blob: 57ff4ddf6bac6471ff05c8ca7c0351f3008ddba5 [file] [log] [blame]
/*
* (C) Copyright 2000-2002
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <watchdog.h>
#include <mpc8xx.h>
#include <mpc8xx_irq.h>
#include <asm/processor.h>
#include <commproc.h>
/****************************************************************************/
unsigned decrementer_count; /* count value for 1e6/HZ microseconds */
/****************************************************************************/
/*
* CPM interrupt vector functions.
*/
struct cpm_action {
interrupt_handler_t *handler;
void *arg;
};
static struct cpm_action cpm_vecs[CPMVEC_NR];
static void cpm_interrupt_init (void);
static void cpm_interrupt(int irq, struct pt_regs * regs);
/****************************************************************************/
static __inline__ unsigned long get_msr(void)
{
unsigned long msr;
asm volatile("mfmsr %0" : "=r" (msr) :);
return msr;
}
static __inline__ void set_msr(unsigned long msr)
{
asm volatile("mtmsr %0" : : "r" (msr));
}
static __inline__ unsigned long get_dec(void)
{
unsigned long val;
asm volatile("mfdec %0" : "=r" (val) :);
return val;
}
static __inline__ void set_dec(unsigned long val)
{
asm volatile("mtdec %0" : : "r" (val));
}
void enable_interrupts (void)
{
set_msr (get_msr() | MSR_EE);
}
/* returns flag if MSR_EE was set before */
int disable_interrupts (void)
{
ulong msr = get_msr();
set_msr (msr & ~MSR_EE);
return ((msr & MSR_EE) != 0);
}
/****************************************************************************/
int interrupt_init(void)
{
volatile immap_t *immr = (immap_t *)CFG_IMMR;
decrementer_count = get_tbclk() / CFG_HZ;
cpm_interrupt_init();
/* disable all interrupts except for the CPM interrupt */
immr->im_siu_conf.sc_simask = 1 << (31-CPM_INTERRUPT);
set_dec (decrementer_count);
set_msr (get_msr() | MSR_EE);
return (0);
}
/****************************************************************************/
/*
* Handle external interrupts
*/
void external_interrupt(struct pt_regs *regs)
{
volatile immap_t *immr = (immap_t *)CFG_IMMR;
int irq;
ulong simask, newmask;
ulong vec, v_bit;
/*
* read the SIVEC register and shift the bits down
* to get the irq number
*/
vec = immr->im_siu_conf.sc_sivec;
irq = vec >> 26;
v_bit = 0x80000000UL >> irq;
/*
* Read Interrupt Mask Register and Mask Interrupts
*/
simask = immr->im_siu_conf.sc_simask;
newmask = simask & (~(0xFFFF0000 >> irq));
immr->im_siu_conf.sc_simask = newmask;
if (!(irq & 0x1)) { /* External Interrupt ? */
ulong siel;
/*
* Read Interrupt Edge/Level Register
*/
siel = immr->im_siu_conf.sc_siel;
if (siel & v_bit) { /* edge triggered interrupt ? */
/*
* Rewrite SIPEND Register to clear interrupt
*/
immr->im_siu_conf.sc_sipend = v_bit;
}
}
switch (irq) {
case CPM_INTERRUPT:
cpm_interrupt (irq, regs);
break;
default:
printf ("\nBogus External Interrupt IRQ %d Vector %ld\n",
irq, vec);
/* turn off the bogus interrupt to avoid it from now */
simask &= ~v_bit;
break;
}
/*
* Re-Enable old Interrupt Mask
*/
immr->im_siu_conf.sc_simask = simask;
}
/****************************************************************************/
/*
* CPM interrupt handler
*/
static void
cpm_interrupt(int irq, struct pt_regs * regs)
{
volatile immap_t *immr = (immap_t *)CFG_IMMR;
uint vec;
/*
* Get the vector by setting the ACK bit
* and then reading the register.
*/
immr->im_cpic.cpic_civr = 1;
vec = immr->im_cpic.cpic_civr;
vec >>= 11;
if (cpm_vecs[vec].handler != NULL) {
(*cpm_vecs[vec].handler)(cpm_vecs[vec].arg);
} else {
immr->im_cpic.cpic_cimr &= ~(1 << vec);
printf ("Masking bogus CPM interrupt vector 0x%x\n", vec);
}
/*
* After servicing the interrupt, we have to remove the status indicator.
