIG_SILENT_CONSOLE) && |
| !IS_ENABLED(CONFIG_SILENT_U_BOOT_ONLY) && |
| (flags & BOOTM_CL_SILENT)) { |
| ret = fixup_silent_linux(buf, maxlen); |
| if (ret) |
| return log_msg_ret("silent", ret); |
| } |
| if (IS_ENABLED(CONFIG_BOOTARGS_SUBST) && IS_ENABLED(CONFIG_CMDLINE) && |
| (flags & BOOTM_CL_SUBST)) { |
| ret = process_subst(buf, maxlen); |
| if (ret) |
| return log_msg_ret("subst", ret); |
| } |
| |
| return 0; |
| } |
| |
| int bootm_process_cmdline_env(int flags) |
| { |
| const int maxlen = MAX_CMDLINE_SIZE; |
| bool do_silent; |
| const char *env; |
| char *buf; |
| int ret; |
| |
| /* First check if any action is needed */ |
| do_silent = IS_ENABLED(CONFIG_SILENT_CONSOLE) && |
| !IS_ENABLED(CONFIG_SILENT_U_BOOT_ONLY) && (flags & BOOTM_CL_SILENT); |
| if (!do_silent && !IS_ENABLED(CONFIG_BOOTARGS_SUBST)) |
| return 0; |
| |
| env = env_get("bootargs"); |
| if (env && strlen(env) >= maxlen) |
| return -E2BIG; |
| buf = malloc(maxlen); |
| if (!buf) |
| return -ENOMEM; |
| if (env) |
| strcpy(buf, env); |
| else |
| *buf = '\0'; |
| ret = bootm_process_cmdline(buf, maxlen, flags); |
| if (!ret) { |
| ret = env_set("bootargs", buf); |
| |
| /* |
| * If buf is "" and bootargs does not exist, this will produce |
| * an error trying to delete bootargs. Ignore it |
| */ |
| if (ret == -ENOENT) |
| ret = 0; |
| } |
| free(buf); |
| if (ret) |
| return log_msg_ret("env", ret); |
| |
| return 0; |
| } |
| |
| int bootm_measure(struct bootm_headers *images) |
| { |
| int ret = 0; |
| |
| /* Skip measurement if EFI is going to do it */ |
| if (images->os.os == IH_OS_EFI && |
| IS_ENABLED(CONFIG_EFI_TCG2_PROTOCOL) && |
| IS_ENABLED(CONFIG_BOOTM_EFI)) |
| return ret; |
| |
| if (IS_ENABLED(CONFIG_MEASURED_BOOT)) { |
| struct tcg2_event_log elog; |
| struct udevice *dev; |
| void *initrd_buf; |
| void *image_buf; |
| const char *s; |
| u32 rd_len; |
| bool ign; |
| |
| elog.log_size = 0; |
| ign = IS_ENABLED(CONFIG_MEASURE_IGNORE_LOG); |
| ret = tcg2_measurement_init(&dev, &elog, ign); |
| if (ret) |
| return ret; |
| |
| image_buf = map_sysmem(images->os.image_start, |
| images->os.image_len); |
| ret = tcg2_measure_data(dev, &elog, 8, images->os.image_len, |
| image_buf, EV_COMPACT_HASH, |
| strlen("linux") + 1, (u8 *)"linux"); |
| if (ret) |
| goto unmap_image; |
| |
| rd_len = images->rd_end - images->rd_start; |
| initrd_buf = map_sysmem(images->rd_start, rd_len); |
| ret = tcg2_measure_data(dev, &elog, 9, rd_len, initrd_buf, |
| EV_COMPACT_HASH, strlen("initrd") + 1, |
| (u8 *)"initrd"); |
| if (ret) |
| goto unmap_initrd; |
| |
| if (IS_ENABLED(CONFIG_MEASURE_DEVICETREE)) { |
| ret = tcg2_measure_data(dev, &elog, 1, images->ft_len, |
| (u8 *)images->ft_addr, |
| EV_TABLE_OF_DEVICES, |
| strlen("dts") + 1, |
| (u8 *)"dts"); |
| if (ret) |
| goto unmap_initrd; |
| } |
| |
| s = env_get("bootargs"); |
