| // SPDX-License-Identifier: GPL-2.0+ |
| |
| /* |
| * Copyright (C) 2020 Cortina Access Inc. |
| * Author: Aaron Tseng <aaron.tseng@cortina-access.com> |
| * |
| * Ethernet MAC Driver for all supported CAxxxx SoCs |
| */ |
| |
| #include <common.h> |
| #include <command.h> |
| #include <malloc.h> |
| #include <net.h> |
| #include <miiphy.h> |
| #include <env.h> |
| #include <linux/delay.h> |
| #include <linux/bitops.h> |
| #include <u-boot/crc.h> |
| #include <led.h> |
| |
| #include "cortina_ni.h" |
| |
| #define HEADER_A_SIZE 8 |
| |
| enum ca_led_state_t { |
| CA_LED_OFF = 0, |
| CA_LED_ON = 1, |
| }; |
| |
| enum ca_port_t { |
| NI_PORT_0 = 0, |
| NI_PORT_1, |
| NI_PORT_2, |
| NI_PORT_3, |
| NI_PORT_4, |
| NI_PORT_5, |
| NI_PORT_MAX, |
| }; |
| |
| static struct udevice *curr_dev; |
| |
| static u32 *ca_rdwrptr_adv_one(u32 *x, unsigned long base, unsigned long max) |
| { |
| if (x + 1 >= (u32 *)max) |
| return (u32 *)base; |
| else |
| return (x + 1); |
| } |
| |
| static void ca_reg_read(void *reg, u64 base, u64 offset) |
| { |
| u32 *val = (u32 *)reg; |
| |
| *val = readl(KSEG1_ATU_XLAT(base + offset)); |
| } |
| |
| static void ca_reg_write(void *reg, u64 base, u64 offset) |
| { |
| u32 val = *(u32 *)reg; |
| |
| writel(val, KSEG1_ATU_XLAT(base + offset)); |
| } |
| |
| static int ca_mdio_write_rgmii(u32 addr, u32 offset, u16 data) |
| { |
| /* up to 10000 cycles*/ |
| u32 loop_wait = __MDIO_ACCESS_TIMEOUT; |
| struct PER_MDIO_ADDR_t mdio_addr; |
| struct PER_MDIO_CTRL_t mdio_ctrl; |
| struct cortina_ni_priv *priv = dev_get_priv(curr_dev); |
| |
| memset(&mdio_addr, 0, sizeof(mdio_addr)); |
| mdio_addr.mdio_addr = addr; |
| mdio_addr.mdio_offset = offset; |
| mdio_addr.mdio_rd_wr = __MDIO_WR_FLAG; |
| ca_reg_write(&mdio_addr, (u64)priv->per_mdio_base_addr, |
| PER_MDIO_ADDR_OFFSET); |
| ca_reg_write(&data, (u64)priv->per_mdio_base_addr, |
| PER_MDIO_WRDATA_OFFSET); |
| |
| memset(&mdio_ctrl, 0, sizeof(mdio_ctrl)); |
| mdio_ctrl.mdiostart = 1; |
| ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr, |
| PER_MDIO_CTRL_OFFSET); |
| |
| debug("%s: phy_addr=%d, offset=%d, data=0x%x\n", |
| __func__, addr, offset, data); |
| |
| do { |
| ca_reg_read(&mdio_ctrl, (u64)priv->per_mdio_base_addr, |
| PER_MDIO_CTRL_OFFSET); |
| if (mdio_ctrl.mdiodone) { |
| ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr, |
| PER_MDIO_CTRL_OFFSET); |
| return 0; |
| } |
| } while (--loop_wait); |
| |
| printf("CA NI %s: PHY write timeout!!!\n", __func__); |
| return -ETIMEDOUT; |
| } |
| |
| int ca_mdio_write(u32 addr, u32 offset, u16 data) |
| { |
| u32 reg_addr, reg_val; |
| struct NI_MDIO_OPER_T mdio_oper; |
| |
| /* support range: 1~31*/ |
| if (addr < CA_MDIO_ADDR_MIN || addr > CA_MDIO_ADDR_MAX) |
| return -EINVAL; |
| |
| /* the phy addr 5 is connect to RGMII */ |
| if (addr >= 5) |
| return ca_mdio_write_rgmii(addr, offset, data); |
| |
| memset(&mdio_oper, 0, sizeof(mdio_oper)); |
| mdio_oper.reg_off = offset; |
| mdio_oper.phy_addr = addr; |
| mdio_oper.reg_base = CA_NI_MDIO_REG_BASE; |
| reg_val = data; |
| memcpy(®_addr, &mdio_oper, sizeof(reg_addr)); |
| ca_reg_write(®_val, (u64)reg_addr, 0); |
| |
| return 0; |
| } |
| |
| static int ca_mdio_read_rgmii(u32 addr, u32 offset, u16 *data) |
| { |
| u32 loop_wait = __MDIO_ACCESS_TIMEOUT; |
| struct PER_MDIO_ADDR_t mdio_addr; |
| struct PER_MDIO_CTRL_t mdio_ctrl; |
| struct PER_MDIO_RDDATA_t read_data; |
| struct cortina_ni_priv *priv = dev_get_priv(curr_dev); |
| |
| memset(&mdio_addr, 0, sizeof(mdio_addr)); |
| mdio_addr.mdio_addr = addr; |
| mdio_addr.mdio_offset = offset; |
| mdio_addr.mdio_rd_wr = __MDIO_RD_FLAG; |
| ca_reg_write(&mdio_addr, (u64)priv->per_mdio_base_addr, |
| PER_MDIO_ADDR_OFFSET); |
| |
| memset(&mdio_ctrl, 0, sizeof(mdio_ctrl)); |
| mdio_ctrl.mdiostart = 1; |
| ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr, |
| PER_MDIO_CTRL_OFFSET); |
| |
| do { |
| ca_reg_read(&mdio_ctrl, (u64)priv->per_mdio_base_addr, |
| PER_MDIO_CTRL_OFFSET); |
| if (mdio_ctrl.mdiodone) { |
| ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr, |
| PER_MDIO_CTRL_OFFSET); |
| ca_reg_read(&read_data, (u64)priv->per_mdio_base_addr, |
| PER_MDIO_RDDATA_OFFSET); |
| *data = read_data.mdio_rddata; |
| return 0; |
| } |
| } while (--loop_wait); |
| |
