blob: 3678bb8a41b80af9d2cb887df32c92da91155954 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) Sean Anderson <seanga2@gmail.com>
*/
#define LOG_CATEGORY UCLASS_MTD
#include <errno.h>
#include <hexdump.h>
#include <log.h>
#include <nand.h>
#include <os.h>
#include <rand.h>
#include <spl.h>
#include <system-constants.h>
#include <dm/device_compat.h>
#include <dm/read.h>
#include <dm/uclass.h>
#include <asm/bitops.h>
#include <linux/bitmap.h>
#include <linux/mtd/rawnand.h>
#include <linux/sizes.h>
enum sand_nand_state {
STATE_READY,
STATE_IDLE,
STATE_READ,
STATE_READ_ID,
STATE_READ_ONFI,
STATE_PARAM_ONFI,
STATE_STATUS,
STATE_PROG,
STATE_ERASE,
};
static const char *const state_name[] = {
[STATE_READY] = "READY",
[STATE_IDLE] = "IDLE",
[STATE_READ] = "READ",
[STATE_READ_ID] = "READ_ID",
[STATE_READ_ONFI] = "READ_ONFI",
[STATE_PARAM_ONFI] = "PARAM_ONFI",
[STATE_STATUS] = "STATUS",
[STATE_PROG] = "PROG",
[STATE_ERASE] = "ERASE",
};
/**
* struct sand_nand_chip - Per-device private data
* @nand: The nand chip
* @node: The next device in this controller
* @programmed: Bitmap of whether sectors are programmed
* @id: ID to report for NAND_CMD_READID
* @id_len: Length of @id
* @onfi: Three copies of ONFI parameter page
* @status: Status to report for NAND_CMD_STATUS
* @chunksize: Size of one "chunk" (page + oob) in bytes
* @pageize: Size of one page in bytes
* @pages: Total number of pages
* @pages_per_erase: Number of pages per eraseblock
* @err_count: Number of errors to inject per @err_step_bits of data
* @err_step_bits: Number of data bits per error "step"
* @err_steps: Number of err steps in a page
* @cs: Chip select for this device
* @state: Current state of the device
* @column: Column of the most-recent command
* @page_addr: Page address of the most-recent command
* @fd: File descriptor for the backing data
* @fd_page_addr: Page address that @fd is seek'd to
* @selected: Whether this device is selected
* @tmp: "Cache" buffer used to store transferred data before committing it
* @tmp_dirty: Whether @tmp is dirty (modified) or clean (all ones)
*
* Data is stored with the OOB area in-line. For example, with 512-byte pages
* and and 16-byte OOB areas, the first page would start at offset 0, the second
* at offset 528, the third at offset 1056, and so on
*/
struct sand_nand_chip {
struct nand_chip nand;
struct list_head node;
long *programmed;
const u8 *id;
u32 chunksize, pagesize, pages, pages_per_erase;
u32 err_count, err_step_bits, err_steps, ecc_bits;
unsigned int cs;
enum sand_nand_state state;
int column, page_addr, fd, fd_page_addr;
bool selected, tmp_dirty;
u8 status;
u8 id_len;
u8 tmp[NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE];
u8 onfi[sizeof(struct nand_onfi_params) * 3];
};
#define SAND_DEBUG(chip, fmt, ...) \
dev_dbg((chip)->nand.mtd.dev, "%u (%s): " fmt, (chip)->cs, \
state_name[(chip)->state], ##__VA_ARGS__)
static inline void to_state(struct sand_nand_chip *chip,
enum sand_nand_state new_state)
{
if (new_state != chip->state)
SAND_DEBUG(chip, "to state %s\n", state_name[new_state]);
chip->state = new_state;
}
static inline struct sand_nand_chip *to_sand_nand(struct nand_chip *nand)
{
return container_of(nand, struct sand_nand_chip, nand);
}
struct sand_nand_priv {
struct list_head chips;
};
static int sand_nand_dev_ready(struct mtd_info *mtd)
{
return 1;
}
static int sand_nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
u8 status;
return nand_status_op(chip, &status) ?: status;
}
static int sand_nand_seek(struct sand_nand_chip *chip)
{
if (chip->fd_page_addr == chip->page_addr)
return 0;
if (os_lseek(chip->fd, (off_t)chip->page_addr * chip->chunksize,
OS_SEEK_SET) < 0) {
SAND_DEBUG(chip, "could not seek: %d\n", errno);
return -EIO;
}
chip->fd_page_addr = chip->page_addr;
return 0;
}
static void sand_nand_inject_error(struct sand_nand_chip *chip,
unsigned int step, unsigned int pos)
{
int byte, index;
if (pos < chip->err_step_bits) {
__change_bit(step * chip->err_step_bits + pos, chip->tmp);
return;
}
/*
* Only ECC bytes are covered in the OOB area, so
* pretend that those are the only bytes which can have
* errors.