*/
immr->im_cpic.cpic_cisr |= (1 << vec);
}
/*
* The CPM can generate the error interrupt when there is a race
* condition between generating and masking interrupts. All we have
* to do is ACK it and return. This is a no-op function so we don't
* need any special tests in the interrupt handler.
*/
static void
cpm_error_interrupt (void *dummy)
{
}
/****************************************************************************/
/*
* Install and free a CPM interrupt handler.
*/
void
irq_install_handler(int vec, interrupt_handler_t *handler, void *arg)
{
volatile immap_t *immr = (immap_t *)CFG_IMMR;
if (cpm_vecs[vec].handler != NULL) {
printf ("CPM interrupt 0x%x replacing 0x%x\n",
(uint)handler, (uint)cpm_vecs[vec].handler);
}
cpm_vecs[vec].handler = handler;
cpm_vecs[vec].arg = arg;
immr->im_cpic.cpic_cimr |= (1 << vec);
#if 0
printf ("Install CPM interrupt for vector %d ==> %p\n", vec, handler);
#endif
}
void
irq_free_handler(int vec)
{
volatile immap_t *immr = (immap_t *)CFG_IMMR;
#if 0
printf ("Free CPM interrupt for vector %d ==> %p\n",
vec, cpm_vecs[vec].handler);
#endif
immr->im_cpic.cpic_cimr &= ~(1 << vec);
cpm_vecs[vec].handler = NULL;
cpm_vecs[vec].arg = NULL;
}
/****************************************************************************/
static void
cpm_interrupt_init (void)
{
volatile immap_t *immr = (immap_t *)CFG_IMMR;
/*
* Initialize the CPM interrupt controller.
*/
immr->im_cpic.cpic_cicr =
( CICR_SCD_SCC4 |
CICR_SCC_SCC3 |
CICR_SCB_SCC2 |
CICR_SCA_SCC1 ) | ((CPM_INTERRUPT/2) << 13) | CICR_HP_MASK;
immr->im_cpic.cpic_cimr = 0;
/*
* Install the error handler.
*/
irq_install_handler(CPMVEC_ERROR, cpm_error_interrupt, NULL);
immr->im_cpic.cpic_cicr |= CICR_IEN;
}
/****************************************************************************/
volatile ulong timestamp = 0;
/*
* timer_interrupt - gets called when the decrementer overflows,
* with interrupts disabled.
* Trivial implementation - no need to be really accurate.
*/
void timer_interrupt(struct pt_regs *regs)
{
volatile immap_t *immr = (immap_t *)CFG_IMMR;
#ifdef CONFIG_STATUS_LED
extern void status_led_tick (ulong);
#endif
#if 0
printf ("*** Timer Interrupt *** ");
#endif
/* Reset Timer Expired and Timers Interrupt Status */
immr->im_clkrstk.cark_plprcrk = KAPWR_KEY;
__asm__("nop");
immr->im_clkrst.car_plprcr |= PLPRCR_TEXPS | PLPRCR_TMIST;
/* Restore Decrementer Count */
set_dec (decrementer_count);
timestamp++;
#ifdef CONFIG_STATUS_LED
status_led_tick (timestamp);
#endif /* CONFIG_STATUS_LED */
#if defined(CONFIG_WATCHDOG) || defined(CFG_CMA_LCD_HEARTBEAT)
/*
* The shortest watchdog period of all boards (except LWMON)
* is approx. 1 sec, thus re-trigger watchdog at least
* every 500 ms = CFG_HZ / 2
*/
#ifndef CONFIG_LWMON
if ((timestamp % (CFG_HZ / 2)) == 0) {
#else
if ((timestamp % (CFG_HZ / 20)) == 0) {
#endif
#if defined(CFG_CMA_LCD_HEARTBEAT)
extern void lcd_heartbeat(void);
lcd_heartbeat();
#endif /* CFG_CMA_LCD_HEARTBEAT */
#if defined(CONFIG_WATCHDOG)
reset_8xx_watchdog(immr);
#endif /* CONFIG_WATCHDOG */
}
#endif /* CONFIG_WATCHDOG || CFG_CMA_LCD_HEARTBEAT */
}
/****************************************************************************/
void reset_timer (void)
{
timestamp = 0;
}
ulong get_timer (ulong base)
{
return (timestamp - base);
}
void set_timer (ulong t)
{
timestamp = t;
}
/****************************************************************************/