| printf("CA NI %s: TIMEOUT!!\n", __func__); |
| return -ETIMEDOUT; |
| } |
| |
| int ca_mdio_read(u32 addr, u32 offset, u16 *data) |
| { |
| u32 reg_addr, reg_val; |
| struct NI_MDIO_OPER_T mdio_oper; |
| |
| if (!data) |
| return -EINVAL; |
| |
| /* support range: 1~31*/ |
| if (addr < CA_MDIO_ADDR_MIN || addr > CA_MDIO_ADDR_MAX) |
| return -EINVAL; |
| |
| /* the phy addr 5 is connect to RGMII */ |
| if (addr >= 5) |
| return ca_mdio_read_rgmii(addr, offset, data); |
| |
| memset(&mdio_oper, 0, sizeof(mdio_oper)); |
| mdio_oper.reg_off = offset; |
| mdio_oper.phy_addr = addr; |
| mdio_oper.reg_base = CA_NI_MDIO_REG_BASE; |
| reg_val = *data; |
| memcpy(®_addr, &mdio_oper, sizeof(reg_addr)); |
| ca_reg_read(®_val, (u64)reg_addr, 0); |
| *data = reg_val; |
| return 0; |
| } |
| |
| int ca_miiphy_read(const char *devname, u8 addr, u8 reg, u16 *value) |
| { |
| return ca_mdio_read(addr, reg, value); |
| } |
| |
| int ca_miiphy_write(const char *devname, u8 addr, u8 reg, u16 value) |
| { |
| return ca_mdio_write(addr, reg, value); |
| } |
| |
| static int cortina_mdio_read(struct mii_dev *bus, int addr, int devad, int reg) |
| { |
| u16 data; |
| |
| ca_mdio_read(addr, reg, &data); |
| return data; |
| } |
| |
| static int cortina_mdio_write(struct mii_dev *bus, int addr, int devad, int reg, |
| u16 val) |
| { |
| return ca_mdio_write(addr, reg, val); |
| } |
| |
| static void ca_ni_setup_mac_addr(void) |
| { |
| u8 mac[6]; |
| struct NI_HV_GLB_MAC_ADDR_CFG0_t mac_addr_cfg0; |
| struct NI_HV_GLB_MAC_ADDR_CFG1_t mac_addr_cfg1; |
| struct NI_HV_PT_PORT_STATIC_CFG_t port_static_cfg; |
| struct NI_HV_XRAM_CPUXRAM_CFG_t cpuxram_cfg; |
| struct cortina_ni_priv *priv = dev_get_priv(curr_dev); |
| |
| /* parsing ethaddr and set to NI registers. */ |
| if (eth_env_get_enetaddr("ethaddr", mac)) { |
| /* The complete MAC address consists of |
| * {MAC_ADDR0_mac_addr0[0-3], MAC_ADDR1_mac_addr1[4], |
| * PT_PORT_STATIC_CFG_mac_addr6[5]}. |
| */ |
| mac_addr_cfg0.mac_addr0 = (mac[0] << 24) + (mac[1] << 16) + |
| (mac[2] << 8) + mac[3]; |
| ca_reg_write(&mac_addr_cfg0, (u64)priv->ni_hv_base_addr, |
| NI_HV_GLB_MAC_ADDR_CFG0_OFFSET); |
| |
| memset(&mac_addr_cfg1, 0, sizeof(mac_addr_cfg1)); |
| mac_addr_cfg1.mac_addr1 = mac[4]; |
| ca_reg_write(&mac_addr_cfg1, (u64)priv->ni_hv_base_addr, |
| NI_HV_GLB_MAC_ADDR_CFG1_OFFSET); |
| |
| ca_reg_read(&port_static_cfg, (u64)priv->ni_hv_base_addr, |
| NI_HV_PT_PORT_STATIC_CFG_OFFSET + |
| (APB0_NI_HV_PT_STRIDE * priv->active_port)); |
| |
| port_static_cfg.mac_addr6 = mac[5]; |
| ca_reg_write(&port_static_cfg, (u64)priv->ni_hv_base_addr, |
| NI_HV_PT_PORT_STATIC_CFG_OFFSET + |
| (APB0_NI_HV_PT_STRIDE * priv->active_port)); |
| |
| /* received only Broadcast and Address matched packets */ |
| ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr, |
| NI_HV_XRAM_CPUXRAM_CFG_OFFSET); |
| cpuxram_cfg.xram_mgmt_promisc_mode = 0; |
| cpuxram_cfg.rx_0_cpu_pkt_dis = 0; |
| cpuxram_cfg.tx_0_cpu_pkt_dis = 0; |
| ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr, |
| NI_HV_XRAM_CPUXRAM_CFG_OFFSET); |
| } else { |
| /* received all packets(promiscuous mode) */ |
| ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr, |
| NI_HV_XRAM_CPUXRAM_CFG_OFFSET); |
| cpuxram_cfg.xram_mgmt_promisc_mode = 3; |
| cpuxram_cfg.rx_0_cpu_pkt_dis = 0; |
| cpuxram_cfg.tx_0_cpu_pkt_dis = 0; |
| ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr, |
| NI_HV_XRAM_CPUXRAM_CFG_OFFSET); |
| } |
| } |
| |
| static void ca_ni_enable_tx_rx(void) |
| { |
| struct NI_HV_PT_RXMAC_CFG_t rxmac_cfg; |
| struct NI_HV_PT_TXMAC_CFG_t txmac_cfg; |
| struct cortina_ni_priv *priv = dev_get_priv(curr_dev); |
| |
| /* Enable TX and RX functions */ |
| ca_reg_read(&rxmac_cfg, (u64)priv->ni_hv_base_addr, |
| NI_HV_PT_RXMAC_CFG_OFFSET + |
| (APB0_NI_HV_PT_STRIDE * priv->active_port)); |
| rxmac_cfg.rx_en = 1; |
| ca_reg_write(&rxmac_cfg, (u64)priv->ni_hv_base_addr, |
| NI_HV_PT_RXMAC_CFG_OFFSET + |
| (APB0_NI_HV_PT_STRIDE * priv->active_port)); |
| |
| ca_reg_read(&txmac_cfg, (u64)priv->ni_hv_base_addr, |
| NI_HV_PT_TXMAC_CFG_OFFSET + |
| (APB0_NI_HV_PT_STRIDE * priv->active_port)); |
| txmac_cfg.tx_en = 1; |
| ca_reg_write(&txmac_cfg, (u64)priv->ni_hv_base_addr, |
| NI_HV_PT_TXMAC_CFG_OFFSET + |
| (APB0_NI_HV_PT_STRIDE * priv->active_port)); |
