blob: b78b4e6023803fa6824050d5777fd4b7b61ef76c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* drivers/mtd/nand/raw/pxa3xx_nand.c
*
* Copyright © 2005 Intel Corporation
* Copyright © 2006 Marvell International Ltd.
*/
#include <malloc.h>
#include <fdtdec.h>
#include <nand.h>
#include <asm/global_data.h>
#include <dm/device_compat.h>
#include <dm/devres.h>
#include <linux/bitops.h>
#include <linux/bug.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <asm/io.h>
#include <asm/arch/cpu.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/printk.h>
#include <linux/types.h>
#include <syscon.h>
#include <regmap.h>
#include <dm/uclass.h>
#include <dm/read.h>
#include "pxa3xx_nand.h"
DECLARE_GLOBAL_DATA_PTR;
#define TIMEOUT_DRAIN_FIFO 5 /* in ms */
#define CHIP_DELAY_TIMEOUT 200
#define NAND_STOP_DELAY 40
/*
* Define a buffer size for the initial command that detects the flash device:
* STATUS, READID and PARAM.
* ONFI param page is 256 bytes, and there are three redundant copies
* to be read. JEDEC param page is 512 bytes, and there are also three
* redundant copies to be read.
* Hence this buffer should be at least 512 x 3. Let's pick 2048.
*/
#define INIT_BUFFER_SIZE 2048
/* registers and bit definitions */
#define NDCR (0x00) /* Control register */
#define NDTR0CS0 (0x04) /* Timing Parameter 0 for CS0 */
#define NDTR1CS0 (0x0C) /* Timing Parameter 1 for CS0 */
#define NDSR (0x14) /* Status Register */
#define NDPCR (0x18) /* Page Count Register */
#define NDBDR0 (0x1C) /* Bad Block Register 0 */
#define NDBDR1 (0x20) /* Bad Block Register 1 */
#define NDECCCTRL (0x28) /* ECC control */
#define NDDB (0x40) /* Data Buffer */
#define NDCB0 (0x48) /* Command Buffer0 */
#define NDCB1 (0x4C) /* Command Buffer1 */
#define NDCB2 (0x50) /* Command Buffer2 */
#define NDCR_SPARE_EN (0x1 << 31)
#define NDCR_ECC_EN (0x1 << 30)
#define NDCR_DMA_EN (0x1 << 29)
#define NDCR_ND_RUN (0x1 << 28)
#define NDCR_DWIDTH_C (0x1 << 27)
#define NDCR_DWIDTH_M (0x1 << 26)
#define NDCR_PAGE_SZ (0x1 << 24)
#define NDCR_NCSX (0x1 << 23)
#define NDCR_ND_MODE (0x3 << 21)
#define NDCR_NAND_MODE (0x0)
#define NDCR_CLR_PG_CNT (0x1 << 20)
#define NFCV1_NDCR_ARB_CNTL (0x1 << 19)
#define NDCR_RD_ID_CNT_MASK (0x7 << 16)
#define NDCR_RD_ID_CNT(x) (((x) << 16) & NDCR_RD_ID_CNT_MASK)
#define NDCR_RA_START (0x1 << 15)
#define NDCR_PG_PER_BLK (0x1 << 14)
#define NDCR_ND_ARB_EN (0x1 << 12)
#define NDCR_INT_MASK (0xFFF)
#define NDSR_MASK (0xfff)
#define NDSR_ERR_CNT_OFF (16)
#define NDSR_ERR_CNT_MASK (0x1f)
#define NDSR_ERR_CNT(sr) ((sr >> NDSR_ERR_CNT_OFF) & NDSR_ERR_CNT_MASK)
#define NDSR_RDY (0x1 << 12)
#define NDSR_FLASH_RDY (0x1 << 11)
#define NDSR_CS0_PAGED (0x1 << 10)
#define NDSR_CS1_PAGED (0x1 << 9)
#define NDSR_CS0_CMDD (0x1 << 8)
#define NDSR_CS1_CMDD (0x1 << 7)
#define NDSR_CS0_BBD (0x1 << 6)
#define NDSR_CS1_BBD (0x1 << 5)
#define NDSR_UNCORERR (0x1 << 4)
#define NDSR_CORERR (0x1 << 3)
#define NDSR_WRDREQ (0x1 << 2)
#define NDSR_RDDREQ (0x1 << 1)
#define NDSR_WRCMDREQ (0x1)
#define NDCB0_LEN_OVRD (0x1 << 28)
#define NDCB0_ST_ROW_EN (0x1 << 26)
#define NDCB0_AUTO_RS (0x1 << 25)
#define NDCB0_CSEL (0x1 << 24)
#define NDCB0_EXT_CMD_TYPE_MASK (0x7 << 29)
#define NDCB0_EXT_CMD_TYPE(x) (((x) << 29) & NDCB0_EXT_CMD_TYPE_MASK)
#define NDCB0_CMD_TYPE_MASK (0x7 << 21)
#define NDCB0_CMD_TYPE(x) (((x) << 21) & NDCB0_CMD_TYPE_MASK)
#define NDCB0_NC (0x1 << 20)
#define NDCB0_DBC (0x1 << 19)
#define NDCB0_ADDR_CYC_MASK (0x7 << 16)
#define NDCB0_ADDR_CYC(x) (((x) << 16) & NDCB0_ADDR_CYC_MASK)
#define NDCB0_CMD2_MASK (0xff << 8)
#define NDCB0_CMD1_MASK (0xff)
#define NDCB0_ADDR_CYC_SHIFT (16)
#define EXT_CMD_TYPE_DISPATCH 6 /* Command dispatch */
#define EXT_CMD_TYPE_NAKED_RW 5 /* Naked read or Naked write */
#define EXT_CMD_TYPE_READ 4 /* Read */
#define EXT_CMD_TYPE_DISP_WR 4 /* Command dispatch with write */
#define EXT_CMD_TYPE_FINAL 3 /* Final command */
#define EXT_CMD_TYPE_LAST_RW 1 /* Last naked read/write */
#define EXT_CMD_TYPE_MONO 0 /* Monolithic read/write */
/* System control register and bit to enable NAND on some SoCs */
#define GENCONF_SOC_DEVICE_MUX 0x208
#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
#define GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN BIT(27)
/*
* This should be large enough to read 'ONFI' and 'JEDEC'.
* Let's use 7 bytes, which is the maximum ID count supported
* by the controller (see NDCR_RD_ID_CNT_MASK).