*/
byte = (pos - chip->err_step_bits + step * chip->ecc_bits) / 8;
index = chip->nand.ecc.layout->eccpos[byte];
/* Avoid endianness issues by working with bytes */
chip->tmp[chip->pagesize + index] ^= BIT(pos & 0x7);
}
static int sand_nand_read(struct sand_nand_chip *chip)
{
unsigned int i, stop = 0;
if (chip->column == chip->pagesize)
stop = chip->err_step_bits;
if (test_bit(chip->page_addr, chip->programmed)) {
if (sand_nand_seek(chip))
return -EIO;
if (os_read(chip->fd, chip->tmp, chip->chunksize) !=
chip->chunksize) {
SAND_DEBUG(chip, "could not read: %d\n", errno);
return -EIO;
}
chip->fd_page_addr++;
} else if (chip->tmp_dirty) {
memset(chip->tmp + chip->column, 0xff,
chip->chunksize - chip->column);
}
/*
* Inject some errors; this is Method A from "An Efficient Algorithm for
* Sequential Random Sampling" (Vitter 87). This is still slow when
* generating a lot (dozens) of ECC errors.
*
* To avoid generating too many errors in any one ECC step, we separate
* our error generation by ECC step.
*/
chip->tmp_dirty = true;
for (i = 0; i < chip->err_steps; i++) {
u32 bit_errors = chip->err_count;
unsigned int j = chip->err_step_bits + chip->ecc_bits;
while (bit_errors) {
unsigned int u = rand();
float quot = 1ULL << 32;
do {
quot *= j - bit_errors;
quot /= j;
j--;
if (j < stop)
goto next;
} while (u < quot);
sand_nand_inject_error(chip, i, j);
bit_errors--;
}
next:
;
}
return 0;
}
static void sand_nand_command(struct mtd_info *mtd, unsigned int command,
int column, int page_addr)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct sand_nand_chip *chip = to_sand_nand(nand);
enum sand_nand_state new_state = chip->state;
SAND_DEBUG(chip, "command=%02x column=%d page_addr=%d\n", command,
column, page_addr);
if (!chip->selected)
return;
switch (chip->state) {
case STATE_READY:
if (command == NAND_CMD_RESET)
goto reset;
break;
case STATE_PROG:
new_state = STATE_IDLE;
if (command != NAND_CMD_PAGEPROG ||
test_and_set_bit(chip->page_addr, chip->programmed)) {
chip->status |= NAND_STATUS_FAIL;
break;
}
if (sand_nand_seek(chip)) {
chip->status |= NAND_STATUS_FAIL;
break;
}
if (os_write(chip->fd, chip->tmp, chip->chunksize) !=
chip->chunksize) {
SAND_DEBUG(chip, "could not write: %d\n", errno);
chip->status |= NAND_STATUS_FAIL;
break;
}
chip->fd_page_addr++;
break;
case STATE_ERASE:
new_state = STATE_IDLE;
if (command != NAND_CMD_ERASE2) {
chip->status |= NAND_STATUS_FAIL;
break;
}
if (chip->page_addr < 0 ||
chip->page_addr >= chip->pages ||
chip->page_addr % chip->pages_per_erase)
chip->status |= NAND_STATUS_FAIL;
else
bitmap_clear(chip->programmed, chip->page_addr,
chip->pages_per_erase);
break;
default:
chip->column = column;
chip->page_addr = page_addr;
switch (command) {
case NAND_CMD_READOOB:
if (column >= 0)
chip->column += chip->pagesize;
fallthrough;
case NAND_CMD_READ0:
new_state = STATE_IDLE;
if (page_addr < 0 || page_addr >= chip->pages)
break;