| } |
| |
| #define AUTO_SCAN_TIMEOUT 3000 /* 3 seconds */ |
| static int ca_ni_auto_scan_active_port(struct cortina_ni_priv *priv) |
| { |
| u8 i; |
| u16 data; |
| u32 start_time; |
| |
| start_time = get_timer(0); |
| while (get_timer(start_time) < AUTO_SCAN_TIMEOUT) { |
| for (i = 0; i < priv->valid_port_num; i++) { |
| if (!priv->port_map[i].phy_addr) |
| continue; |
| |
| ca_mdio_read(priv->port_map[i].phy_addr, 1, &data); |
| if (data & 0x04) { |
| priv->active_port = priv->port_map[i].port; |
| return 0; |
| } |
| } |
| } |
| |
| printf("CA NI %s: auto scan active_port timeout.\n", __func__); |
| return -1; |
| } |
| |
| static void ca_ni_led(int port, int status) |
| { |
| char label[10]; |
| struct udevice *led_dev; |
| |
| if (IS_ENABLED(CONFIG_LED_CORTINA)) { |
| snprintf(label, sizeof(label), "led%d", port); |
| debug("%s: set port %d led %s.\n", |
| __func__, port, status ? "on" : "off"); |
| led_get_by_label(label, &led_dev); |
| led_set_state(led_dev, status); |
| } |
| } |
| |
| static void ca_ni_reset(void) |
| { |
| int i; |
| struct NI_HV_GLB_INIT_DONE_t init_done; |
| struct NI_HV_GLB_INTF_RST_CONFIG_t intf_rst_config; |
| struct NI_HV_GLB_STATIC_CFG_t static_cfg; |
| struct GLOBAL_BLOCK_RESET_t glb_blk_reset; |
| struct cortina_ni_priv *priv = dev_get_priv(curr_dev); |
| |
| /* NI global resets */ |
| ca_reg_read(&glb_blk_reset, (u64)priv->glb_base_addr, |
| GLOBAL_BLOCK_RESET_OFFSET); |
| glb_blk_reset.reset_ni = 1; |
| ca_reg_write(&glb_blk_reset, (u64)priv->glb_base_addr, |
| GLOBAL_BLOCK_RESET_OFFSET); |
| /* Remove resets */ |
| glb_blk_reset.reset_ni = 0; |
| ca_reg_write(&glb_blk_reset, (u64)priv->glb_base_addr, |
| GLOBAL_BLOCK_RESET_OFFSET); |
| |
| /* check the ready bit of NI module */ |
| for (i = 0; i < NI_READ_POLL_COUNT; i++) { |
| ca_reg_read(&init_done, (u64)priv->ni_hv_base_addr, |
| NI_HV_GLB_INIT_DONE_OFFSET); |
| if (init_done.ni_init_done) |
| break; |
| } |
| if (i == NI_READ_POLL_COUNT) { |
| printf("CA NI %s: NI init done not ready, init_done=0x%x!!!\n", |
| __func__, init_done.ni_init_done); |
| } |
| |
| ca_reg_read(&intf_rst_config, (u64)priv->ni_hv_base_addr, |
| NI_HV_GLB_INTF_RST_CONFIG_OFFSET); |
| switch (priv->active_port) { |
| case NI_PORT_0: |
| intf_rst_config.intf_rst_p0 = 0; |
| intf_rst_config.mac_rx_rst_p0 = 0; |
| intf_rst_config.mac_tx_rst_p0 = 0; |
| break; |
| case NI_PORT_1: |
| intf_rst_config.intf_rst_p1 = 0; |
| intf_rst_config.mac_rx_rst_p1 = 0; |
| intf_rst_config.mac_tx_rst_p1 = 0; |
| break; |
| case NI_PORT_2: |
| intf_rst_config.intf_rst_p2 = 0; |
| intf_rst_config.mac_rx_rst_p2 = 0; |
| intf_rst_config.mac_tx_rst_p2 = 0; |
| break; |
| case NI_PORT_3: |
| intf_rst_config.intf_rst_p3 = 0; |
| intf_rst_config.mac_tx_rst_p3 = 0; |
| intf_rst_config.mac_rx_rst_p3 = 0; |
| break; |
| case NI_PORT_4: |
| intf_rst_config.intf_rst_p4 = 0; |
| intf_rst_config.mac_tx_rst_p4 = 0; |
| intf_rst_config.mac_rx_rst_p4 = 0; |
| break; |
| } |
| |
| ca_reg_write(&intf_rst_config, (u64)priv->ni_hv_base_addr, |
| NI_HV_GLB_INTF_RST_CONFIG_OFFSET); |
| |
| /* Only one GMAC can connect to CPU */ |
| ca_reg_read(&static_cfg, (u64)priv->ni_hv_base_addr, |
| NI_HV_GLB_STATIC_CFG_OFFSET); |
| static_cfg.port_to_cpu = priv->active_port; |
| static_cfg.txmib_mode = 1; |
| static_cfg.rxmib_mode = 1; |
| |
| ca_reg_write(&static_cfg, (u64)priv->ni_hv_base_addr, |
| NI_HV_GLB_STATIC_CFG_OFFSET); |
| } |
| |
| static void ca_internal_gphy_cal(struct cortina_ni_priv *priv) |
| { |
| int i, port, num; |
| u32 reg_off, value; |
| |
| num = priv->gphy_num; |
| for (port = 0; port < 4; port++) { |
| for (i = 0; i < num; i++) { |
| reg_off = priv->gphy_values[i].reg_off + (port * 0x80); |
| value = priv->gphy_values[i].value; |
| ca_reg_write(&value, reg_off, 0); |
| mdelay(50); |
| } |
| } |
| } |
| |
| static int ca_mdio_register(struct udevice *dev) |
| { |
| int ret; |
| struct cortina_ni_priv *priv = dev_get_priv(dev); |
| struct mii_dev *mdio_bus = mdio_alloc(); |
| |
| if (!mdio_bus) |
| return -ENOMEM; |
| |
| mdio_bus->read = cortina_mdio_read; |
| mdio_bus->write = cortina_mdio_write; |
| snprintf(mdio_bus->name, sizeof(mdio_bus->name), dev->name); |
| |
| mdio_bus->priv = (void *)priv; |
| |
| ret = mdio_register(mdio_bus); |
| if (ret) |