*/
#define READ_ID_BYTES 7
/* macros for registers read/write */
#define nand_writel(info, off, val) \
writel((val), (info)->mmio_base + (off))
#define nand_readl(info, off) \
readl((info)->mmio_base + (off))
/* error code and state */
enum {
ERR_NONE = 0,
ERR_DMABUSERR = -1,
ERR_SENDCMD = -2,
ERR_UNCORERR = -3,
ERR_BBERR = -4,
ERR_CORERR = -5,
};
enum {
STATE_IDLE = 0,
STATE_PREPARED,
STATE_CMD_HANDLE,
STATE_DMA_READING,
STATE_DMA_WRITING,
STATE_DMA_DONE,
STATE_PIO_READING,
STATE_PIO_WRITING,
STATE_CMD_DONE,
STATE_READY,
};
enum pxa3xx_nand_variant {
PXA3XX_NAND_VARIANT_PXA,
PXA3XX_NAND_VARIANT_ARMADA370,
PXA3XX_NAND_VARIANT_ARMADA_8K,
PXA3XX_NAND_VARIANT_AC5,
};
struct pxa3xx_nand_host {
struct nand_chip chip;
void *info_data;
/* page size of attached chip */
int use_ecc;
int cs;
/* calculated from pxa3xx_nand_flash data */
unsigned int col_addr_cycles;
unsigned int row_addr_cycles;
};
struct pxa3xx_nand_info {
struct nand_hw_control controller;
struct pxa3xx_nand_platform_data *pdata;
struct clk *clk;
void __iomem *mmio_base;
unsigned long mmio_phys;
int cmd_complete, dev_ready;
unsigned int buf_start;
unsigned int buf_count;
unsigned int buf_size;
unsigned int data_buff_pos;
unsigned int oob_buff_pos;
unsigned char *data_buff;
unsigned char *oob_buff;
struct pxa3xx_nand_host *host[NUM_CHIP_SELECT];
unsigned int state;
/*
* This driver supports NFCv1 (as found in PXA SoC)
* and NFCv2 (as found in Armada 370/XP SoC).
*/
enum pxa3xx_nand_variant variant;
int cs;
int use_ecc; /* use HW ECC ? */
int force_raw; /* prevent use_ecc to be set */
int ecc_bch; /* using BCH ECC? */
int use_spare; /* use spare ? */
int need_wait;
/* Amount of real data per full chunk */
unsigned int chunk_size;
/* Amount of spare data per full chunk */
unsigned int spare_size;
/* Number of full chunks (i.e chunk_size + spare_size) */
unsigned int nfullchunks;
/*
* Total number of chunks. If equal to nfullchunks, then there
* are only full chunks. Otherwise, there is one last chunk of
* size (last_chunk_size + last_spare_size)
*/
unsigned int ntotalchunks;
/* Amount of real data in the last chunk */
unsigned int last_chunk_size;
/* Amount of spare data in the last chunk */
unsigned int last_spare_size;
unsigned int ecc_size;
unsigned int ecc_err_cnt;
unsigned int max_bitflips;
int retcode;
/*
* Variables only valid during command
* execution. step_chunk_size and step_spare_size is the
* amount of real data and spare data in the current
* chunk. cur_chunk is the current chunk being
* read/programmed.
*/
unsigned int step_chunk_size;
unsigned int step_spare_size;
unsigned int cur_chunk;
/* cached register value */
uint32_t reg_ndcr;
uint32_t ndtr0cs0;
uint32_t ndtr1cs0;
/* generated NDCBx register values */
uint32_t ndcb0;
uint32_t ndcb1;
uint32_t ndcb2;
uint32_t ndcb3;
};
static struct pxa3xx_nand_timing timing[] = {
/*
* tCH Enable signal hold time
* tCS Enable signal setup time
* tWH ND_nWE high duration
* tWP ND_nWE pulse time
* tRH ND_nRE high duration
* tRP ND_nRE pulse width
* tR ND_nWE high to ND_nRE low for read
* tWHR ND_nWE high to ND_nRE low for status read
* tAR ND_ALE low to ND_nRE low delay
*/
/*ch cs wh wp rh rp r whr ar */
{ 40, 80, 60, 100, 80, 100, 90000, 400, 40, },
{ 10, 0, 20, 40, 30, 40, 11123, 110, 10, },
{ 10, 25, 15, 25, 15, 30, 25000, 60, 10, },
{ 10, 35, 15, 25, 15, 25, 25000, 60, 10, },
{ 5, 20, 10, 12, 10, 12, 25000, 60, 10, },
};
static struct pxa3xx_nand_flash builtin_flash_types[] = {
/*
* chip_id
* flash_width Width of Flash memory (DWIDTH_M)
* dfc_width Width of flash controller(DWIDTH_C)
* *timing
* http://www.linux-mtd.infradead.org/nand-data/nanddata.html
*/
{ 0x46ec, 16, 16, &timing[1] },
{ 0xdaec, 8, 8, &timing[1] },
{ 0xd7ec, 8, 8, &timing[1] },
{ 0xa12c, 8, 8, &timing[2] },
{ 0xb12c, 16, 16, &timing[2] },
{ 0xdc2c, 8, 8, &timing[2] },
{ 0xcc2c, 16, 16, &timing[2] },
{ 0xba20, 16, 16, &timing[3] },
{ 0xda98, 8, 8, &timing[4] },
};
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 8,
.len = 6,
.veroffs = 14,
.maxblocks = 8, /* Last 8 blocks in each chip */
.pattern = bbt_pattern
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 8,
.len = 6,
.veroffs = 14,
.maxblocks = 8, /* Last 8 blocks in each chip */
.pattern = bbt_mirror_pattern
};
#endif
struct marvell_hw_ecc_layout {
int page_size;
int strength;
unsigned int ecc_size;
unsigned int nfullchunks;
unsigned int chunk_size;
unsigned int spare_size;
unsigned int last_chunk_size;
unsigned int last_spare_size;
};
static const struct marvell_hw_ecc_layout nfc_layouts[] = {
/* page_size strength ecc_size nfullchunks chunk_size spare_size last_chunk last_spare */
{ 512, 1, 8, 1, 512, 8, 0, 0 },
{ 2048, 1, 24, 1, 2048, 40, 0, 0 },
{ 2048, 4, 32, 1, 2048, 32, 0, 0 },
{ 2048, 8, 32, 1, 1024, 0, 1024, 32 },
{ 2048, 12, 32, 2, 704, 0, 640, 0 },
{ 2048, 16, 32, 4, 512, 0, 0, 32 },
{ 4096, 4, 32, 2, 2048, 32, 0, 0 },
{ 4096, 8, 32, 4, 1024, 0, 0, 64 },
{ 4096, 12, 32, 5, 704, 0, 576, 32 },
{ 4096, 16, 32, 8, 512, 0, 0, 32 },
{ 8192, 4, 32, 4, 2048, 32, 0, 0 },
{ 8192, 8, 32, 8, 1024, 0, 0, 160 },
{ 8192, 12, 32, 11, 704, 0, 448, 64 },
{ 8192, 16, 32, 16, 512, 0, 0, 32 },
{ },
};
static struct nand_ecclayout ecc_layout_empty = {
.eccbytes = 0,
.eccpos = { },
.oobfree = { }
};
#define NDTR0_tCH(c) (min((c), 7) << 19)
#define NDTR0_tCS(c) (min((c), 7) << 16)