if (chip->column < 0 || chip->column >= chip->chunksize)
break;
if (sand_nand_read(chip))
break;
chip->page_addr = page_addr;
new_state = STATE_READ;
break;
case NAND_CMD_ERASE1:
new_state = STATE_ERASE;
chip->status = ~NAND_STATUS_FAIL;
break;
case NAND_CMD_STATUS:
new_state = STATE_STATUS;
chip->column = 0;
break;
case NAND_CMD_SEQIN:
new_state = STATE_PROG;
chip->status = ~NAND_STATUS_FAIL;
if (page_addr < 0 || page_addr >= chip->pages ||
chip->column < 0 ||
chip->column >= chip->chunksize) {
chip->status |= NAND_STATUS_FAIL;
} else if (chip->tmp_dirty) {
memset(chip->tmp, 0xff, chip->chunksize);
chip->tmp_dirty = false;
}
break;
case NAND_CMD_READID:
if (chip->onfi[0] && column == 0x20)
new_state = STATE_READ_ONFI;
else
new_state = STATE_READ_ID;
chip->column = 0;
break;
case NAND_CMD_PARAM:
if (chip->onfi[0] && !column)
new_state = STATE_PARAM_ONFI;
else
new_state = STATE_IDLE;
break;
case NAND_CMD_RESET:
reset:
new_state = STATE_IDLE;
chip->column = -1;
chip->page_addr = -1;
chip->status = ~NAND_STATUS_FAIL;
break;
default:
new_state = STATE_IDLE;
SAND_DEBUG(chip, "Unsupported command %02x\n", command);
}
}
to_state(chip, new_state);
}
static void sand_nand_select_chip(struct mtd_info *mtd, int n)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct sand_nand_chip *chip = to_sand_nand(nand);
chip->selected = !n;
}
static void sand_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct sand_nand_chip *chip = to_sand_nand(nand);
unsigned int to_copy;
int src_len = 0;
const u8 *src = NULL;
if (!chip->selected)
goto copy;
switch (chip->state) {
case STATE_READ:
src = chip->tmp;
src_len = chip->chunksize;
break;
case STATE_READ_ID:
src = chip->id;
src_len = chip->id_len;
break;
case STATE_READ_ONFI:
src = "ONFI";
src_len = 4;
break;
case STATE_PARAM_ONFI:
src = chip->onfi;
src_len = sizeof(chip->onfi);
break;
case STATE_STATUS:
src = &chip->status;
src_len = 1;
break;
default:
break;
}
copy:
if (chip->column >= 0)
to_copy = max(min(len, src_len - chip->column), 0);
else
to_copy = 0;
memcpy(buf, src + chip->column, to_copy);
memset(buf + to_copy, 0xff, len - to_copy);
chip->column += to_copy;
if (len == 1) {
SAND_DEBUG(chip, "read [ %02x ]\n", buf[0]);
} else if (src_len) {
SAND_DEBUG(chip, "read %d bytes\n", len);
#ifdef VERBOSE_DEBUG
print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
#endif
}
if (src_len && chip->column == src_len)
to_state(chip, STATE_IDLE);
}
static u8 sand_nand_read_byte(struct mtd_info *mtd)
{
u8 ret;
sand_nand_read_buf(mtd, &ret, 1);
return ret;
}
static u16 sand_nand_read_word(struct mtd_info *mtd)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct sand_nand_chip *chip = to_sand_nand(nand);
SAND_DEBUG(chip, "16-bit access unsupported\n");
return sand_nand_read_byte(mtd) | 0xff00;
}
static void sand_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct sand_nand_chip *chip = to_sand_nand(nand);
SAND_DEBUG(chip, "write %d bytes\n", len);