| return ret; |
| |
| priv->mdio_bus = mdio_bus; |
| return 0; |
| } |
| |
| static void ca_rgmii_init(struct cortina_ni_priv *priv) |
| { |
| struct GLOBAL_GLOBAL_CONFIG_t glb_config; |
| struct GLOBAL_IO_DRIVE_CONTROL_t io_drive_control; |
| |
| /* Generating 25Mhz reference clock for switch */ |
| ca_reg_read(&glb_config, (u64)priv->glb_base_addr, |
| GLOBAL_GLOBAL_CONFIG_OFFSET); |
| glb_config.refclk_sel = 0x01; |
| glb_config.ext_reset = 0x01; |
| ca_reg_write(&glb_config, (u64)priv->glb_base_addr, |
| GLOBAL_GLOBAL_CONFIG_OFFSET); |
| |
| mdelay(20); |
| |
| /* Do external reset */ |
| ca_reg_read(&glb_config, (u64)priv->glb_base_addr, |
| GLOBAL_GLOBAL_CONFIG_OFFSET); |
| glb_config.ext_reset = 0x0; |
| ca_reg_write(&glb_config, (u64)priv->glb_base_addr, |
| GLOBAL_GLOBAL_CONFIG_OFFSET); |
| |
| ca_reg_read(&io_drive_control, (u64)priv->glb_base_addr, |
| GLOBAL_IO_DRIVE_CONTROL_OFFSET); |
| io_drive_control.gmac_mode = 2; |
| io_drive_control.gmac_dn = 1; |
| io_drive_control.gmac_dp = 1; |
| ca_reg_write(&io_drive_control, (u64)priv->glb_base_addr, |
| GLOBAL_IO_DRIVE_CONTROL_OFFSET); |
| } |
| |
| static int ca_phy_probe(struct udevice *dev) |
| { |
| int auto_scan_active_port = 0, tmp_port; |
| char *buf; |
| struct cortina_ni_priv *priv = dev_get_priv(dev); |
| struct phy_device *int_phydev, *ext_phydev; |
| |
| /* Initialize internal phy device */ |
| int_phydev = phy_connect(priv->mdio_bus, |
| priv->port_map[NI_PORT_3].phy_addr, |
| dev, priv->phy_interface); |
| if (int_phydev) { |
| int_phydev->supported &= PHY_GBIT_FEATURES; |
| int_phydev->advertising = int_phydev->supported; |
| phy_config(int_phydev); |
| } else { |
| printf("CA NI %s: There is no internal phy device\n", __func__); |
| } |
| |
| /* Initialize external phy device */ |
| ext_phydev = phy_connect(priv->mdio_bus, |
| priv->port_map[NI_PORT_4].phy_addr, |
| dev, priv->phy_interface); |
| if (ext_phydev) { |
| ext_phydev->supported &= PHY_GBIT_FEATURES; |
| ext_phydev->advertising = int_phydev->supported; |
| phy_config(ext_phydev); |
| } else { |
| printf("CA NI %s: There is no external phy device\n", __func__); |
| } |
| |
| /* auto scan the first link up port as active_port */ |
| buf = env_get("auto_scan_active_port"); |
| if (buf != 0) { |
| auto_scan_active_port = simple_strtoul(buf, NULL, 0); |
| printf("CA NI %s: auto_scan_active_port=%d\n", __func__, |
| auto_scan_active_port); |
| } |
| |
| if (auto_scan_active_port) { |
| ca_ni_auto_scan_active_port(priv); |
| } else { |
| buf = env_get("active_port"); |
| if (buf != 0) { |
| tmp_port = simple_strtoul(buf, NULL, 0); |
| if (tmp_port < 0 && |
| !(priv->valid_port_map && BIT(tmp_port))) { |
| printf("CA NI ERROR: not support this port."); |
| free(dev); |
| free(priv); |
| return 1; |
| } |
| |
| priv->active_port = tmp_port; |
| } |
| } |
| |
| printf("CA NI %s: active_port=%d\n", __func__, priv->active_port); |
| if (priv->active_port == NI_PORT_4) |
| priv->phydev = ext_phydev; |
| else |
| priv->phydev = int_phydev; |
| |
| return 0; |
| } |
| |
| static int cortina_eth_start(struct udevice *dev) |
| { |
| int ret; |
| struct NI_HV_XRAM_CPUXRAM_ADRCFG_RX_t cpuxram_adrcfg_rx; |
| struct NI_HV_XRAM_CPUXRAM_ADRCFG_TX_0_t cpuxram_adrcfg_tx; |
| struct NI_HV_XRAM_CPUXRAM_CFG_t cpuxram_cfg; |
| struct NI_HV_PT_PORT_STATIC_CFG_t port_static_cfg; |
| struct NI_HV_PT_PORT_GLB_CFG_t port_glb_cfg; |
| struct cortina_ni_priv *priv = dev_get_priv(dev); |
| struct phy_device *phydev = priv->phydev; |
| |
| ret = phy_startup(priv->phydev); |
| if (ret) { |
| ca_ni_led(priv->active_port, CA_LED_OFF); |
| printf("CA NI Could not initialize PHY %s, active_port=%d\n", |
| priv->phydev->dev->name, priv->active_port); |
| return ret; |
| } |
| |
| if (!priv->phydev->link) { |
| printf("CA NI %s: link down.\n", priv->phydev->dev->name); |
| return 0; |
| } |
| |
| ca_ni_led(priv->active_port, CA_LED_ON); |
| printf("CA NI PHY ID 0x%08X %dMbps %s duplex\n", |
| phydev->phy_id, phydev->speed, |
| phydev->duplex == DUPLEX_HALF ? "half" : "full"); |
| |
| /* RX XRAM ADDRESS CONFIG (start and end address) */ |
| memset(&cpuxram_adrcfg_rx, 0, sizeof(cpuxram_adrcfg_rx)); |
| cpuxram_adrcfg_rx.rx_top_addr = RX_TOP_ADDR; |
| cpuxram_adrcfg_rx.rx_base_addr = RX_BASE_ADDR; |