#define NDTR0_tWH(c) (min((c), 7) << 11)
#define NDTR0_tWP(c) (min((c), 7) << 8)
#define NDTR0_tRH(c) (min((c), 7) << 3)
#define NDTR0_tRP(c) (min((c), 7) << 0)
#define NDTR1_tR(c) (min((c), 65535) << 16)
#define NDTR1_tWHR(c) (min((c), 15) << 4)
#define NDTR1_tAR(c) (min((c), 15) << 0)
/* convert nano-seconds to nand flash controller clock cycles */
#define ns2cycle(ns, clk) (int)((ns) * (clk / 1000000) / 1000)
static const struct udevice_id pxa3xx_nand_dt_ids[] = {
{
.compatible = "marvell,armada370-nand-controller",
.data = PXA3XX_NAND_VARIANT_ARMADA370,
},
{
.compatible = "marvell,armada-8k-nand-controller",
.data = PXA3XX_NAND_VARIANT_ARMADA_8K,
},
{
.compatible = "marvell,mvebu-ac5-pxa3xx-nand",
.data = PXA3XX_NAND_VARIANT_AC5,
},
{}
};
static enum pxa3xx_nand_variant pxa3xx_nand_get_variant(struct udevice *dev)
{
return dev_get_driver_data(dev);
}
static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host,
const struct pxa3xx_nand_timing *t)
{
struct pxa3xx_nand_info *info = host->info_data;
unsigned long nand_clk = mvebu_get_nand_clock();
uint32_t ndtr0, ndtr1;
ndtr0 = NDTR0_tCH(ns2cycle(t->tCH, nand_clk)) |
NDTR0_tCS(ns2cycle(t->tCS, nand_clk)) |
NDTR0_tWH(ns2cycle(t->tWH, nand_clk)) |
NDTR0_tWP(ns2cycle(t->tWP, nand_clk)) |
NDTR0_tRH(ns2cycle(t->tRH, nand_clk)) |
NDTR0_tRP(ns2cycle(t->tRP, nand_clk));
ndtr1 = NDTR1_tR(ns2cycle(t->tR, nand_clk)) |
NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) |
NDTR1_tAR(ns2cycle(t->tAR, nand_clk));
info->ndtr0cs0 = ndtr0;
info->ndtr1cs0 = ndtr1;
nand_writel(info, NDTR0CS0, ndtr0);
nand_writel(info, NDTR1CS0, ndtr1);
}
static void pxa3xx_nand_set_sdr_timing(struct pxa3xx_nand_host *host,
const struct nand_sdr_timings *t)
{
struct pxa3xx_nand_info *info = host->info_data;
struct nand_chip *chip = &host->chip;
unsigned long nand_clk = mvebu_get_nand_clock();
uint32_t ndtr0, ndtr1;
u32 tCH_min = DIV_ROUND_UP(t->tCH_min, 1000);
u32 tCS_min = DIV_ROUND_UP(t->tCS_min, 1000);
u32 tWH_min = DIV_ROUND_UP(t->tWH_min, 1000);
u32 tWP_min = DIV_ROUND_UP(t->tWC_min - t->tWH_min, 1000);
u32 tREH_min = DIV_ROUND_UP(t->tREH_min, 1000);
u32 tRP_min = DIV_ROUND_UP(t->tRC_min - t->tREH_min, 1000);
u32 tR = chip->chip_delay * 1000;
u32 tWHR_min = DIV_ROUND_UP(t->tWHR_min, 1000);
u32 tAR_min = DIV_ROUND_UP(t->tAR_min, 1000);
/* fallback to a default value if tR = 0 */
if (!tR)
tR = 20000;
ndtr0 = NDTR0_tCH(ns2cycle(tCH_min, nand_clk)) |
NDTR0_tCS(ns2cycle(tCS_min, nand_clk)) |
NDTR0_tWH(ns2cycle(tWH_min, nand_clk)) |
NDTR0_tWP(ns2cycle(tWP_min, nand_clk)) |
NDTR0_tRH(ns2cycle(tREH_min, nand_clk)) |
NDTR0_tRP(ns2cycle(tRP_min, nand_clk));
ndtr1 = NDTR1_tR(ns2cycle(tR, nand_clk)) |
NDTR1_tWHR(ns2cycle(tWHR_min, nand_clk)) |
NDTR1_tAR(ns2cycle(tAR_min, nand_clk));
info->ndtr0cs0 = ndtr0;
info->ndtr1cs0 = ndtr1;
nand_writel(info, NDTR0CS0, ndtr0);
nand_writel(info, NDTR1CS0, ndtr1);
}
static int pxa3xx_nand_init_timings(struct pxa3xx_nand_host *host)
{
const struct nand_sdr_timings *timings;
struct nand_chip *chip = &host->chip;
struct pxa3xx_nand_info *info = host->info_data;
const struct pxa3xx_nand_flash *f = NULL;
struct mtd_info *mtd = nand_to_mtd(&host->chip);
int mode, id, ntypes, i;
mode = onfi_get_async_timing_mode(chip);
if (mode == ONFI_TIMING_MODE_UNKNOWN) {
ntypes = ARRAY_SIZE(builtin_flash_types);
chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
id = chip->read_byte(mtd);
id |= chip->read_byte(mtd) << 0x8;
for (i = 0; i < ntypes; i++) {
f = &builtin_flash_types[i];
if (f->chip_id == id)
break;
}
if (i == ntypes) {
dev_err(mtd->dev, "Error: timings not found\n");
return -EINVAL;
}
pxa3xx_nand_set_timing(host, f->timing);
if (f->flash_width == 16) {
info->reg_ndcr |= NDCR_DWIDTH_M;
chip->options |= NAND_BUSWIDTH_16;
}
info->reg_ndcr |= (f->dfc_width == 16) ? NDCR_DWIDTH_C : 0;
} else {
mode = fls(mode) - 1;
if (mode < 0)
mode = 0;
if (info->variant == PXA3XX_NAND_VARIANT_AC5)
mode = min(mode, 3);
timings = onfi_async_timing_mode_to_sdr_timings(mode);
if (IS_ERR(timings))
return PTR_ERR(timings);
pxa3xx_nand_set_sdr_timing(host, timings);
}
return 0;
}
/**
* NOTE: it is a must to set ND_RUN first, then write
* command buffer, otherwise, it does not work.
* We enable all the interrupt at the same time, and
* let pxa3xx_nand_irq to handle all logic.
*/
static void pxa3xx_nand_start(struct pxa3xx_nand_info *info)
{
uint32_t ndcr;
ndcr = info->reg_ndcr;
if (info->use_ecc) {
ndcr |= NDCR_ECC_EN;
if (info->ecc_bch)
nand_writel(info, NDECCCTRL, 0x1);
} else {
ndcr &= ~NDCR_ECC_EN;
if (info->ecc_bch)
nand_writel(info, NDECCCTRL, 0x0);
}
ndcr &= ~NDCR_DMA_EN;
if (info->use_spare)
ndcr |= NDCR_SPARE_EN;
else
ndcr &= ~NDCR_SPARE_EN;
ndcr |= NDCR_ND_RUN;
/* clear status bits and run */
nand_writel(info, NDSR, NDSR_MASK);
nand_writel(info, NDCR, 0);
nand_writel(info, NDCR, ndcr);
}
static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
{
uint32_t ndcr;
ndcr = nand_readl(info, NDCR);
nand_writel(info, NDCR, ndcr | int_mask);
}
static void drain_fifo(struct pxa3xx_nand_info *info, void *data, int len)
{
if (info->ecc_bch && !info->force_raw) {
u32 ts;
/*
* According to the datasheet, when reading from NDDB
* with BCH enabled, after each 32 bytes reads, we
* have to make sure that the NDSR.RDDREQ bit is set.
*
* Drain the FIFO 8 32 bits reads at a time, and skip
* the polling on the last read.