| if (!s) |
| s = ""; |
| ret = tcg2_measure_data(dev, &elog, 1, strlen(s) + 1, (u8 *)s, |
| EV_PLATFORM_CONFIG_FLAGS, |
| strlen(s) + 1, (u8 *)s); |
| |
| unmap_initrd: |
| unmap_sysmem(initrd_buf); |
| |
| unmap_image: |
| unmap_sysmem(image_buf); |
| tcg2_measurement_term(dev, &elog, ret != 0); |
| } |
| |
| return ret; |
| } |
| |
| int bootm_run_states(struct bootm_info *bmi, int states) |
| { |
| struct bootm_headers *images = bmi->images; |
| boot_os_fn *boot_fn; |
| ulong iflag = 0; |
| int ret = 0, need_boot_fn; |
| |
| images->state |= states; |
| |
| /* |
| * Work through the states and see how far we get. We stop on |
| * any error. |
| */ |
| if (states & BOOTM_STATE_START) |
| ret = bootm_start(); |
| |
| if (!ret && (states & BOOTM_STATE_PRE_LOAD)) |
| ret = bootm_pre_load(bmi->addr_img); |
| |
| if (!ret && (states & BOOTM_STATE_FINDOS)) |
| ret = bootm_find_os(bmi->cmd_name, bmi->addr_img); |
| |
| if (!ret && (states & BOOTM_STATE_FINDOTHER)) { |
| ulong img_addr; |
| |
| img_addr = bmi->addr_img ? hextoul(bmi->addr_img, NULL) |
| : image_load_addr; |
| ret = bootm_find_other(img_addr, bmi->conf_ramdisk, |
| bmi->conf_fdt); |
| } |
| |
| if (IS_ENABLED(CONFIG_MEASURED_BOOT) && !ret && |
| (states & BOOTM_STATE_MEASURE)) |
| bootm_measure(images); |
| |
| /* Load the OS */ |
| if (!ret && (states & BOOTM_STATE_LOADOS)) { |
| iflag = bootm_disable_interrupts(); |
| ret = bootm_load_os(images, 0); |
| if (ret && ret != BOOTM_ERR_OVERLAP) |
| goto err; |
| else if (ret == BOOTM_ERR_OVERLAP) |
| ret = 0; |
| } |
| |
| /* Relocate the ramdisk */ |
| #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH |
| if (!ret && (states & BOOTM_STATE_RAMDISK)) { |
| ulong rd_len = images->rd_end - images->rd_start; |
| |
| ret = boot_ramdisk_high(&images->lmb, images->rd_start, |
| rd_len, &images->initrd_start, &images->initrd_end); |
| if (!ret) { |
| env_set_hex("initrd_start", images->initrd_start); |
| env_set_hex("initrd_end", images->initrd_end); |
| } |
| } |
| #endif |
| #if CONFIG_IS_ENABLED(OF_LIBFDT) && defined(CONFIG_LMB) |
| if (!ret && (states & BOOTM_STATE_FDT)) { |
| boot_fdt_add_mem_rsv_regions(&images->lmb, images->ft_addr); |
| ret = boot_relocate_fdt(&images->lmb, &images->ft_addr, |
| &images->ft_len); |
| } |
| #endif |
| |
| /* From now on, we need the OS boot function */ |
| if (ret) |
| return ret; |
| boot_fn = bootm_os_get_boot_func(images->os.os); |
| need_boot_fn = states & (BOOTM_STATE_OS_CMDLINE | |
| BOOTM_STATE_OS_BD_T | BOOTM_STATE_OS_PREP | |
| BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO); |
| if (boot_fn == NULL && need_boot_fn) { |
| if (iflag) |
| enable_interrupts(); |
| printf("ERROR: booting os '%s' (%d) is not supported\n", |
| genimg_get_os_name(images->os.os), images->os.os); |
| bootstage_error(BOOTSTAGE_ID_CHECK_BOOT_OS); |