| ca_reg_write(&cpuxram_adrcfg_rx, (u64)priv->ni_hv_base_addr, |
| NI_HV_XRAM_CPUXRAM_ADRCFG_RX_OFFSET); |
| |
| /* TX XRAM ADDRESS CONFIG (start and end address) */ |
| memset(&cpuxram_adrcfg_tx, 0, sizeof(cpuxram_adrcfg_tx)); |
| cpuxram_adrcfg_tx.tx_top_addr = TX_TOP_ADDR; |
| cpuxram_adrcfg_tx.tx_base_addr = TX_BASE_ADDR; |
| ca_reg_write(&cpuxram_adrcfg_tx, (u64)priv->ni_hv_base_addr, |
| NI_HV_XRAM_CPUXRAM_ADRCFG_TX_0_OFFSET); |
| |
| /* |
| * Configuration for Management Ethernet Interface: |
| * - RGMII 1000 mode or RGMII 100 mode |
| * - MAC mode |
| */ |
| ca_reg_read(&port_static_cfg, (u64)priv->ni_hv_base_addr, |
| NI_HV_PT_PORT_STATIC_CFG_OFFSET + |
| (APB0_NI_HV_PT_STRIDE * priv->active_port)); |
| if (phydev->speed == SPEED_1000) { |
| /* port 4 connects to RGMII PHY */ |
| if (phydev->addr == 5) |
| port_static_cfg.int_cfg = GE_MAC_INTF_RGMII_1000; |
| else |
| port_static_cfg.int_cfg = GE_MAC_INTF_GMII; |
| } else { |
| /* port 4 connects to RGMII PHY */ |
| if (phydev->addr == 5) |
| port_static_cfg.int_cfg = GE_MAC_INTF_RGMII_100; |
| else |
| port_static_cfg.int_cfg = GE_MAC_INTF_MII; |
| } |
| |
| ca_reg_write(&port_static_cfg, (u64)priv->ni_hv_base_addr, |
| NI_HV_PT_PORT_STATIC_CFG_OFFSET + |
| (APB0_NI_HV_PT_STRIDE * priv->active_port)); |
| |
| ca_reg_read(&port_glb_cfg, (u64)priv->ni_hv_base_addr, |
| NI_HV_PT_PORT_GLB_CFG_OFFSET + |
| (APB0_NI_HV_PT_STRIDE * priv->active_port)); |
| port_glb_cfg.speed = phydev->speed == SPEED_10 ? 1 : 0; |
| port_glb_cfg.duplex = phydev->duplex == DUPLEX_HALF ? 1 : 0; |
| ca_reg_write(&port_glb_cfg, (u64)priv->ni_hv_base_addr, |
| NI_HV_PT_PORT_GLB_CFG_OFFSET + |
| (APB0_NI_HV_PT_STRIDE * priv->active_port)); |
| |
| /* Need to toggle the tx and rx cpu_pkt_dis bit */ |
| /* after changing Address config register. */ |
| ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr, |
| NI_HV_XRAM_CPUXRAM_CFG_OFFSET); |
| cpuxram_cfg.rx_0_cpu_pkt_dis = 1; |
| cpuxram_cfg.tx_0_cpu_pkt_dis = 1; |
| ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr, |
| NI_HV_XRAM_CPUXRAM_CFG_OFFSET); |
| |
| ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr, |
| NI_HV_XRAM_CPUXRAM_CFG_OFFSET); |
| cpuxram_cfg.rx_0_cpu_pkt_dis = 0; |
| cpuxram_cfg.tx_0_cpu_pkt_dis = 0; |
| ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr, |
| NI_HV_XRAM_CPUXRAM_CFG_OFFSET); |
| |
| ca_ni_enable_tx_rx(); |
| |
| return 0; |
| } |
| |
| /********************************************* |
| * Packet receive routine from Management FE |
| * Expects a previously allocated buffer and |
| * fills the length |
| * Retruns 0 on success -1 on failure |
| *******************************************/ |
| static int cortina_eth_recv(struct udevice *dev, int flags, uchar **packetp) |
| { |
| u8 *ptr; |
| u32 next_link, pktlen = 0; |
| u32 sw_rx_rd_ptr, hw_rx_wr_ptr, *rx_xram_ptr, *data_ptr; |
| int loop, index = 0, blk_num; |
| struct cortina_ni_priv *priv = dev_get_priv(dev); |
| struct NI_HEADER_X_T header_x; |
| struct NI_PACKET_STATUS packet_status; |
| struct NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_t cpuxram_cpu_sta_rx; |
| struct NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_t cpuxram_cpu_cfg_rx; |
| |
| /* get the hw write pointer */ |
| memset(&cpuxram_cpu_sta_rx, 0, sizeof(cpuxram_cpu_sta_rx)); |
| ca_reg_read(&cpuxram_cpu_sta_rx, (u64)priv->ni_hv_base_addr, |
| NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_OFFSET); |
| hw_rx_wr_ptr = cpuxram_cpu_sta_rx.pkt_wr_ptr; |
| |
| /* get the sw read pointer */ |
| memset(&cpuxram_cpu_cfg_rx, 0, sizeof(cpuxram_cpu_cfg_rx)); |
| ca_reg_read(&cpuxram_cpu_cfg_rx, (u64)priv->ni_hv_base_addr, |
| NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET); |
| sw_rx_rd_ptr = cpuxram_cpu_cfg_rx.pkt_rd_ptr; |
| |
| debug("%s: NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0 = 0x%p, ", __func__, |
| priv->ni_hv_base_addr + NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_OFFSET); |
| debug("NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0 = 0x%p\n", |
| priv->ni_hv_base_addr + NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET); |
| debug("%s : RX hw_wr_ptr = %d, sw_rd_ptr = %d\n", |
| __func__, hw_rx_wr_ptr, sw_rx_rd_ptr); |
| |
| while (sw_rx_rd_ptr != hw_rx_wr_ptr) { |
| /* Point to the absolute memory address of XRAM |