*/
while (len > 8) {
readsl(info->mmio_base + NDDB, data, 8);
ts = get_timer(0);
while (!(nand_readl(info, NDSR) & NDSR_RDDREQ)) {
if (get_timer(ts) > TIMEOUT_DRAIN_FIFO) {
dev_err(info->controller.active->mtd.dev,
"Timeout on RDDREQ while draining the FIFO\n");
return;
}
}
data += 32;
len -= 8;
}
}
readsl(info->mmio_base + NDDB, data, len);
}
static void handle_data_pio(struct pxa3xx_nand_info *info)
{
int data_len = info->step_chunk_size;
/*
* In raw mode, include the spare area and the ECC bytes that are not
* consumed by the controller in the data section. Do not reorganize
* here, do it in the ->read_page_raw() handler instead.
*/
if (info->force_raw)
data_len += info->step_spare_size + info->ecc_size;
switch (info->state) {
case STATE_PIO_WRITING:
if (info->step_chunk_size)
writesl(info->mmio_base + NDDB,
info->data_buff + info->data_buff_pos,
DIV_ROUND_UP(data_len, 4));
if (info->step_spare_size)
writesl(info->mmio_base + NDDB,
info->oob_buff + info->oob_buff_pos,
DIV_ROUND_UP(info->step_spare_size, 4));
break;
case STATE_PIO_READING:
if (data_len)
drain_fifo(info,
info->data_buff + info->data_buff_pos,
DIV_ROUND_UP(data_len, 4));
if (info->force_raw)
break;
if (info->step_spare_size)
drain_fifo(info,
info->oob_buff + info->oob_buff_pos,
DIV_ROUND_UP(info->step_spare_size, 4));
break;
default:
dev_err(info->controller.active->mtd.dev,
"%s: invalid state %d\n", __func__, info->state);
BUG();
}
/* Update buffer pointers for multi-page read/write */
info->data_buff_pos += data_len;
info->oob_buff_pos += info->step_spare_size;
}
static void pxa3xx_nand_irq_thread(struct pxa3xx_nand_info *info)
{
handle_data_pio(info);
info->state = STATE_CMD_DONE;
nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ);
}
static irqreturn_t pxa3xx_nand_irq(struct pxa3xx_nand_info *info)
{
unsigned int status, is_completed = 0, is_ready = 0;
unsigned int ready, cmd_done;
irqreturn_t ret = IRQ_HANDLED;
if (info->cs == 0) {
ready = NDSR_FLASH_RDY;
cmd_done = NDSR_CS0_CMDD;
} else {
ready = NDSR_RDY;
cmd_done = NDSR_CS1_CMDD;
}
/* TODO - find out why we need the delay during write operation. */
ndelay(1);
status = nand_readl(info, NDSR);
if (status & NDSR_UNCORERR)
info->retcode = ERR_UNCORERR;
if (status & NDSR_CORERR) {
info->retcode = ERR_CORERR;
if ((info->variant == PXA3XX_NAND_VARIANT_ARMADA370 ||
info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K) &&
info->ecc_bch)
info->ecc_err_cnt = NDSR_ERR_CNT(status);
else
info->ecc_err_cnt = 1;
/*
* Each chunk composing a page is corrected independently,
* and we need to store maximum number of corrected bitflips
* to return it to the MTD layer in ecc.read_page().
*/
info->max_bitflips = max_t(unsigned int,
info->max_bitflips,
info->ecc_err_cnt);
}
if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) {
info->state = (status & NDSR_RDDREQ) ?
STATE_PIO_READING : STATE_PIO_WRITING;
/* Call the IRQ thread in U-Boot directly */
pxa3xx_nand_irq_thread(info);
return 0;
}
if (status & cmd_done) {
info->state = STATE_CMD_DONE;
is_completed = 1;
}
if (status & ready) {
info->state = STATE_READY;
is_ready = 1;
}
/*
* Clear all status bit before issuing the next command, which
* can and will alter the status bits and will deserve a new
* interrupt on its own. This lets the controller exit the IRQ
*/
nand_writel(info, NDSR, status);
if (status & NDSR_WRCMDREQ) {
status &= ~NDSR_WRCMDREQ;
info->state = STATE_CMD_HANDLE;
/*
* Command buffer registers NDCB{0-2} (and optionally NDCB3)
* must be loaded by writing directly either 12 or 16
* bytes directly to NDCB0, four bytes at a time.
*
* Direct write access to NDCB1, NDCB2 and NDCB3 is ignored
* but each NDCBx register can be read.
*/
nand_writel(info, NDCB0, info->ndcb0);
nand_writel(info, NDCB0, info->ndcb1);
nand_writel(info, NDCB0, info->ndcb2);
/* NDCB3 register is available in NFCv2 (Armada 370/XP SoC) */
if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 ||
info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K ||
info->variant == PXA3XX_NAND_VARIANT_AC5)
nand_writel(info, NDCB0, info->ndcb3);
}
if (is_completed)
info->cmd_complete = 1;
if (is_ready)
info->dev_ready = 1;
return ret;
}
static inline int is_buf_blank(uint8_t *buf, size_t len)
{
for (; len > 0; len--)
if (*buf++ != 0xff)
return 0;
return 1;
}
static void set_command_address(struct pxa3xx_nand_info *info,
unsigned int page_size, uint16_t column, int page_addr)
{
/* small page addr setting */
if (page_size < info->chunk_size) {
info->ndcb1 = ((page_addr & 0xFFFFFF) << 8)
| (column & 0xFF);
info->ndcb2 = 0;
} else {
info->ndcb1 = ((page_addr & 0xFFFF) << 16)
| (column & 0xFFFF);
if (page_addr & 0xFF0000)
info->ndcb2 = (page_addr & 0xFF0000) >> 16;
else
info->ndcb2 = 0;
}
}
static void prepare_start_command(struct pxa3xx_nand_info *info, int command)
{
struct pxa3xx_nand_host *host = info->host[info->cs];
struct mtd_info *mtd = nand_to_mtd(&host->chip);
/* reset data and oob column point to handle data */
info->buf_start = 0;
info->buf_count = 0;
info->data_buff_pos = 0;
info->oob_buff_pos = 0;
info->step_chunk_size = 0;
info->step_spare_size = 0;
info->cur_chunk = 0;
info->use_ecc = 0;
info->use_spare = 1;
info->retcode = ERR_NONE;
info->ecc_err_cnt = 0;
info->ndcb3 = 0;
info->need_wait = 0;
/*
* Reset max_bitflips to zero. Once command is complete,
* max_bitflips for this READ is returned in ecc.read_page()
*/
info->max_bitflips = 0;
switch (command) {
case NAND_CMD_READ0:
case NAND_CMD_READOOB:
case NAND_CMD_PAGEPROG:
if (!info->force_raw)
info->use_ecc = 1;
break;
case NAND_CMD_PARAM:
info->use_spare = 0;
break;
default:
info->ndcb1 = 0;
info->ndcb2 = 0;
break;
}
/*
* If we are about to issue a read command, or about to set
* the write address, then clean the data buffer.
