| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * LPC32xx MLC NAND flash controller driver |
| * |
| * (C) Copyright 2014 3ADEV <http://3adev.com> |
| * Written by Albert ARIBAUD <albert.aribaud@3adev.fr> |
| * |
| * NOTE: |
| * |
| * The MLC NAND flash controller provides hardware Reed-Solomon ECC |
| * covering in- and out-of-band data together. Therefore, in- and out- |
| * of-band data must be written together in order to have a valid ECC. |
| * |
| * Consequently, pages with meaningful in-band data are written with |
| * blank (all-ones) out-of-band data and a valid ECC, and any later |
| * out-of-band data write will void the ECC. |
| * |
| * Therefore, code which reads such late-written out-of-band data |
| * should not rely on the ECC validity. |
| */ |
| |
| #include <config.h> |
| #include <nand.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/mtd/rawnand.h> |
| #include <asm/io.h> |
| #include <nand.h> |
| #include <asm/arch/clk.h> |
| #include <asm/arch/sys_proto.h> |
| #include <linux/printk.h> |
| |
| /* |
| * MLC NAND controller registers. |
| */ |
| struct lpc32xx_nand_mlc_registers { |
| u8 buff[32768]; /* controller's serial data buffer */ |
| u8 data[32768]; /* NAND's raw data buffer */ |
| u32 cmd; |
| u32 addr; |
| u32 ecc_enc_reg; |
| u32 ecc_dec_reg; |
| u32 ecc_auto_enc_reg; |
| u32 ecc_auto_dec_reg; |
| u32 rpr; |
| u32 wpr; |
| u32 rubp; |
| u32 robp; |
| u32 sw_wp_add_low; |
| u32 sw_wp_add_hig; |
| u32 icr; |
| u32 time_reg; |
| u32 irq_mr; |
| u32 irq_sr; |
| u32 lock_pr; |
| u32 isr; |
| u32 ceh; |
| }; |
| |
| /* LOCK_PR register defines */ |
| #define LOCK_PR_UNLOCK_KEY 0x0000A25E /* Magic unlock value */ |
| |
| /* ICR defines */ |
| #define ICR_LARGE_BLOCKS 0x00000004 /* configure for 2KB blocks */ |
| #define ICR_ADDR4 0x00000002 /* configure for 4-word addrs */ |
| |
| /* CEH defines */ |
| #define CEH_NORMAL_CE 0x00000001 /* do not force CE ON */ |
| |
| /* ISR register defines */ |
| #define ISR_NAND_READY 0x00000001 |
| #define ISR_CONTROLLER_READY 0x00000002 |
| #define ISR_ECC_READY 0x00000004 |
| #define ISR_DECODER_ERRORS(s) ((((s) >> 4) & 3)+1) |
| #define ISR_DECODER_FAILURE 0x00000040 |
| #define ISR_DECODER_ERROR 0x00000008 |
| |
| /* time-out for NAND chip / controller loops, in us */ |
| #define LPC32X_NAND_TIMEOUT 5000 |
| |
| /* |
| * There is a single instance of the NAND MLC controller |
| */ |
| |
| static struct lpc32xx_nand_mlc_registers __iomem *lpc32xx_nand_mlc_registers |
| = (struct lpc32xx_nand_mlc_registers __iomem *)MLC_NAND_BASE; |
| |
| #if !defined(CFG_SYS_MAX_NAND_CHIPS) |
| #define CFG_SYS_MAX_NAND_CHIPS 1 |
| #endif |
| |
| #define clkdiv(v, w, o) (((1+(clk/v)) & w) << o) |
| |
| /** |
| * OOB data in each small page are 6 'free' then 10 ECC bytes. |
| * To make things easier, when reading large pages, the four pages' |
| * 'free' OOB bytes are grouped in the first 24 bytes of the OOB buffer, |
| * while the the four ECC bytes are groupe in its last 40 bytes. |
| * |
| * The struct below represents how free vs ecc oob bytes are stored |
| * in the buffer. |
| * |
| * Note: the OOB bytes contain the bad block marker at offsets 0 and 1. |
| */ |
| |
| struct lpc32xx_oob { |
| struct { |
| uint8_t free_oob_bytes[6]; |
| } free[4]; |
| struct { |
| uint8_t ecc_oob_bytes[10]; |
| } ecc[4]; |
| }; |
| |
| /* |
| * Initialize the controller |
| */ |
| |
| static void lpc32xx_nand_init(void) |
| { |
| unsigned int clk; |
| |
| /* Configure controller for no software write protection, x8 bus |
| width, large block device, and 4 address words */ |
| |
| /* unlock controller registers with magic key */ |
