blob: c2ebee948707c684d5ede5f770b16f19e4747abe [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* NAND boot for Freescale Integrated Flash Controller, NAND FCM
*
* Copyright 2011 Freescale Semiconductor, Inc.
* Author: Dipen Dudhat <dipen.dudhat@freescale.com>
*/
#include <config.h>
#include <cpu_func.h>
#include <asm/io.h>
#include <fsl_ifc.h>
#include <part.h>
#include <linux/mtd/rawnand.h>
#ifdef CONFIG_CHAIN_OF_TRUST
#include <fsl_validate.h>
#endif
static inline int is_blank(uchar *addr, int page_size)
{
int i;
for (i = 0; i < page_size; i++) {
if (__raw_readb(&addr[i]) != 0xff)
return 0;
}
/*
* For the SPL, don't worry about uncorrectable errors
* where the main area is all FFs but shouldn't be.
*/
return 1;
}
/* returns nonzero if entire page is blank */
static inline int check_read_ecc(uchar *buf, u32 *eccstat,
unsigned int bufnum, int page_size)
{
u32 reg = eccstat[bufnum / 4];
int errors = (reg >> ((3 - bufnum % 4) * 8)) & 0xf;
if (errors == 0xf) { /* uncorrectable */
/* Blank pages fail hw ECC checks */
if (is_blank(buf, page_size))
return 1;
puts("ecc error\n");
for (;;)
;
}
return 0;
}
static inline struct fsl_ifc_runtime *runtime_regs_address(void)
{
struct fsl_ifc regs = {(void *)CFG_SYS_IFC_ADDR, NULL};
int ver = 0;
ver = ifc_in32(&regs.gregs->ifc_rev);
if (ver >= FSL_IFC_V2_0_0)
regs.rregs = (void *)CFG_SYS_IFC_ADDR + IFC_RREGS_64KOFFSET;
else
regs.rregs = (void *)CFG_SYS_IFC_ADDR + IFC_RREGS_4KOFFSET;
return regs.rregs;
}
static inline void nand_wait(uchar *buf, int bufnum, int page_size)
{
struct fsl_ifc_runtime *ifc = runtime_regs_address();
u32 status;
u32 eccstat[8];
int bufperpage = page_size / 512;
int bufnum_end, i;
bufnum *= bufperpage;
bufnum_end = bufnum + bufperpage - 1;
do {
status = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
} while (!(status & IFC_NAND_EVTER_STAT_OPC));
if (status & IFC_NAND_EVTER_STAT_FTOER) {
puts("flash time out error\n");
for (;;)
;
}
for (i = bufnum / 4; i <= bufnum_end / 4; i++)
eccstat[i] = ifc_in32(&ifc->ifc_nand.nand_eccstat[i]);
for (i = bufnum; i <= bufnum_end; i++) {
if (check_read_ecc(buf, eccstat, i, page_size))
break;
}
ifc_out32(&ifc->ifc_nand.nand_evter_stat, status);
}
static inline int bad_block(uchar *marker, int port_size)
{
if (port_size == 8)
return __raw_readb(marker) != 0xff;
else
return __raw_readw((u16 *)marker) != 0xffff;
}
static int saved_page_size;
int nand_spl_load_image(uint32_t offs, unsigned int uboot_size, void *vdst)
{
struct fsl_ifc_fcm *gregs = (void *)CFG_SYS_IFC_ADDR;
struct fsl_ifc_runtime *ifc = NULL;
uchar *buf = (uchar *)CFG_SYS_NAND_BASE;
int page_size;
int port_size;
int pages_per_blk;
int blk_size;
int bad_marker = 0;
int bufnum_mask, bufnum, ver = 0;
int csor, cspr;
int pos = 0;
int j = 0;
int sram_addr;
int pg_no;
uchar *dst = vdst;
ifc = runtime_regs_address();
/* Get NAND Flash configuration */
csor = CFG_SYS_NAND_CSOR;
cspr = CFG_SYS_NAND_CSPR;
port_size = (cspr & CSPR_PORT_SIZE_16) ? 16 : 8;
if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_8K) {
page_size = 8192;
bufnum_mask = 0x0;
} else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_4K) {
page_size = 4096;
bufnum_mask = 0x1;
} else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_2K) {
page_size = 2048;
bufnum_mask = 0x3;
} else {
page_size = 512;
bufnum_mask = 0xf;
if (port_size == 8)
bad_marker = 5;
}
saved_page_size = page_size;
ver = ifc_in32(&gregs->ifc_rev);
if (ver >= FSL_IFC_V2_0_0)
bufnum_mask = (bufnum_mask * 2) + 1;
pages_per_blk =
32 << ((csor & CSOR_NAND_PB_MASK) >> CSOR_NAND_PB_SHIFT);
blk_size = pages_per_blk * page_size;
/* Open Full SRAM mapping for spare are access */