*/
if (command == NAND_CMD_READ0 ||
command == NAND_CMD_READOOB ||
command == NAND_CMD_SEQIN) {
info->buf_count = mtd->writesize + mtd->oobsize;
memset(info->data_buff, 0xFF, info->buf_count);
}
}
static int prepare_set_command(struct pxa3xx_nand_info *info, int command,
int ext_cmd_type, uint16_t column, int page_addr)
{
int addr_cycle, exec_cmd;
struct pxa3xx_nand_host *host;
struct mtd_info *mtd;
host = info->host[info->cs];
mtd = nand_to_mtd(&host->chip);
addr_cycle = 0;
exec_cmd = 1;
if (info->cs != 0)
info->ndcb0 = NDCB0_CSEL;
else
info->ndcb0 = 0;
if (command == NAND_CMD_SEQIN)
exec_cmd = 0;
addr_cycle = NDCB0_ADDR_CYC(host->row_addr_cycles
+ host->col_addr_cycles);
switch (command) {
case NAND_CMD_READOOB:
case NAND_CMD_READ0:
info->buf_start = column;
info->ndcb0 |= NDCB0_CMD_TYPE(0)
| addr_cycle
| NAND_CMD_READ0;
if (command == NAND_CMD_READOOB)
info->buf_start += mtd->writesize;
if (info->cur_chunk < info->nfullchunks) {
info->step_chunk_size = info->chunk_size;
info->step_spare_size = info->spare_size;
} else {
info->step_chunk_size = info->last_chunk_size;
info->step_spare_size = info->last_spare_size;
}
/*
* Multiple page read needs an 'extended command type' field,
* which is either naked-read or last-read according to the
* state.
*/
if (info->force_raw) {
info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8) |
NDCB0_LEN_OVRD |
NDCB0_EXT_CMD_TYPE(ext_cmd_type);
info->ndcb3 = info->step_chunk_size +
info->step_spare_size + info->ecc_size;
} else if (mtd->writesize == info->chunk_size) {
info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8);
} else if (mtd->writesize > info->chunk_size) {
info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8)
| NDCB0_LEN_OVRD
| NDCB0_EXT_CMD_TYPE(ext_cmd_type);
info->ndcb3 = info->step_chunk_size +
info->step_spare_size;
}
set_command_address(info, mtd->writesize, column, page_addr);
break;
case NAND_CMD_SEQIN:
info->buf_start = column;
set_command_address(info, mtd->writesize, 0, page_addr);
/*
* Multiple page programming needs to execute the initial
* SEQIN command that sets the page address.
*/
if (mtd->writesize > info->chunk_size) {
info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
| NDCB0_EXT_CMD_TYPE(ext_cmd_type)
| addr_cycle
| command;
exec_cmd = 1;
}
break;
case NAND_CMD_PAGEPROG:
if (is_buf_blank(info->data_buff,
(mtd->writesize + mtd->oobsize))) {
exec_cmd = 0;
break;
}
if (info->cur_chunk < info->nfullchunks) {
info->step_chunk_size = info->chunk_size;
info->step_spare_size = info->spare_size;
} else {
info->step_chunk_size = info->last_chunk_size;
info->step_spare_size = info->last_spare_size;
}
/* Second command setting for large pages */
if (mtd->writesize > info->chunk_size) {
/*
* Multiple page write uses the 'extended command'
* field. This can be used to issue a command dispatch
* or a naked-write depending on the current stage.
*/
info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
| NDCB0_LEN_OVRD
| NDCB0_EXT_CMD_TYPE(ext_cmd_type);
info->ndcb3 = info->step_chunk_size +
info->step_spare_size;
/*
* This is the command dispatch that completes a chunked
* page program operation.
*/
if (info->cur_chunk == info->ntotalchunks) {
info->ndcb0 = NDCB0_CMD_TYPE(0x1)
| NDCB0_EXT_CMD_TYPE(ext_cmd_type)
| command;
info->ndcb1 = 0;
info->ndcb2 = 0;
info->ndcb3 = 0;
}
} else {
info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
| NDCB0_AUTO_RS
| NDCB0_ST_ROW_EN
| NDCB0_DBC
| (NAND_CMD_PAGEPROG << 8)
| NAND_CMD_SEQIN
| addr_cycle;
}
break;
case NAND_CMD_PARAM:
info->buf_count = INIT_BUFFER_SIZE;
info->ndcb0 |= NDCB0_CMD_TYPE(0)
| NDCB0_ADDR_CYC(1)
| NDCB0_LEN_OVRD
| command;
info->ndcb1 = (column & 0xFF);
info->ndcb3 = INIT_BUFFER_SIZE;
info->step_chunk_size = INIT_BUFFER_SIZE;
break;
case NAND_CMD_READID:
info->buf_count = READ_ID_BYTES;
info->ndcb0 |= NDCB0_CMD_TYPE(3)
| NDCB0_ADDR_CYC(1)
| command;
info->ndcb1 = (column & 0xFF);
info->step_chunk_size = 8;
break;
case NAND_CMD_STATUS:
info->buf_count = 1;
info->ndcb0 |= NDCB0_CMD_TYPE(4)
| NDCB0_ADDR_CYC(1)
| command;
info->step_chunk_size = 8;
break;
case NAND_CMD_ERASE1:
info->ndcb0 |= NDCB0_CMD_TYPE(2)
| NDCB0_AUTO_RS
| NDCB0_ADDR_CYC(3)
| NDCB0_DBC
| (NAND_CMD_ERASE2 << 8)
| NAND_CMD_ERASE1;
info->ndcb1 = page_addr;
info->ndcb2 = 0;
break;
case NAND_CMD_RESET:
info->ndcb0 |= NDCB0_CMD_TYPE(5)
| command;
break;
case NAND_CMD_ERASE2:
exec_cmd = 0;
break;
default:
exec_cmd = 0;
dev_err(mtd->dev, "non-supported command %x\n",
command);
break;
}
return exec_cmd;
}
static void nand_cmdfunc(struct mtd_info *mtd, unsigned command,
int column, int page_addr)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
struct pxa3xx_nand_info *info = host->info_data;
int exec_cmd;
/*
* if this is a x16 device ,then convert the input
* "byte" address into a "word" address appropriate
* for indexing a word-oriented device
*/
if (info->reg_ndcr & NDCR_DWIDTH_M)
column /= 2;
/*
* There may be different NAND chip hooked to
* different chip select, so check whether
* chip select has been changed, if yes, reset the timing
*/
if (info->cs != host->cs) {
info->cs = host->cs;
nand_writel(info, NDTR0CS0, info->ndtr0cs0);
nand_writel(info, NDTR1CS0, info->ndtr1cs0);
}
prepare_start_command(info, command);
info->state = STATE_PREPARED;
exec_cmd = prepare_set_command(info, command, 0, column, page_addr);
if (exec_cmd) {
u32 ts;
info->cmd_complete = 0;
info->dev_ready = 0;
info->need_wait = 1;
pxa3xx_nand_start(info);
ts = get_timer(0);
while (1) {
u32 status;
status = nand_readl(info, NDSR);
if (status)
pxa3xx_nand_irq(info);
if (info->cmd_complete)
break;
if (get_timer(ts) > CHIP_DELAY_TIMEOUT) {
dev_err(mtd->dev, "Wait timeout!!!\n");
return;
}
}
}
info->state = STATE_IDLE;
}
static void nand_cmdfunc_extended(struct mtd_info *mtd,
const unsigned command,
int column, int page_addr)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
struct pxa3xx_nand_info *info = host->info_data;
int exec_cmd, ext_cmd_type;
/*
* if this is a x16 device then convert the input
* "byte" address into a "word" address appropriate
* for indexing a word-oriented device
*/
if (info->reg_ndcr & NDCR_DWIDTH_M)
column /= 2;
/*
* There may be different NAND chip hooked to
* different chip select, so check whether
* chip select has been changed, if yes, reset the timing
*/
if (info->cs != host->cs) {
info->cs = host->cs;
nand_writel(info, NDTR0CS0, info->ndtr0cs0);
nand_writel(info, NDTR1CS0, info->ndtr1cs0);
}
/* Select the extended command for the first command */
switch (command) {
case NAND_CMD_READ0:
case NAND_CMD_READOOB:
ext_cmd_type = EXT_CMD_TYPE_MONO;
break;
case NAND_CMD_SEQIN:
ext_cmd_type = EXT_CMD_TYPE_DISPATCH;
break;
case NAND_CMD_PAGEPROG:
ext_cmd_type = EXT_CMD_TYPE_NAKED_RW;
break;
default:
ext_cmd_type = 0;
break;
}
prepare_start_command(info, command);
/*
* Prepare the "is ready" completion before starting a command
* transaction sequence. If the command is not executed the
* completion will be completed, see below.