| * where read pointer is |
| */ |
| rx_xram_ptr = (u32 *) |
| ((unsigned long)priv->ni_xram_base |
| + sw_rx_rd_ptr * 8); |
| |
| /* Wrap around if required */ |
| if (rx_xram_ptr >= (u32 *)(unsigned long)priv->rx_xram_end_adr) |
| rx_xram_ptr = (u32 *) |
| (unsigned long)priv->rx_xram_base_adr; |
| |
| /* Checking header XR. Do not update the read pointer yet */ |
| /* skip unused 32-bit in Header XR */ |
| rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr, |
| priv->rx_xram_base_adr, |
| priv->rx_xram_end_adr); |
| |
| memcpy(&header_x, rx_xram_ptr, sizeof(header_x)); |
| next_link = header_x.next_link; |
| /* Header XR [31:0] */ |
| |
| if (*rx_xram_ptr == 0xffffffff) |
| printf("CA NI %s: XRAM Error !\n", __func__); |
| |
| debug("%s : RX next link 0x%x\n", __func__, next_link); |
| debug("%s : bytes_valid %x\n", __func__, header_x.bytes_valid); |
| |
| if (header_x.ownership == 0) { |
| /* point to Packet status [31:0] */ |
| rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr, |
| priv->rx_xram_base_adr, |
| priv->rx_xram_end_adr); |
| |
| memcpy(&packet_status, rx_xram_ptr, |
| sizeof(*rx_xram_ptr)); |
| if (packet_status.valid == 0) { |
| debug("%s: Invalid Packet !!, ", __func__); |
| debug("next_link=%d\n", next_link); |
| |
| /* Update the software read pointer */ |
| ca_reg_write(&next_link, |
| (u64)priv->ni_hv_base_addr, |
| NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET); |
| return 0; |
| } |
| |
| if (packet_status.drop || |
| packet_status.runt || |
| packet_status.oversize || |
| packet_status.jabber || |
| packet_status.crc_error || |
| packet_status.jumbo) { |
| debug("%s: Error Packet!!, ", __func__); |
| debug("next_link=%d\n", next_link); |
| |
| /* Update the software read pointer */ |
| ca_reg_write(&next_link, |
| (u64)priv->ni_hv_base_addr, |
| NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET); |
| return 0; |
| } |
| |
| /* check whether packet size is larger than 1514 */ |
| if (packet_status.packet_size > 1518) { |
| debug("%s: Error Packet !! Packet size=%d, ", |
| __func__, packet_status.packet_size); |
| debug("larger than 1518, next_link=%d\n", |
| next_link); |
| |
| /* Update the software read pointer */ |
| ca_reg_write(&next_link, |
| (u64)priv->ni_hv_base_addr, |
| NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET); |
| return 0; |
| } |
| |
| rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr, |
| priv->rx_xram_base_adr, |
| priv->rx_xram_end_adr); |
| |
| pktlen = packet_status.packet_size; |
| |
| debug("%s : rx packet length = %d\n", |
| __func__, packet_status.packet_size); |
| |
| rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr, |
| priv->rx_xram_base_adr, |
| priv->rx_xram_end_adr); |
| |
| data_ptr = (u32 *)net_rx_packets[index]; |
| |
| /* Read out the packet */ |
| /* Data is in little endian form in the XRAM */ |
| |
| /* Send the packet to upper layer */ |
| |
| debug("%s: packet data[]=", __func__); |
| |
| for (loop = 0; loop <= pktlen / 4; loop++) { |
| ptr = (u8 *)rx_xram_ptr; |
| if (loop < 10) |
| debug("[0x%x]-[0x%x]-[0x%x]-[0x%x]", |
| ptr[0], ptr[1], ptr[2], ptr[3]); |
| *data_ptr++ = *rx_xram_ptr++; |
| /* Wrap around if required */ |
| if (rx_xram_ptr >= (u32 *) |
| (unsigned long)priv->rx_xram_end_adr) { |
| rx_xram_ptr = (u32 *)(unsigned long) |
| (priv->rx_xram_base_adr); |
| } |
| } |
| |
| debug("\n"); |
| net_process_received_packet(net_rx_packets[index], |
| pktlen); |
| if (++index >= PKTBUFSRX) |
| index = 0; |
| blk_num = net_rx_packets[index][0x2c] * 255 + |
| net_rx_packets[index][0x2d]; |
| debug("%s: tftp block number=%d\n", __func__, blk_num); |
| |
| /* Update the software read pointer */ |
| ca_reg_write(&next_link, |
| (u64)priv->ni_hv_base_addr, |
| NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET); |
| } |
| |
| /* get the hw write pointer */ |
| ca_reg_read(&cpuxram_cpu_sta_rx, (u64)priv->ni_hv_base_addr, |
| NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_OFFSET); |
| hw_rx_wr_ptr = cpuxram_cpu_sta_rx.pkt_wr_ptr; |
| |
| /* get the sw read pointer */ |
| ca_reg_read(&sw_rx_rd_ptr, (u64)priv->ni_hv_base_addr, |
| NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET); |
| } |
| return 0; |
| } |
| |