#ifdef VERBOSE_DEBUG
print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
#endif
if (chip->state != STATE_PROG || chip->status & NAND_STATUS_FAIL)
return;
chip->tmp_dirty = true;
len = min((unsigned int)len, chip->chunksize - chip->column);
memcpy(chip->tmp + chip->column, buf, len);
chip->column += len;
}
static struct nand_chip *nand_chip;
int sand_nand_remove(struct udevice *dev)
{
struct sand_nand_priv *priv = dev_get_priv(dev);
struct sand_nand_chip *chip;
list_for_each_entry(chip, &priv->chips, node) {
struct nand_chip *nand = &chip->nand;
if (nand_chip == nand)
nand_chip = NULL;
nand_unregister(nand_to_mtd(nand));
free(chip->programmed);
os_close(chip->fd);
free(chip);
}
return 0;
}
static int sand_nand_probe(struct udevice *dev)
{
struct sand_nand_priv *priv = dev_get_priv(dev);
struct sand_nand_chip *chip;
int ret, devnum = 0;
ofnode np;
INIT_LIST_HEAD(&priv->chips);
dev_for_each_subnode(np, dev) {
struct nand_chip *nand;
struct mtd_info *mtd;
u32 erasesize, oobsize, pagesize, pages;
u32 err_count, err_step_size;
off_t expected_size;
char filename[30];
fdt_addr_t cs;
const u8 *id, *onfi;
int id_len, onfi_len;
cs = ofnode_get_addr_size_index_notrans(np, 0, NULL);
if (cs == FDT_ADDR_T_NONE) {
dev_dbg(dev, "Invalid cs for chip %s\n",
ofnode_get_name(np));
ret = -ENOENT;
goto err;
}
id = ofnode_read_prop(np, "sandbox,id", &id_len);
if (!id) {
dev_dbg(dev, "No sandbox,id property for chip %s\n",
ofnode_get_name(np));
ret = -EINVAL;
goto err;
}
onfi = ofnode_read_prop(np, "sandbox,onfi", &onfi_len);
if (onfi && onfi_len != sizeof(struct nand_onfi_params)) {
dev_dbg(dev, "Invalid length %d for onfi params\n",
onfi_len);
ret = -EINVAL;
goto err;
}
ret = ofnode_read_u32(np, "sandbox,erasesize", &erasesize);
if (ret) {
dev_dbg(dev, "No sandbox,erasesize property for chip %s",
ofnode_get_name(np));
goto err;
}
ret = ofnode_read_u32(np, "sandbox,oobsize", &oobsize);
if (ret) {
dev_dbg(dev, "No sandbox,oobsize property for chip %s",
ofnode_get_name(np));
goto err;
}
ret = ofnode_read_u32(np, "sandbox,pagesize", &pagesize);
if (ret) {
dev_dbg(dev, "No sandbox,pagesize property for chip %s",
ofnode_get_name(np));
goto err;
}
ret = ofnode_read_u32(np, "sandbox,pages", &pages);
if (ret) {
dev_dbg(dev, "No sandbox,pages property for chip %s",
ofnode_get_name(np));
goto err;
}
ret = ofnode_read_u32(np, "sandbox,err-count", &err_count);
if (ret) {
dev_dbg(dev,
"No sandbox,err-count property for chip %s",
ofnode_get_name(np));
goto err;
}
ret = ofnode_read_u32(np, "sandbox,err-step-size",
&err_step_size);
if (ret) {
dev_dbg(dev,
"No sandbox,err-step-size property for chip %s",
ofnode_get_name(np));
goto err;
}
chip = calloc(sizeof(*chip), 1);
if (!chip) {
ret = -ENOMEM;
goto err;
}
chip->cs = cs;
chip->id = id;
chip->id_len = id_len;
chip->chunksize = pagesize + oobsize;
chip->pagesize = pagesize;
chip->pages = pages;
chip->pages_per_erase = erasesize / pagesize;