*
* We can do that inside the loop because the command variable
* is invariant and thus so is the exec_cmd.
*/
info->need_wait = 1;
info->dev_ready = 0;
do {
u32 ts;
info->state = STATE_PREPARED;
exec_cmd = prepare_set_command(info, command, ext_cmd_type,
column, page_addr);
if (!exec_cmd) {
info->need_wait = 0;
info->dev_ready = 1;
break;
}
info->cmd_complete = 0;
pxa3xx_nand_start(info);
ts = get_timer(0);
while (1) {
u32 status;
status = nand_readl(info, NDSR);
if (status)
pxa3xx_nand_irq(info);
if (info->cmd_complete)
break;
if (get_timer(ts) > CHIP_DELAY_TIMEOUT) {
dev_err(mtd->dev, "Wait timeout!!!\n");
return;
}
}
/* Only a few commands need several steps */
if (command != NAND_CMD_PAGEPROG &&
command != NAND_CMD_READ0 &&
command != NAND_CMD_READOOB)
break;
info->cur_chunk++;
/* Check if the sequence is complete */
if (info->cur_chunk == info->ntotalchunks &&
command != NAND_CMD_PAGEPROG)
break;
/*
* After a splitted program command sequence has issued
* the command dispatch, the command sequence is complete.
*/
if (info->cur_chunk == (info->ntotalchunks + 1) &&
command == NAND_CMD_PAGEPROG &&
ext_cmd_type == EXT_CMD_TYPE_DISPATCH)
break;
if (command == NAND_CMD_READ0 || command == NAND_CMD_READOOB) {
/* Last read: issue a 'last naked read' */
if (info->cur_chunk == info->ntotalchunks - 1)
ext_cmd_type = EXT_CMD_TYPE_LAST_RW;
else
ext_cmd_type = EXT_CMD_TYPE_NAKED_RW;
/*
* If a splitted program command has no more data to transfer,
* the command dispatch must be issued to complete.
*/
} else if (command == NAND_CMD_PAGEPROG &&
info->cur_chunk == info->ntotalchunks) {
ext_cmd_type = EXT_CMD_TYPE_DISPATCH;
}
} while (1);
info->state = STATE_IDLE;
}
static int pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, const uint8_t *buf, int oob_required,
int page)
{
chip->write_buf(mtd, buf, mtd->writesize);
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
return 0;
}
static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf, int oob_required,
int page)
{
struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
struct pxa3xx_nand_info *info = host->info_data;
int bf;
chip->read_buf(mtd, buf, mtd->writesize);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
if (info->retcode == ERR_CORERR && info->use_ecc) {
mtd->ecc_stats.corrected += info->ecc_err_cnt;
} else if (info->retcode == ERR_UNCORERR && info->ecc_bch) {
/*
* Empty pages will trigger uncorrectable errors. Re-read the
* entire page in raw mode and check for bits not being "1".
* If there are more than the supported strength, then it means
* this is an actual uncorrectable error.
*/
chip->ecc.read_page_raw(mtd, chip, buf, oob_required, page);
bf = nand_check_erased_ecc_chunk(buf, mtd->writesize,
chip->oob_poi, mtd->oobsize,
NULL, 0, chip->ecc.strength);
if (bf < 0) {
mtd->ecc_stats.failed++;
} else if (bf) {
mtd->ecc_stats.corrected += bf;
info->max_bitflips = max_t(unsigned int,
info->max_bitflips, bf);
info->retcode = ERR_CORERR;
} else {
info->retcode = ERR_NONE;
}
} else if (info->retcode == ERR_UNCORERR && !info->ecc_bch) {
/* Raw read is not supported with Hamming ECC engine */
if (is_buf_blank(buf, mtd->writesize))
info->retcode = ERR_NONE;
else
mtd->ecc_stats.failed++;
}
return info->max_bitflips;
}
static int pxa3xx_nand_read_page_raw(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct pxa3xx_nand_host *host = chip->priv;
struct pxa3xx_nand_info *info = host->info_data;
int chunk, ecc_off_buf;
if (!info->ecc_bch)
return -ENOTSUPP;
/*
* Set the force_raw boolean, then re-call ->cmdfunc() that will run
* pxa3xx_nand_start(), which will actually disable the ECC engine.
*/
info->force_raw = true;
chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
ecc_off_buf = (info->nfullchunks * info->spare_size) +
info->last_spare_size;
for (chunk = 0; chunk < info->nfullchunks; chunk++) {
chip->read_buf(mtd,
buf + (chunk * info->chunk_size),
info->chunk_size);
chip->read_buf(mtd,
chip->oob_poi +
(chunk * (info->spare_size)),
info->spare_size);
chip->read_buf(mtd,
chip->oob_poi + ecc_off_buf +
(chunk * (info->ecc_size)),
info->ecc_size - 2);
}
if (info->ntotalchunks > info->nfullchunks) {
chip->read_buf(mtd,
buf + (info->nfullchunks * info->chunk_size),
info->last_chunk_size);
chip->read_buf(mtd,
chip->oob_poi +
(info->nfullchunks * (info->spare_size)),
info->last_spare_size);
chip->read_buf(mtd,
chip->oob_poi + ecc_off_buf +
(info->nfullchunks * (info->ecc_size)),
info->ecc_size - 2);
}
info->force_raw = false;
return 0;
}
static int pxa3xx_nand_read_oob_raw(struct mtd_info *mtd,
struct nand_chip *chip, int page)
{
/* Invalidate page cache */
chip->pagebuf = -1;
return chip->ecc.read_page_raw(mtd, chip, chip->buffers->databuf, true,
page);
}
static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
struct pxa3xx_nand_info *info = host->info_data;
char retval = 0xFF;
if (info->buf_start < info->buf_count)
/* Has just send a new command? */
retval = info->data_buff[info->buf_start++];
return retval;
}
static u16 pxa3xx_nand_read_word(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
struct pxa3xx_nand_info *info = host->info_data;
u16 retval = 0xFFFF;
if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) {
retval = *((u16 *)(info->data_buff+info->buf_start));
info->buf_start += 2;
}
return retval;
}
static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
struct pxa3xx_nand_info *info = host->info_data;
int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
memcpy(buf, info->data_buff + info->buf_start, real_len);
info->buf_start += real_len;
}
static void pxa3xx_nand_write_buf(struct mtd_info *mtd,
const uint8_t *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
struct pxa3xx_nand_info *info = host->info_data;
int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
memcpy(info->data_buff + info->buf_start, buf, real_len);
info->buf_start += real_len;
}