| return 1; |
| } |
| |
| /* Call various other states that are not generally used */ |
| if (!ret && (states & BOOTM_STATE_OS_CMDLINE)) |
| ret = boot_fn(BOOTM_STATE_OS_CMDLINE, bmi); |
| if (!ret && (states & BOOTM_STATE_OS_BD_T)) |
| ret = boot_fn(BOOTM_STATE_OS_BD_T, bmi); |
| if (!ret && (states & BOOTM_STATE_OS_PREP)) { |
| int flags = 0; |
| /* For Linux OS do all substitutions at console processing */ |
| if (images->os.os == IH_OS_LINUX) |
| flags = BOOTM_CL_ALL; |
| ret = bootm_process_cmdline_env(flags); |
| if (ret) { |
| printf("Cmdline setup failed (err=%d)\n", ret); |
| ret = CMD_RET_FAILURE; |
| goto err; |
| } |
| ret = boot_fn(BOOTM_STATE_OS_PREP, bmi); |
| } |
| |
| #ifdef CONFIG_TRACE |
| /* Pretend to run the OS, then run a user command */ |
| if (!ret && (states & BOOTM_STATE_OS_FAKE_GO)) { |
| char *cmd_list = env_get("fakegocmd"); |
| |
| ret = boot_selected_os(BOOTM_STATE_OS_FAKE_GO, bmi, boot_fn); |
| if (!ret && cmd_list) |
| ret = run_command_list(cmd_list, -1, 0); |
| } |
| #endif |
| |
| /* Check for unsupported subcommand. */ |
| if (ret) { |
| printf("subcommand failed (err=%d)\n", ret); |
| return ret; |
| } |
| |
| /* Now run the OS! We hope this doesn't return */ |
| if (!ret && (states & BOOTM_STATE_OS_GO)) |
| ret = boot_selected_os(BOOTM_STATE_OS_GO, bmi, boot_fn); |
| |
| /* Deal with any fallout */ |
| err: |
| if (iflag) |
| enable_interrupts(); |
| |
| if (ret == BOOTM_ERR_UNIMPLEMENTED) { |
| bootstage_error(BOOTSTAGE_ID_DECOMP_UNIMPL); |
| } else if (ret == BOOTM_ERR_RESET) { |
| printf("Resetting the board...\n"); |
| reset_cpu(); |
| } |
| |
| return ret; |
| } |
| |
| int boot_run(struct bootm_info *bmi, const char *cmd, int extra_states) |
| { |
| int states; |
| |
| bmi->cmd_name = cmd; |
| states = BOOTM_STATE_MEASURE | BOOTM_STATE_OS_PREP | |
| BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO; |
| if (IS_ENABLED(CONFIG_SYS_BOOT_RAMDISK_HIGH)) |
| states |= BOOTM_STATE_RAMDISK; |
| states |= extra_states; |
| |
| return bootm_run_states(bmi, states); |
| } |
| |
| int bootm_run(struct bootm_info *bmi) |
| { |
| return boot_run(bmi, "bootm", BOOTM_STATE_START | BOOTM_STATE_FINDOS | |
| BOOTM_STATE_PRE_LOAD | BOOTM_STATE_FINDOTHER | |
| BOOTM_STATE_LOADOS); |
| } |
| |
| int bootz_run(struct bootm_info *bmi) |
| { |
| return boot_run(bmi, "bootz", 0); |
| } |
| |
| int booti_run(struct bootm_info *bmi) |
| { |
| return boot_run(bmi, "booti", 0); |
| } |
| |
| int bootm_boot_start(ulong addr, const char *cmdline) |
| { |
| char addr_str[30]; |
| struct bootm_info bmi; |
| int states; |
| int ret; |
| |
| states = BOOTM_STATE_START | BOOTM_STATE_FINDOS | BOOTM_STATE_PRE_LOAD | |
| BOOTM_STATE_FINDOTHER | BOOTM_STATE_LOADOS | |
| BOOTM_STATE_OS_PREP | BOOTM_STATE_OS_FAKE_GO | |
| BOOTM_STATE_OS_GO; |
| if (IS_ENABLED(CONFIG_SYS_BOOT_RAMDISK_HIGH)) |