memset(chip->tmp, 0xff, chip->chunksize);
chip->err_count = err_count;
chip->err_step_bits = err_step_size * 8;
chip->err_steps = pagesize / err_step_size;
expected_size = (off_t)pages * chip->chunksize;
snprintf(filename, sizeof(filename),
"/tmp/u-boot.nand%d.XXXXXX", devnum);
chip->fd = os_mktemp(filename, expected_size);
if (chip->fd < 0) {
dev_dbg(dev, "Could not create temp file %s\n",
filename);
ret = chip->fd;
goto err_chip;
}
chip->programmed = calloc(sizeof(long),
BITS_TO_LONGS(pages));
if (!chip->programmed) {
ret = -ENOMEM;
goto err_fd;
}
if (onfi) {
memcpy(chip->onfi, onfi, onfi_len);
memcpy(chip->onfi + onfi_len, onfi, onfi_len);
memcpy(chip->onfi + 2 * onfi_len, onfi, onfi_len);
}
nand = &chip->nand;
nand->options = not_xpl() ? 0 : NAND_SKIP_BBTSCAN;
nand->flash_node = np;
nand->dev_ready = sand_nand_dev_ready;
nand->cmdfunc = sand_nand_command;
nand->waitfunc = sand_nand_wait;
nand->select_chip = sand_nand_select_chip;
nand->read_byte = sand_nand_read_byte;
nand->read_word = sand_nand_read_word;
nand->read_buf = sand_nand_read_buf;
nand->write_buf = sand_nand_write_buf;
nand->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
mtd = nand_to_mtd(nand);
mtd->dev = dev;
ret = nand_scan(mtd, CONFIG_SYS_NAND_MAX_CHIPS);
if (ret) {
dev_dbg(dev, "Could not scan chip %s: %d\n",
ofnode_get_name(np), ret);
goto err_prog;
}
chip->ecc_bits = nand->ecc.layout->eccbytes * 8 /
chip->err_steps;
ret = nand_register(devnum, mtd);
if (ret) {
dev_dbg(dev, "Could not register nand %d: %d\n", devnum,
ret);
goto err_prog;
}
if (!nand_chip)
nand_chip = nand;
list_add_tail(&chip->node, &priv->chips);
devnum++;
continue;
err_prog:
free(chip->programmed);
err_fd:
os_close(chip->fd);
err_chip:
free(chip);
goto err;
}
return 0;
err:
sand_nand_remove(dev);
return ret;
}
static const struct udevice_id sand_nand_ids[] = {
{ .compatible = "sandbox,nand" },
{ }
};
U_BOOT_DRIVER(sand_nand) = {
.name = "sand-nand",
.id = UCLASS_MTD,
.of_match = sand_nand_ids,
.probe = sand_nand_probe,
.remove = sand_nand_remove,
.priv_auto = sizeof(struct sand_nand_priv),
};
void board_nand_init(void)
{
struct udevice *dev;
int err;
err = uclass_get_device_by_driver(UCLASS_MTD, DM_DRIVER_REF(sand_nand),
&dev);
if (err && err != -ENODEV)
log_info("Failed to get sandbox NAND: %d\n", err);
}
#if IS_ENABLED(CONFIG_XPL_BUILD) && IS_ENABLED(CONFIG_SPL_NAND_INIT)
void nand_deselect(void)
{
nand_chip->select_chip(nand_to_mtd(nand_chip), -1);
}
static int nand_is_bad_block(int block)
{
struct mtd_info *mtd = nand_to_mtd(nand_chip);
return mtd_block_isbad(mtd, block << mtd->erasesize_shift);
}
static int nand_read_page(int block, int page, uchar *dst)
{
struct mtd_info *mtd = nand_to_mtd(nand_chip);
loff_t ofs = ((loff_t)block << mtd->erasesize_shift) +
((loff_t)page << mtd->writesize_shift);
size_t len = mtd->writesize;
return nand_read(mtd, ofs, &len, dst);
}
#include "nand_spl_loaders.c"
#endif /* CONFIG_SPL_NAND_INIT */