ifc_out32(&ifc->ifc_nand.ncfgr, 0x0);
/* Clear Boot events */
ifc_out32(&ifc->ifc_nand.nand_evter_stat, 0xffffffff);
/* Program FIR/FCR for Large/Small page */
if (page_size > 512) {
ifc_out32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
(IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
(IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP4_SHIFT));
ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
ifc_out32(&ifc->ifc_nand.nand_fcr0,
(NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
(NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
} else {
ifc_out32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
(IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP3_SHIFT));
ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
ifc_out32(&ifc->ifc_nand.nand_fcr0,
NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
}
/* Program FBCR = 0 for full page read */
ifc_out32(&ifc->ifc_nand.nand_fbcr, 0);
/* Read and copy u-boot on SDRAM from NAND device, In parallel
* check for Bad block if found skip it and read continue to
* next Block
*/
while (pos < uboot_size) {
int i = 0;
do {
pg_no = offs / page_size;
bufnum = pg_no & bufnum_mask;
sram_addr = bufnum * page_size * 2;
ifc_out32(&ifc->ifc_nand.row0, pg_no);
ifc_out32(&ifc->ifc_nand.col0, 0);
/* start read */
ifc_out32(&ifc->ifc_nand.nandseq_strt,
IFC_NAND_SEQ_STRT_FIR_STRT);
/* wait for read to complete */
nand_wait(&buf[sram_addr], bufnum, page_size);
/*
* If either of the first two pages are marked bad,
* continue to the next block.
*/
if (i++ < 2 &&
bad_block(&buf[sram_addr + page_size + bad_marker],
port_size)) {
puts("skipping\n");
offs = (offs + blk_size) & ~(blk_size - 1);
pos &= ~(blk_size - 1);
break;
}
for (j = 0; j < page_size; j++)
dst[pos + j] = __raw_readb(&buf[sram_addr + j]);
pos += page_size;
offs += page_size;
} while ((offs & (blk_size - 1)) && (pos < uboot_size));
}
return 0;
}
/*
* Main entrypoint for NAND Boot. It's necessary that SDRAM is already
* configured and available since this code loads the main U-Boot image
* from NAND into SDRAM and starts from there.
*/
void nand_boot(void)
{
__attribute__((noreturn)) void (*uboot)(void);
/*
* Load U-Boot image from NAND into RAM
*/
nand_spl_load_image(CONFIG_SYS_NAND_U_BOOT_OFFS,
CFG_SYS_NAND_U_BOOT_SIZE,
(uchar *)CFG_SYS_NAND_U_BOOT_DST);
#ifdef CONFIG_NAND_ENV_DST
nand_spl_load_image(CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
(uchar *)CONFIG_NAND_ENV_DST);
#ifdef CONFIG_ENV_OFFSET_REDUND
nand_spl_load_image(CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
(uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
#endif
#endif
/*
* Jump to U-Boot image
*/
#ifdef CONFIG_SPL_FLUSH_IMAGE
/*
* Clean d-cache and invalidate i-cache, to
* make sure that no stale data is executed.
*/
flush_cache(CFG_SYS_NAND_U_BOOT_DST, CFG_SYS_NAND_U_BOOT_SIZE);
#endif
#ifdef CONFIG_CHAIN_OF_TRUST
/*
* U-Boot header is appended at end of U-Boot image, so
* calculate U-Boot header address using U-Boot header size.
*/
#define FSL_U_BOOT_HDR_ADDR \
((CFG_SYS_NAND_U_BOOT_START + \
CFG_SYS_NAND_U_BOOT_SIZE) - \
FSL_U_BOOT_HDR_SIZE)
spl_validate_uboot(FSL_U_BOOT_HDR_ADDR,
CFG_SYS_NAND_U_BOOT_START);
/*
* In case of failure in validation, spl_validate_uboot would
* not return back in case of Production environment with ITS=1.
* Thus U-Boot will not start.
* In Development environment (ITS=0 and SB_EN=1), the function
* may return back in case of non-fatal failures.
*/
#endif
uboot = (void *)CFG_SYS_NAND_U_BOOT_START;
uboot();
}
#ifndef CONFIG_TPL_NAND_INIT
void nand_init(void)
{
}
unsigned int nand_page_size(void)
{
return saved_page_size;
}
void nand_deselect(void)
{
}
#endif