| writel(LOCK_PR_UNLOCK_KEY, |
| &lpc32xx_nand_mlc_registers->lock_pr); |
| |
| /* enable large blocks and large NANDs */ |
| writel(ICR_LARGE_BLOCKS | ICR_ADDR4, |
| &lpc32xx_nand_mlc_registers->icr); |
| |
| /* Make sure MLC interrupts are disabled */ |
| writel(0, &lpc32xx_nand_mlc_registers->irq_mr); |
| |
| /* Normal chip enable operation */ |
| writel(CEH_NORMAL_CE, |
| &lpc32xx_nand_mlc_registers->ceh); |
| |
| /* Setup NAND timing */ |
| clk = get_hclk_clk_rate(); |
| |
| writel( |
| clkdiv(CFG_LPC32XX_NAND_MLC_TCEA_DELAY, 0x03, 24) | |
| clkdiv(CFG_LPC32XX_NAND_MLC_BUSY_DELAY, 0x1F, 19) | |
| clkdiv(CFG_LPC32XX_NAND_MLC_NAND_TA, 0x07, 16) | |
| clkdiv(CFG_LPC32XX_NAND_MLC_RD_HIGH, 0x0F, 12) | |
| clkdiv(CFG_LPC32XX_NAND_MLC_RD_LOW, 0x0F, 8) | |
| clkdiv(CFG_LPC32XX_NAND_MLC_WR_HIGH, 0x0F, 4) | |
| clkdiv(CFG_LPC32XX_NAND_MLC_WR_LOW, 0x0F, 0), |
| &lpc32xx_nand_mlc_registers->time_reg); |
| } |
| |
| #if !defined(CONFIG_XPL_BUILD) |
| |
| /** |
| * lpc32xx_cmd_ctrl - write command to either cmd or data register |
| */ |
| |
| static void lpc32xx_cmd_ctrl(struct mtd_info *mtd, int cmd, |
| unsigned int ctrl) |
| { |
| if (cmd == NAND_CMD_NONE) |
| return; |
| |
| if (ctrl & NAND_CLE) |
| writeb(cmd & 0Xff, &lpc32xx_nand_mlc_registers->cmd); |
| else if (ctrl & NAND_ALE) |
| writeb(cmd & 0Xff, &lpc32xx_nand_mlc_registers->addr); |
| } |
| |
| /** |
| * lpc32xx_read_byte - read a byte from the NAND |
| * @mtd: MTD device structure |
| */ |
| |
| static uint8_t lpc32xx_read_byte(struct mtd_info *mtd) |
| { |
| return readb(&lpc32xx_nand_mlc_registers->data); |
| } |
| |
| /** |
| * lpc32xx_dev_ready - test if NAND device (actually controller) is ready |
| * @mtd: MTD device structure |
| * @mode: mode to set the ECC HW to. |
| */ |
| |
| static int lpc32xx_dev_ready(struct mtd_info *mtd) |
| { |
| /* means *controller* ready for us */ |
| int status = readl(&lpc32xx_nand_mlc_registers->isr); |
| return status & ISR_CONTROLLER_READY; |
| } |
| |
| /** |
| * ECC layout -- this is needed whatever ECC mode we are using. |
| * In a 2KB (4*512B) page, R/S codes occupy 40 (4*10) bytes. |
| * To make U-Boot's life easier, we pack 'useable' OOB at the |
| * front and R/S ECC at the back. |
| */ |
| |
| static struct nand_ecclayout lpc32xx_largepage_ecclayout = { |
| .eccbytes = 40, |
| .eccpos = {24, 25, 26, 27, 28, 29, 30, 31, 32, 33, |
| 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, |
| 44, 45, 46, 47, 48, 48, 50, 51, 52, 53, |
| 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, |
| }, |
| .oobfree = { |
| /* bytes 0 and 1 are used for the bad block marker */ |
| { |
| .offset = 2, |
| .length = 22 |
| }, |
| } |
| }; |
| |
| /** |
| * lpc32xx_read_page_hwecc - read in- and out-of-band data with ECC |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * @oob_required: caller requires OOB data read to chip->oob_poi |
| * @page: page number to read |
| * |
| * Use large block Auto Decode Read Mode(1) as described in User Manual |
| * section 8.6.2.1. |
| * |
| * The initial Read Mode and Read Start commands are sent by the caller. |
| * |
| * ECC will be false if out-of-band data has been updated since in-band |
| * data was initially written. |
| */ |
| |
| static int lpc32xx_read_page_hwecc(struct mtd_info *mtd, |
| struct nand_chip *chip, uint8_t *buf, int oob_required, |
| int page) |
| { |
| unsigned int i, status, timeout, err, max_bitflips = 0; |
| struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi; |
| |
| /* go through all four small pages */ |
| for (i = 0; i < 4; i++) { |
| /* start auto decode (reads 528 NAND bytes) */ |
| writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg); |
| /* wait for controller to return to ready state */ |
| for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { |
| status = readl(&lpc32xx_nand_mlc_registers->isr); |
| if (status & ISR_CONTROLLER_READY) |
| break; |
| udelay(1); |
| } |
| /* if decoder failed, return failure */ |
| if (status & ISR_DECODER_FAILURE) |
| return -1; |
| /* keep count of maximum bitflips performed */ |
| if (status & ISR_DECODER_ERROR) { |
| err = ISR_DECODER_ERRORS(status); |
| if (err > max_bitflips) |
| max_bitflips = err; |
| } |
| /* copy first 512 bytes into buffer */ |
| memcpy(buf+512*i, lpc32xx_nand_mlc_registers->buff, 512); |
| /* copy next 6 bytes at front of OOB buffer */ |
| memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6); |
| /* copy last 10 bytes (R/S ECC) at back of OOB buffer */ |
| memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->buff, 10); |
| } |
| return max_bitflips; |
| } |
| |
| /** |
| * lpc32xx_read_page_raw - read raw (in-band, out-of-band and ECC) data |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * @oob_required: caller requires OOB data read to chip->oob_poi |
| * @page: page number to read |
| * |
| * Read NAND directly; can read pages with invalid ECC. |
| */ |
| |
| static int lpc32xx_read_page_raw(struct mtd_info *mtd, |
| struct nand_chip *chip, uint8_t *buf, int oob_required, |
| int page) |
| { |
| unsigned int i, status, timeout; |
| struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi; |
| |
| /* when we get here we've already had the Read Mode(1) */ |
| |
| /* go through all four small pages */ |
| for (i = 0; i < 4; i++) { |
| /* wait for NAND to return to ready state */ |
| for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { |
| status = readl(&lpc32xx_nand_mlc_registers->isr); |
| if (status & ISR_NAND_READY) |
| break; |
| udelay(1); |
| } |
| /* if NAND stalled, return failure */ |
| if (!(status & ISR_NAND_READY)) |
| return -1; |
| /* copy first 512 bytes into buffer */ |
| memcpy(buf+512*i, lpc32xx_nand_mlc_registers->data, 512); |
| /* copy next 6 bytes at front of OOB buffer */ |
| memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->data, 6); |
| /* copy last 10 bytes (R/S ECC) at back of OOB buffer */ |
| memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->data, 10); |
| } |
| return 0; |
| } |
| |
| /** |
| * lpc32xx_read_oob - read out-of-band data |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @page: page number to read |
| * |
| * Read out-of-band data. User Manual section 8.6.4 suggests using Read |
| * Mode(3) which the controller will turn into a Read Mode(1) internally |
| * but nand_base.c will turn Mode(3) into Mode(0), so let's use Mode(0) |
| * directly. |
| * |
| * ECC covers in- and out-of-band data and was written when out-of-band |
| * data was blank. Therefore, if the out-of-band being read here is not |
| * blank, then the ECC will be false and the read will return bitflips, |
| * even in case of ECC failure where we will return 5 bitflips. The |
| * caller should be prepared to handle this. |
| */ |
| |
| static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| int page) |
| { |
| unsigned int i, status, timeout, err, max_bitflips = 0; |
| struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi; |
| |
| /* No command was sent before calling read_oob() so send one */ |
| |
| chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); |
| |
| /* go through all four small pages */ |
| for (i = 0; i < 4; i++) { |
| /* start auto decode (reads 528 NAND bytes) */ |
| writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg); |
| /* wait for controller to return to ready state */ |
| for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { |
| status = readl(&lpc32xx_nand_mlc_registers->isr); |
| if (status & ISR_CONTROLLER_READY) |
| break; |
| udelay(1); |
| } |
| /* if decoder failure, count 'one too many' bitflips */ |
| if (status & ISR_DECODER_FAILURE) |
| max_bitflips = 5; |
| /* keep count of maximum bitflips performed */ |
| if (status & ISR_DECODER_ERROR) { |
| err = ISR_DECODER_ERRORS(status); |
| if (err > max_bitflips) |
| max_bitflips = err; |
| } |
| /* set read pointer to OOB area */ |
| writel(0, &lpc32xx_nand_mlc_registers->robp); |
| /* copy next 6 bytes at front of OOB buffer */ |
| memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6); |
| /* copy next 10 bytes (R/S ECC) at back of OOB buffer */ |
| memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->buff, 10); |
| } |
| return max_bitflips; |
| } |
| |
| /** |
| * lpc32xx_write_page_hwecc - write in- and out-of-band data with ECC |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: data buffer |
| * @oob_required: must write chip->oob_poi to OOB |
| * |
| * Use large block Auto Encode as per User Manual section 8.6.4. |
| * |
| * The initial Write Serial Input and final Auto Program commands are |
| * sent by the caller. |
| */ |
| |
| static int lpc32xx_write_page_hwecc(struct mtd_info *mtd, |
| struct nand_chip *chip, const uint8_t *buf, int oob_required, |
| int page) |
| { |
| unsigned int i, status, timeout; |
| struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi; |
| |
| /* when we get here we've already had the SEQIN */ |
| for (i = 0; i < 4; i++) { |
| /* start encode (expects 518 writes to buff) */ |
| writel(0, &lpc32xx_nand_mlc_registers->ecc_enc_reg); |
| /* copy first 512 bytes from buffer */ |
| memcpy(&lpc32xx_nand_mlc_registers->buff, buf+512*i, 512); |
| /* copy next 6 bytes from OOB buffer -- excluding ECC */ |
| memcpy(&lpc32xx_nand_mlc_registers->buff, &oob->free[i], 6); |
| /* wait for ECC to return to ready state */ |
| for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { |
| status = readl(&lpc32xx_nand_mlc_registers->isr); |
| if (status & ISR_ECC_READY) |
| break; |
| udelay(1); |
| } |
| /* if ECC stalled, return failure */ |
| if (!(status & ISR_ECC_READY)) |
| return -1; |
| /* Trigger auto encode (writes 528 bytes to NAND) */ |
| writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_enc_reg); |
| /* wait for controller to return to ready state */ |
| for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { |
| status = readl(&lpc32xx_nand_mlc_registers->isr); |
| if (status & ISR_CONTROLLER_READY) |
| break; |
| udelay(1); |
| } |
| /* if controller stalled, return error */ |
| if (!(status & ISR_CONTROLLER_READY)) |
| return -1; |
| } |
| return 0; |
| } |
| |
| /** |
| * lpc32xx_write_page_raw - write raw (in-band, out-of-band and ECC) data |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * @oob_required: caller requires OOB data read to chip->oob_poi |
| * @page: page number to read |
| * |
| * Use large block write but without encode. |
| * |
| * The initial Write Serial Input and final Auto Program commands are |
| * sent by the caller. |
| * |
| * This function will write the full out-of-band data, including the |
| * ECC area. Therefore, it can write pages with valid *or* invalid ECC. |
| */ |
| |
| static int lpc32xx_write_page_raw(struct mtd_info *mtd, |
| struct nand_chip *chip, const uint8_t *buf, int oob_required, |
| int page) |
| { |
| unsigned int i; |
| struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi; |