static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip)
{
return;
}
static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
struct pxa3xx_nand_info *info = host->info_data;
if (info->need_wait) {
u32 ts;
info->need_wait = 0;
ts = get_timer(0);
while (1) {
u32 status;
status = nand_readl(info, NDSR);
if (status)
pxa3xx_nand_irq(info);
if (info->dev_ready)
break;
if (get_timer(ts) > CHIP_DELAY_TIMEOUT) {
dev_err(mtd->dev, "Ready timeout!!!\n");
return NAND_STATUS_FAIL;
}
}
}
/* pxa3xx_nand_send_command has waited for command complete */
if (this->state == FL_WRITING || this->state == FL_ERASING) {
if (info->retcode == ERR_NONE)
return 0;
else
return NAND_STATUS_FAIL;
}
return NAND_STATUS_READY;
}
static int pxa3xx_nand_config_ident(struct pxa3xx_nand_info *info)
{
struct pxa3xx_nand_platform_data *pdata = info->pdata;
/* Configure default flash values */
info->reg_ndcr = 0x0; /* enable all interrupts */
info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
info->reg_ndcr |= NDCR_RD_ID_CNT(READ_ID_BYTES);
info->reg_ndcr |= NDCR_SPARE_EN;
return 0;
}
static void pxa3xx_nand_config_tail(struct pxa3xx_nand_info *info)
{
struct pxa3xx_nand_host *host = info->host[info->cs];
struct mtd_info *mtd = nand_to_mtd(&info->host[info->cs]->chip);
struct nand_chip *chip = mtd_to_nand(mtd);
info->reg_ndcr |= (host->col_addr_cycles == 2) ? NDCR_RA_START : 0;
info->reg_ndcr |= (chip->page_shift == 6) ? NDCR_PG_PER_BLK : 0;
info->reg_ndcr |= (mtd->writesize == 2048) ? NDCR_PAGE_SZ : 0;
}
static void pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info)
{
struct pxa3xx_nand_platform_data *pdata = info->pdata;
uint32_t ndcr = nand_readl(info, NDCR);
/* Set an initial chunk size */
info->chunk_size = ndcr & NDCR_PAGE_SZ ? 2048 : 512;
info->reg_ndcr = ndcr &
~(NDCR_INT_MASK | NDCR_ND_ARB_EN | NFCV1_NDCR_ARB_CNTL);
info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
info->ndtr0cs0 = nand_readl(info, NDTR0CS0);
info->ndtr1cs0 = nand_readl(info, NDTR1CS0);
}
static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info)
{
info->data_buff = kmalloc(info->buf_size, GFP_KERNEL);
if (info->data_buff == NULL)
return -ENOMEM;
return 0;
}
static int pxa3xx_nand_sensing(struct pxa3xx_nand_host *host)
{
struct pxa3xx_nand_info *info = host->info_data;
struct pxa3xx_nand_platform_data *pdata = info->pdata;
struct mtd_info *mtd;
struct nand_chip *chip;
const struct nand_sdr_timings *timings;
int ret;
mtd = nand_to_mtd(&info->host[info->cs]->chip);
chip = mtd_to_nand(mtd);
/* configure default flash values */
info->reg_ndcr = 0x0; /* enable all interrupts */
info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
info->reg_ndcr |= NDCR_RD_ID_CNT(READ_ID_BYTES);
info->reg_ndcr |= NDCR_SPARE_EN; /* enable spare by default */
/* use the common timing to make a try */
timings = onfi_async_timing_mode_to_sdr_timings(0);
if (IS_ERR(timings))
return PTR_ERR(timings);
pxa3xx_nand_set_sdr_timing(host, timings);
chip->cmdfunc(mtd, NAND_CMD_RESET, 0, 0);
ret = chip->waitfunc(mtd, chip);
if (ret & NAND_STATUS_FAIL)
return -ENODEV;
return 0;
}
static int pxa_ecc_init(struct pxa3xx_nand_info *info,
struct nand_ecc_ctrl *ecc,
int strength, int ecc_stepsize, int page_size)
{
int i = 0;
/* if ecc strength is 1 ecc algo is Hamming else bch */
info->ecc_bch = (strength == 1) ? 0 : 1;
ecc->mode = NAND_ECC_HW;
/* ecc->layout is not in use for pxa driver (but shouldn't be NULL)*/
if (info->ecc_bch == 1)
ecc->layout = &ecc_layout_empty;
/* for bch actual ecc strength is 16 per chunk */
ecc->strength = (info->ecc_bch == 1) ? 16 : 1;
while (nfc_layouts[i].strength) {
if (strength == nfc_layouts[i].strength && page_size == nfc_layouts[i].page_size) {
info->nfullchunks = nfc_layouts[i].nfullchunks;
info->chunk_size = nfc_layouts[i].chunk_size;
info->spare_size = nfc_layouts[i].spare_size;
info->last_chunk_size = nfc_layouts[i].last_chunk_size;
info->last_spare_size = nfc_layouts[i].last_spare_size;
info->ntotalchunks = (info->last_spare_size || info->last_chunk_size) ?
info->nfullchunks + 1 : info->nfullchunks;
info->ecc_size = nfc_layouts[i].ecc_size;
break;
}
++i;
}
/* for bch the ecc is calculated per chunk size and for Hamming it is 512 */
ecc->size = (info->ecc_bch) ? info->chunk_size : 512;
/* nand_scan_tail func perform validity tests for ECC strength, and it
* assumes that all chunks are with same size. in our case when ecc is 12
* the chunk size is 704 but the last chunk is with different size so
* we cheat it nand_scan_tail validity tests by set info->ecc_size value to 512
*/
if (strength == 12)
ecc->size = 512;
if (ecc_stepsize != 512 || !(nfc_layouts[i].strength)) {
dev_err(info->controller.active->mtd.dev,
"ECC strength %d at page size %d is not supported\n",
strength, page_size);
return -ENODEV;
}
return 0;
}
static int pxa3xx_nand_scan(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
struct pxa3xx_nand_info *info = host->info_data;
struct pxa3xx_nand_platform_data *pdata = info->pdata;
int ret;
uint16_t ecc_strength, ecc_step;
if (pdata->keep_config) {
pxa3xx_nand_detect_config(info);
} else {
ret = pxa3xx_nand_config_ident(info);
if (ret)
return ret;
ret = pxa3xx_nand_sensing(host);
if (ret) {
dev_info(mtd->dev, "There is no chip on cs %d!\n",
info->cs);
return ret;
}
}
/* Device detection must be done with ECC disabled */
if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 ||
info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K ||
info->variant == PXA3XX_NAND_VARIANT_AC5)
nand_writel(info, NDECCCTRL, 0x0);
if (nand_scan_ident(mtd, 1, NULL))
return -ENODEV;
if (!pdata->keep_config) {
ret = pxa3xx_nand_init_timings(host);
if (ret) {
dev_err(mtd->dev,
"Failed to set timings: %d\n", ret);
return ret;
}
}
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
/*
* We'll use a bad block table stored in-flash and don't
* allow writing the bad block marker to the flash.