| static int cortina_eth_send(struct udevice *dev, void *packet, int length) |
| { |
| u32 hw_tx_rd_ptr = 0, sw_tx_wr_ptr = 0; |
| u32 loop, new_pkt_len, ca_crc32; |
| u32 *tx_xram_ptr, *data_ptr; |
| u16 next_link = 0; |
| u8 *ptr, *pkt_buf_ptr, valid_bytes = 0; |
| int pad = 0; |
| static u8 pkt_buf[2048]; |
| struct NI_HEADER_X_T hdr_xt; |
| struct NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_t cpuxram_cpu_cfg_tx; |
| struct cortina_ni_priv *priv = dev_get_priv(dev); |
| |
| if (!packet || length > 2032) |
| return -1; |
| |
| /* Get the hardware read pointer */ |
| ca_reg_read(&hw_tx_rd_ptr, (u64)priv->ni_hv_base_addr, |
| NI_HV_XRAM_CPUXRAM_CPU_STAT_TX_0_OFFSET); |
| |
| /* Get the software write pointer */ |
| ca_reg_read(&sw_tx_wr_ptr, (u64)priv->ni_hv_base_addr, |
| NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_OFFSET); |
| |
| debug("%s: NI_HV_XRAM_CPUXRAM_CPU_STAT_TX_0=0x%p, ", |
| __func__, |
| KSEG1_ATU_XLAT(priv->ni_hv_base_addr + |
| NI_HV_XRAM_CPUXRAM_CPU_STAT_TX_0_OFFSET)); |
| debug("NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0=0x%p\n", |
| KSEG1_ATU_XLAT(priv->ni_hv_base_addr + |
| NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_OFFSET)); |
| debug("%s : hw_tx_rd_ptr = %d\n", __func__, hw_tx_rd_ptr); |
| debug("%s : sw_tx_wr_ptr = %d\n", __func__, sw_tx_wr_ptr); |
| |
| if (hw_tx_rd_ptr != sw_tx_wr_ptr) { |
| printf("CA NI %s: Tx FIFO is not available!\n", __func__); |
| return 1; |
| } |
| |
| /* a workaround on 2015/10/01 |
| * the packet size+CRC should be 8-byte alignment |
| */ |
| if (((length + 4) % 8) != 0) |
| length += (8 - ((length + 4) % 8)); |
| |
| memset(pkt_buf, 0x00, sizeof(pkt_buf)); |
| |
| /* add 8-byte header_A at the beginning of packet */ |
| memcpy(&pkt_buf[HEADER_A_SIZE], (const void *)packet, length); |
| |
| pad = 64 - (length + 4); /* if packet length < 60 */ |
| pad = (pad < 0) ? 0 : pad; |
| |
| debug("%s: length=%d, pad=%d\n", __func__, length, pad); |
| |
| new_pkt_len = length + pad; /* new packet length */ |
| |
| pkt_buf_ptr = (u8 *)pkt_buf; |
| |
| /* Calculate the CRC32, skip 8-byte header_A */ |
| ca_crc32 = crc32(0, (u8 *)(pkt_buf_ptr + HEADER_A_SIZE), new_pkt_len); |
| |
| debug("%s: crc32 is 0x%x\n", __func__, ca_crc32); |
| debug("%s: ~crc32 is 0x%x\n", __func__, ~ca_crc32); |
| debug("%s: pkt len %d\n", __func__, new_pkt_len); |
| /* should add 8-byte header_! */ |
| /* CRC will re-calculated by hardware */ |
| memcpy((pkt_buf_ptr + new_pkt_len + HEADER_A_SIZE), |
| (u8 *)(&ca_crc32), sizeof(ca_crc32)); |
| new_pkt_len = new_pkt_len + 4; /* add CRC */ |
| |
| valid_bytes = new_pkt_len % 8; |
| valid_bytes = valid_bytes ? valid_bytes : 0; |
| debug("%s: valid_bytes %d\n", __func__, valid_bytes); |
| |
| /* should add 8-byte headerA */ |
| next_link = sw_tx_wr_ptr + |
| (new_pkt_len + 7 + HEADER_A_SIZE) / 8; /* for headr XT */ |
| /* add header */ |
| next_link = next_link + 1; |
| /* Wrap around if required */ |
| if (next_link > priv->tx_xram_end) { |
| next_link = priv->tx_xram_start + |
| (next_link - (priv->tx_xram_end + 1)); |
| } |
| |
| debug("%s: TX next_link %x\n", __func__, next_link); |
| memset(&hdr_xt, 0, sizeof(hdr_xt)); |
| hdr_xt.ownership = 1; |
| hdr_xt.bytes_valid = valid_bytes; |
| hdr_xt.next_link = next_link; |
| |
| tx_xram_ptr = (u32 *)((unsigned long)priv->ni_xram_base |
| + sw_tx_wr_ptr * 8); |
| |
| /* Wrap around if required */ |
| if (tx_xram_ptr >= (u32 *)(unsigned long)priv->tx_xram_end_adr) |
| tx_xram_ptr = (u32 *)(unsigned long)priv->tx_xram_base_adr; |
| |
| tx_xram_ptr = ca_rdwrptr_adv_one(tx_xram_ptr, |
| priv->tx_xram_base_adr, |
| priv->tx_xram_end_adr); |
| |
| memcpy(tx_xram_ptr, &hdr_xt, sizeof(*tx_xram_ptr)); |
| |
| tx_xram_ptr = ca_rdwrptr_adv_one(tx_xram_ptr, |
| priv->tx_xram_base_adr, |
| priv->tx_xram_end_adr); |
| |
| /* Now to copy the data. The first byte on the line goes first */ |
| data_ptr = (u32 *)pkt_buf_ptr; |
| debug("%s: packet data[]=", __func__); |
| |
| /* copy header_A to XRAM */ |
| for (loop = 0; loop <= (new_pkt_len + HEADER_A_SIZE) / 4; loop++) { |
| ptr = (u8 *)data_ptr; |
| if ((loop % 4) == 0) |
| debug("\n"); |
| debug("[0x%x]-[0x%x]-[0x%x]-[0x%x]-", |
| ptr[0], ptr[1], ptr[2], ptr[3]); |
| |
| *tx_xram_ptr = *data_ptr++; |
| tx_xram_ptr = ca_rdwrptr_adv_one(tx_xram_ptr, |