| |
| /* when we get here we've already had the Read Mode(1) */ |
| for (i = 0; i < 4; i++) { |
| /* copy first 512 bytes from buffer */ |
| memcpy(lpc32xx_nand_mlc_registers->buff, buf+512*i, 512); |
| /* copy next 6 bytes into OOB buffer -- excluding ECC */ |
| memcpy(lpc32xx_nand_mlc_registers->buff, &oob->free[i], 6); |
| /* copy next 10 bytes into OOB buffer -- that is 'ECC' */ |
| memcpy(lpc32xx_nand_mlc_registers->buff, &oob->ecc[i], 10); |
| } |
| return 0; |
| } |
| |
| /** |
| * lpc32xx_write_oob - write out-of-band data |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @page: page number to read |
| * |
| * Since ECC covers in- and out-of-band data, writing out-of-band data |
| * with ECC will render the page ECC wrong -- or, if the page was blank, |
| * then it will produce a good ECC but a later in-band data write will |
| * render it wrong. |
| * |
| * Therefore, do not compute or write any ECC, and always return success. |
| * |
| * This implies that we do four writes, since non-ECC out-of-band data |
| * are not contiguous in a large page. |
| */ |
| |
| static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| int page) |
| { |
| /* update oob on all 4 subpages in sequence */ |
| unsigned int i, status, timeout; |
| struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi; |
| |
| for (i = 0; i < 4; i++) { |
| /* start data input */ |
| chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x200+0x210*i, page); |
| /* copy 6 non-ECC out-of-band bytes directly into NAND */ |
| memcpy(lpc32xx_nand_mlc_registers->data, &oob->free[i], 6); |
| /* program page */ |
| chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); |
| /* wait for NAND to return to ready state */ |
| for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { |
| status = readl(&lpc32xx_nand_mlc_registers->isr); |
| if (status & ISR_NAND_READY) |
| break; |
| udelay(1); |
| } |
| /* if NAND stalled, return error */ |
| if (!(status & ISR_NAND_READY)) |
| return -1; |
| } |
| return 0; |
| } |
| |
| /** |
| * lpc32xx_waitfunc - wait until a command is done |
| * @mtd: MTD device structure |
| * @chip: NAND chip structure |
| * |
| * Wait for controller and FLASH to both be ready. |
| */ |
| |
| static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) |
| { |
| int status; |
| unsigned int timeout; |
| /* wait until both controller and NAND are ready */ |
| for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { |
| status = readl(&lpc32xx_nand_mlc_registers->isr); |
| if ((status & (ISR_CONTROLLER_READY || ISR_NAND_READY)) |
| == (ISR_CONTROLLER_READY || ISR_NAND_READY)) |
| break; |
| udelay(1); |
| } |
| /* if controller or NAND stalled, return error */ |
| if ((status & (ISR_CONTROLLER_READY || ISR_NAND_READY)) |
| != (ISR_CONTROLLER_READY || ISR_NAND_READY)) |
| return -1; |
| /* write NAND status command */ |
| writel(NAND_CMD_STATUS, &lpc32xx_nand_mlc_registers->cmd); |
| /* read back status and return it */ |
| return readb(&lpc32xx_nand_mlc_registers->data); |
| } |
| |
| /* |
| * We are self-initializing, so we need our own chip struct |
| */ |
| |
| static struct nand_chip lpc32xx_chip; |
| |
| /* |
| * Initialize the controller |
| */ |
| |
| void board_nand_init(void) |
| { |
| struct mtd_info *mtd = nand_to_mtd(&lpc32xx_chip); |
| int ret; |
| |
| /* Set all BOARDSPECIFIC (actually core-specific) fields */ |
| |
| lpc32xx_chip.IO_ADDR_R = &lpc32xx_nand_mlc_registers->buff; |
| lpc32xx_chip.IO_ADDR_W = &lpc32xx_nand_mlc_registers->buff; |
| lpc32xx_chip.cmd_ctrl = lpc32xx_cmd_ctrl; |
| /* do not set init_size: nand_base.c will read sizes from chip */ |