| states |= BOOTM_STATE_RAMDISK; |
| if (IS_ENABLED(CONFIG_PPC) || IS_ENABLED(CONFIG_MIPS)) |
| states |= BOOTM_STATE_OS_CMDLINE; |
| images.state |= states; |
| |
| snprintf(addr_str, sizeof(addr_str), "%lx", addr); |
| |
| ret = env_set("bootargs", cmdline); |
| if (ret) { |
| printf("Failed to set cmdline\n"); |
| return ret; |
| } |
| bootm_init(&bmi); |
| bmi.addr_img = addr_str; |
| bmi.cmd_name = "bootm"; |
| ret = bootm_run_states(&bmi, states); |
| |
| return ret; |
| } |
| |
| void bootm_init(struct bootm_info *bmi) |
| { |
| memset(bmi, '\0', sizeof(struct bootm_info)); |
| bmi->boot_progress = true; |
| if (IS_ENABLED(CONFIG_CMD_BOOTM)) |
| bmi->images = &images; |
| } |
| |
| /** |
| * switch_to_non_secure_mode() - switch to non-secure mode |
| * |
| * This routine is overridden by architectures requiring this feature. |
| */ |
| void __weak switch_to_non_secure_mode(void) |
| { |
| } |
| |
| #else /* USE_HOSTCC */ |
| |
| #if defined(CONFIG_FIT_SIGNATURE) |
| static int bootm_host_load_image(const void *fit, int req_image_type, |
| int cfg_noffset) |
| { |
| const char *fit_uname_config = NULL; |
| ulong data, len; |
| struct bootm_headers images; |
| int noffset; |
| ulong load_end, buf_size; |
| uint8_t image_type; |
| uint8_t image_comp; |
| void *load_buf; |
| int ret; |
| |
| fit_uname_config = fdt_get_name(fit, cfg_noffset, NULL); |
| memset(&images, '\0', sizeof(images)); |
| images.verify = 1; |
| noffset = fit_image_load(&images, (ulong)fit, |
| NULL, &fit_uname_config, |
| IH_ARCH_DEFAULT, req_image_type, -1, |
| FIT_LOAD_IGNORED, &data, &len); |
| if (noffset < 0) |
| return noffset; |
| if (fit_image_get_type(fit, noffset, &image_type)) { |
| puts("Can't get image type!\n"); |
| return -EINVAL; |
| } |
| |
| if (fit_image_get_comp(fit, noffset, &image_comp)) |
| image_comp = IH_COMP_NONE; |
| |
| /* Allow the image to expand by a factor of 4, should be safe */ |
| buf_size = (1 << 20) + len * 4; |
| load_buf = malloc(buf_size); |
| ret = image_decomp(image_comp, 0, data, image_type, load_buf, |
| (void *)data, len, buf_size, &load_end); |
| free(load_buf); |
| |
| if (ret) { |
| ret = handle_decomp_error(image_comp, load_end - 0, buf_size, ret); |
| if (ret != BOOTM_ERR_UNIMPLEMENTED) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| int bootm_host_load_images(const void *fit, int cfg_noffset) |
| { |
| static uint8_t image_types[] = { |
| IH_TYPE_KERNEL, |
| IH_TYPE_FLATDT, |
| IH_TYPE_RAMDISK, |
| }; |
| int err = 0; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(image_types); i++) { |
| int ret; |
| |
| ret = bootm_host_load_image(fit, image_types[i], cfg_noffset); |
| if (!err && ret && ret != -ENOENT) |
| err = ret; |
| } |
| |
| /* Return the first error we found */ |
| return err; |
| } |
| #endif |
| |
| #endif /* ndef USE_HOSTCC */ |