*/
chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB_BBM;
chip->bbt_td = &bbt_main_descr;
chip->bbt_md = &bbt_mirror_descr;
#endif
if (pdata->ecc_strength && pdata->ecc_step_size) {
ecc_strength = pdata->ecc_strength;
ecc_step = pdata->ecc_step_size;
} else {
ecc_strength = chip->ecc_strength_ds;
ecc_step = chip->ecc_step_ds;
}
/* Set default ECC strength requirements on non-ONFI devices */
if (ecc_strength < 1 && ecc_step < 1) {
ecc_strength = 1;
ecc_step = 512;
}
ret = pxa_ecc_init(info, &chip->ecc, ecc_strength,
ecc_step, mtd->writesize);
if (ret)
return ret;
/*
* If the page size is bigger than the FIFO size, let's check
* we are given the right variant and then switch to the extended
* (aka split) command handling,
*/
if (mtd->writesize > info->chunk_size) {
if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 ||
info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K ||
info->variant == PXA3XX_NAND_VARIANT_AC5) {
chip->cmdfunc = nand_cmdfunc_extended;
} else {
dev_err(mtd->dev,
"unsupported page size on this variant\n");
return -ENODEV;
}
}
/* calculate addressing information */
if (mtd->writesize >= 2048)
host->col_addr_cycles = 2;
else
host->col_addr_cycles = 1;
/* release the initial buffer */
kfree(info->data_buff);
/* allocate the real data + oob buffer */
info->buf_size = mtd->writesize + mtd->oobsize;
ret = pxa3xx_nand_init_buff(info);
if (ret)
return ret;
info->oob_buff = info->data_buff + mtd->writesize;
if ((mtd->size >> chip->page_shift) > 65536)
host->row_addr_cycles = 3;
else
host->row_addr_cycles = 2;
if (!pdata->keep_config)
pxa3xx_nand_config_tail(info);
return nand_scan_tail(mtd);
}
static int alloc_nand_resource(struct udevice *dev, struct pxa3xx_nand_info *info)
{
struct pxa3xx_nand_platform_data *pdata;
struct pxa3xx_nand_host *host;
struct nand_chip *chip = NULL;
struct mtd_info *mtd;
int cs;
pdata = info->pdata;
if (pdata->num_cs <= 0)
return -ENODEV;
info->variant = pxa3xx_nand_get_variant(dev);
for (cs = 0; cs < pdata->num_cs; cs++) {
chip = (struct nand_chip *)
((u8 *)&info[1] + sizeof(*host) * cs);
mtd = nand_to_mtd(chip);
host = (struct pxa3xx_nand_host *)chip;
info->host[cs] = host;
host->cs = cs;
host->info_data = info;
mtd->owner = THIS_MODULE;
nand_set_controller_data(chip, host);
chip->ecc.read_page = pxa3xx_nand_read_page_hwecc;
chip->ecc.read_page_raw = pxa3xx_nand_read_page_raw;
chip->ecc.read_oob_raw = pxa3xx_nand_read_oob_raw;
chip->ecc.write_page = pxa3xx_nand_write_page_hwecc;
chip->controller = &info->controller;
chip->waitfunc = pxa3xx_nand_waitfunc;
chip->select_chip = pxa3xx_nand_select_chip;
chip->read_word = pxa3xx_nand_read_word;
chip->read_byte = pxa3xx_nand_read_byte;
chip->read_buf = pxa3xx_nand_read_buf;
chip->write_buf = pxa3xx_nand_write_buf;
chip->options |= NAND_NO_SUBPAGE_WRITE;
chip->cmdfunc = nand_cmdfunc;
}
/* Allocate a buffer to allow flash detection */
info->buf_size = INIT_BUFFER_SIZE;
info->data_buff = kmalloc(info->buf_size, GFP_KERNEL);
if (info->data_buff == NULL)
return -ENOMEM;
/* initialize all interrupts to be disabled */
disable_int(info, NDSR_MASK);
/*
* Some SoCs like A7k/A8k need to enable manually the NAND
* controller to avoid being bootloader dependent. This is done
* through the use of a single bit in the System Functions registers.
*/
if (pxa3xx_nand_get_variant(dev) == PXA3XX_NAND_VARIANT_ARMADA_8K) {
struct regmap *sysctrl_base = syscon_regmap_lookup_by_phandle(
dev, "marvell,system-controller");
u32 reg;
if (IS_ERR(sysctrl_base))
return PTR_ERR(sysctrl_base);
regmap_read(sysctrl_base, GENCONF_SOC_DEVICE_MUX, &reg);
reg |= GENCONF_SOC_DEVICE_MUX_NFC_EN | GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN;
regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg);
}
return 0;
}
static int pxa3xx_nand_probe_dt(struct udevice *dev, struct pxa3xx_nand_info *info)
{
struct pxa3xx_nand_platform_data *pdata;
pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
info->mmio_base = dev_read_addr_ptr(dev);
pdata->num_cs = dev_read_u32_default(dev, "num-cs", 1);
if (pdata->num_cs != 1) {
pr_err("pxa3xx driver supports single CS only\n");
return -EINVAL;
}
if (dev_read_bool(dev, "marvell,nand-enable-arbiter"))
pdata->enable_arbiter = 1;
if (dev_read_bool(dev, "marvell,nand-keep-config"))
pdata->keep_config = 1;
/*
* ECC parameters.
* If these are not set, they will be selected according
* to the detected flash type.
*/
/* ECC strength */
pdata->ecc_strength = dev_read_u32_default(dev, "nand-ecc-strength", 0);
/* ECC step size */
pdata->ecc_step_size = dev_read_u32_default(dev, "nand-ecc-step-size",
0);
info->pdata = pdata;
return 0;
}
static int pxa3xx_nand_probe(struct udevice *dev)
{
struct pxa3xx_nand_platform_data *pdata;
int ret, cs, probe_success;
struct pxa3xx_nand_info *info = dev_get_priv(dev);
ret = pxa3xx_nand_probe_dt(dev, info);
if (ret)
return ret;
pdata = info->pdata;
ret = alloc_nand_resource(dev, info);
if (ret) {
dev_err(dev, "alloc nand resource failed\n");
return ret;
}
probe_success = 0;
for (cs = 0; cs < pdata->num_cs; cs++) {
struct mtd_info *mtd = nand_to_mtd(&info->host[cs]->chip);
/*
* The mtd name matches the one used in 'mtdparts' kernel
* parameter. This name cannot be changed or otherwise
* user's mtd partitions configuration would get broken.
*/
mtd->name = "pxa3xx_nand-0";
mtd->dev = dev;
info->cs = cs;
ret = pxa3xx_nand_scan(mtd);
if (ret) {
dev_info(mtd->dev, "failed to scan nand at cs %d\n",
cs);
continue;
}
if (nand_register(cs, mtd))
continue;
probe_success = 1;
}
if (!probe_success)
return -ENODEV;
return 0;
}
U_BOOT_DRIVER(pxa3xx_nand) = {
.name = "pxa3xx-nand",
.id = UCLASS_MTD,
.of_match = pxa3xx_nand_dt_ids,
.probe = pxa3xx_nand_probe,
.priv_auto = sizeof(struct pxa3xx_nand_info) +
sizeof(struct pxa3xx_nand_host) * CONFIG_SYS_MAX_NAND_DEVICE,
};
void board_nand_init(void)
{
struct udevice *dev;
int ret;
ret = uclass_get_device_by_driver(UCLASS_MTD,
DM_DRIVER_GET(pxa3xx_nand), &dev);
if (ret && ret != -ENODEV) {
pr_err("Failed to initialize %s. (error %d)\n", dev->name,
ret);
}
}