| lpc32xx_chip.dev_ready = lpc32xx_dev_ready; |
| /* do not set setup_read_retry: this is NAND-chip-specific */ |
| /* do not set chip_delay: we have dev_ready defined. */ |
| lpc32xx_chip.options |= NAND_NO_SUBPAGE_WRITE; |
| |
| /* Set needed ECC fields */ |
| |
| lpc32xx_chip.ecc.mode = NAND_ECC_HW; |
| lpc32xx_chip.ecc.layout = &lpc32xx_largepage_ecclayout; |
| lpc32xx_chip.ecc.size = 512; |
| lpc32xx_chip.ecc.bytes = 10; |
| lpc32xx_chip.ecc.strength = 4; |
| lpc32xx_chip.ecc.read_page = lpc32xx_read_page_hwecc; |
| lpc32xx_chip.ecc.read_page_raw = lpc32xx_read_page_raw; |
| lpc32xx_chip.ecc.write_page = lpc32xx_write_page_hwecc; |
| lpc32xx_chip.ecc.write_page_raw = lpc32xx_write_page_raw; |
| lpc32xx_chip.ecc.read_oob = lpc32xx_read_oob; |
| lpc32xx_chip.ecc.write_oob = lpc32xx_write_oob; |
| lpc32xx_chip.waitfunc = lpc32xx_waitfunc; |
| |
| lpc32xx_chip.read_byte = lpc32xx_read_byte; /* FIXME: NEEDED? */ |
| |
| /* BBT options: read from last two pages */ |
| lpc32xx_chip.bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_LASTBLOCK |
| | NAND_BBT_SCANLASTPAGE | NAND_BBT_SCAN2NDPAGE |
| | NAND_BBT_WRITE; |
| |
| /* Initialize NAND interface */ |
| lpc32xx_nand_init(); |
| |
| /* identify chip */ |
| ret = nand_scan_ident(mtd, CFG_SYS_MAX_NAND_CHIPS, NULL); |
| if (ret) { |
| pr_err("nand_scan_ident returned %i", ret); |
| return; |
| } |
| |
| /* finish scanning the chip */ |
| ret = nand_scan_tail(mtd); |
| if (ret) { |
| pr_err("nand_scan_tail returned %i", ret); |
| return; |
| } |
| |
| /* chip is good, register it */ |
| ret = nand_register(0, mtd); |
| if (ret) |
| pr_err("nand_register returned %i", ret); |
| } |
| |
| #else /* defined(CONFIG_XPL_BUILD) */ |
| |
| void nand_init(void) |
| { |
| /* enable NAND controller */ |
| lpc32xx_mlc_nand_init(); |
| /* initialize NAND controller */ |
| lpc32xx_nand_init(); |
| } |
| |
| void nand_deselect(void) |
| { |
| /* nothing to do, but SPL requires this function */ |
| } |
| |
| static int read_single_page(uint8_t *dest, int page, |
| struct lpc32xx_oob *oob) |
| { |
| int status, i, timeout, err, max_bitflips = 0; |
| |
| /* enter read mode */ |
| writel(NAND_CMD_READ0, &lpc32xx_nand_mlc_registers->cmd); |
| /* send column (lsb then MSB) and page (lsb to MSB) */ |
| writel(0, &lpc32xx_nand_mlc_registers->addr); |
| writel(0, &lpc32xx_nand_mlc_registers->addr); |
| writel(page & 0xff, &lpc32xx_nand_mlc_registers->addr); |
| writel((page>>8) & 0xff, &lpc32xx_nand_mlc_registers->addr); |
| writel((page>>16) & 0xff, &lpc32xx_nand_mlc_registers->addr); |
| /* start reading */ |
| writel(NAND_CMD_READSTART, &lpc32xx_nand_mlc_registers->cmd); |
| |
| /* large page auto decode read */ |
| for (i = 0; i < 4; i++) { |
| /* start auto decode (reads 528 NAND bytes) */ |
| writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg); |
| /* wait for controller to return to ready state */ |
| for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { |
| status = readl(&lpc32xx_nand_mlc_registers->isr); |
| if (status & ISR_CONTROLLER_READY) |
| break; |
| udelay(1); |
| } |
| /* if controller stalled, return error */ |
| if (!(status & ISR_CONTROLLER_READY)) |
| return -1; |
| /* if decoder failure, return error */ |
| if (status & ISR_DECODER_FAILURE) |
| return -1; |
| /* keep count of maximum bitflips performed */ |
| if (status & ISR_DECODER_ERROR) { |
| err = ISR_DECODER_ERRORS(status); |
| if (err > max_bitflips) |
| max_bitflips = err; |
| } |
| /* copy first 512 bytes into buffer */ |
| memcpy(dest+i*512, lpc32xx_nand_mlc_registers->buff, 512); |
| /* copy next 6 bytes bytes into OOB buffer */ |
| memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6); |
| } |
| return max_bitflips; |
| } |
| |
| /* |
| * Load U-Boot signed image. |
| * This loads an image from NAND, skipping bad blocks. |
| * A block is declared bad if at least one of its readable pages has |
| * a bad block marker in its OOB at position 0. |
| * If all pages ion a block are unreadable, the block is considered |
| * bad (i.e., assumed not to be part of the image) and skipped. |
| * |
| * IMPORTANT NOTE: |
| * |
| * If the first block of the image is fully unreadable, it will be |
| * ignored and skipped as if it had been marked bad. If it was not |
| * actually marked bad at the time of writing the image, the resulting |
| * image loaded will lack a header and magic number. It could thus be |
| * considered as a raw, headerless, image and SPL might erroneously |
| * jump into it. |
| * |
| * In order to avoid this risk, LPC32XX-based boards which use this |
| * driver MUST define CONFIG_SPL_PANIC_ON_RAW_IMAGE. |
| */ |
| |
| #define BYTES_PER_PAGE 2048 |
| #define PAGES_PER_BLOCK 64 |
| #define BYTES_PER_BLOCK (BYTES_PER_PAGE * PAGES_PER_BLOCK) |
| #define PAGES_PER_CHIP_MAX 524288 |
| |
| int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst) |
| { |
| int bytes_left = size; |
| int pages_left = DIV_ROUND_UP(size, BYTES_PER_PAGE); |
| int blocks_left = DIV_ROUND_UP(size, BYTES_PER_BLOCK); |
| int block = 0; |
| int page = offs / BYTES_PER_PAGE; |
| /* perform reads block by block */ |
| while (blocks_left) { |
| /* compute first page number to read */ |
| void *block_page_dst = dst; |
| /* read at most one block, possibly less */ |
| int block_bytes_left = bytes_left; |
| if (block_bytes_left > BYTES_PER_BLOCK) |
| block_bytes_left = BYTES_PER_BLOCK; |
| /* keep track of good, failed, and "bad" pages */ |
| int block_pages_good = 0; |
| int block_pages_bad = 0; |
| int block_pages_err = 0; |
| /* we shall read a full block of pages, maybe less */ |
| int block_pages_left = pages_left; |
| if (block_pages_left > PAGES_PER_BLOCK) |
| block_pages_left = PAGES_PER_BLOCK; |
| int block_pages = block_pages_left; |
| int block_page = page; |
| /* while pages are left and the block is not known as bad */ |
| while ((block_pages > 0) && (block_pages_bad == 0)) { |
| /* we will read OOB, too, for bad block markers */ |
| struct lpc32xx_oob oob; |
| /* read page */ |
| int res = read_single_page(block_page_dst, block_page, |
| &oob); |
| /* count readable pages */ |
| if (res >= 0) { |
| /* this page is good */ |
| block_pages_good++; |
| /* this page is bad */ |
| if ((oob.free[0].free_oob_bytes[0] != 0xff) |
| | (oob.free[0].free_oob_bytes[1] != 0xff)) |
| block_pages_bad++; |
| } else |
| /* count errors */ |
| block_pages_err++; |
| /* we're done with this page */ |
| block_page++; |
| block_page_dst += BYTES_PER_PAGE; |
| if (block_pages) |
| block_pages--; |
| } |
| /* a fully unreadable block is considered bad */ |
| if (block_pages_good == 0) |
| block_pages_bad = block_pages_err; |
| /* errors are fatal only in good blocks */ |
| if ((block_pages_err > 0) && (block_pages_bad == 0)) |
| return -1; |
| /* we keep reads only of good blocks */ |
| if (block_pages_bad == 0) { |
| dst += block_bytes_left; |
| bytes_left -= block_bytes_left; |
| pages_left -= block_pages_left; |
| blocks_left--; |
| } |
| /* good or bad, we're done with this block */ |
| block++; |
| page += PAGES_PER_BLOCK; |
| } |
| |
| /* report success */ |
| return 0; |
| } |
| |
| unsigned int nand_page_size(void) |
| { |
| return BYTES_PER_PAGE; |
| } |
| |
| #endif /* CONFIG_XPL_BUILD */ |