| priv->tx_xram_base_adr, |
| priv->tx_xram_end_adr); |
| } |
| debug("\n"); |
| |
| /* Publish the software write pointer */ |
| cpuxram_cpu_cfg_tx.pkt_wr_ptr = next_link; |
| ca_reg_write(&cpuxram_cpu_cfg_tx, |
| (u64)priv->ni_hv_base_addr, |
| NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_OFFSET); |
| |
| return 0; |
| } |
| |
| static void cortina_eth_stop(struct udevice *netdev) |
| { |
| /* Nothing to do for now. */ |
| } |
| |
| static int cortina_eth_probe(struct udevice *dev) |
| { |
| int ret, reg_value; |
| struct cortina_ni_priv *priv; |
| |
| priv = dev_get_priv(dev); |
| priv->rx_xram_base_adr = priv->ni_xram_base + (RX_BASE_ADDR * 8); |
| priv->rx_xram_end_adr = priv->ni_xram_base + ((RX_TOP_ADDR + 1) * 8); |
| priv->rx_xram_start = RX_BASE_ADDR; |
| priv->rx_xram_end = RX_TOP_ADDR; |
| priv->tx_xram_base_adr = priv->ni_xram_base + (TX_BASE_ADDR * 8); |
| priv->tx_xram_end_adr = priv->ni_xram_base + ((TX_TOP_ADDR + 1) * 8); |
| priv->tx_xram_start = TX_BASE_ADDR; |
| priv->tx_xram_end = TX_TOP_ADDR; |
| |
| curr_dev = dev; |
| debug("%s: rx_base_addr:%x\t rx_top_addr %x\n", |
| __func__, priv->rx_xram_start, priv->rx_xram_end); |
| debug("%s: tx_base_addr:%x\t tx_top_addr %x\n", |
| __func__, priv->tx_xram_start, priv->tx_xram_end); |
| debug("%s: rx physical start address = %x end address = %x\n", |
| __func__, priv->rx_xram_base_adr, priv->rx_xram_end_adr); |
| debug("%s: tx physical start address = %x end address = %x\n", |
| __func__, priv->tx_xram_base_adr, priv->tx_xram_end_adr); |
| |
| /* MDIO register */ |
| ret = ca_mdio_register(dev); |
| if (ret) |
| return ret; |
| |
| /* set MDIO pre-scale value */ |
| ca_reg_read(®_value, (u64)priv->per_mdio_base_addr, |
| PER_MDIO_CFG_OFFSET); |
| reg_value = reg_value | 0x00280000; |
| ca_reg_write(®_value, (u64)priv->per_mdio_base_addr, |
| PER_MDIO_CFG_OFFSET); |
| |
| ca_phy_probe(dev); |
| priv->phydev->addr = priv->port_map[priv->active_port].phy_addr; |
| |
| ca_ni_led(priv->active_port, CA_LED_ON); |
| |
| ca_ni_reset(); |
| |
| printf("CA NI %s: active_port=%d, phy_addr=%d\n", |
| __func__, priv->active_port, priv->phydev->addr); |
| printf("CA NI %s: phy_id=0x%x, phy_id & PHY_ID_MASK=0x%x\n", __func__, |
| priv->phydev->phy_id, priv->phydev->phy_id & 0xFFFFFFF0); |
| |
| /* parsing ethaddr and set to NI registers. */ |
| ca_ni_setup_mac_addr(); |
| |
| #ifdef MIIPHY_REGISTER |
| /* the phy_read and phy_write |
| * should meet the proto type of miiphy_register |
| */ |
| miiphy_register(dev->name, ca_miiphy_read, ca_miiphy_write); |
| #endif |
| |
| if (priv->init_rgmii) { |
| /* hardware settings for RGMII port */ |
| ca_rgmii_init(priv); |
| } |
| |
| if (priv->gphy_num > 0) { |
| /* do internal gphy calibration */ |
| ca_internal_gphy_cal(priv); |
| } |
| return 0; |
| } |
| |
| static int ca_ni_of_to_plat(struct udevice *dev) |
| { |
| int i, ret; |
| struct cortina_ni_priv *priv = dev_get_priv(dev); |
| |
| memset(priv, 0, sizeof(struct cortina_ni_priv)); |
| priv->glb_base_addr = dev_remap_addr_index(dev, 0); |
| if (!priv->glb_base_addr) |
| return -ENOENT; |
| printf("CA NI %s: priv->glb_base_addr for index 0 is 0x%p\n", |
| __func__, priv->glb_base_addr); |
| |
| priv->per_mdio_base_addr = dev_remap_addr_index(dev, 1); |
| if (!priv->per_mdio_base_addr) |
| return -ENOENT; |
| printf("CA NI %s: priv->per_mdio_base_addr for index 1 is 0x%p\n", |
| __func__, priv->per_mdio_base_addr); |
| |
| priv->ni_hv_base_addr = dev_remap_addr_index(dev, 2); |
| if (!priv->ni_hv_base_addr) |
| return -ENOENT; |
| printf("CA NI %s: priv->ni_hv_base_addr for index 2 is 0x%p\n", |
| __func__, priv->ni_hv_base_addr); |
| |
| priv->valid_port_map = dev_read_u32_default(dev, "valid-port-map", 1); |
| priv->valid_port_num = dev_read_u32_default(dev, "valid-port-num", 1); |
| |
| for (i = 0; i < priv->valid_port_num; i++) { |
| ret = dev_read_u32_index(dev, "valid-ports", i * 2, |
| &priv->port_map[i].phy_addr); |
| ret = dev_read_u32_index(dev, "valid-ports", (i * 2) + 1, |
| &priv->port_map[i].port); |
| } |
| |
| priv->gphy_num = dev_read_u32_default(dev, "inter-gphy-num", 1); |
| for (i = 0; i < priv->gphy_num; i++) { |
| ret = dev_read_u32_index(dev, "inter-gphy-val", i * 2, |
| &priv->gphy_values[i].reg_off); |
| ret = dev_read_u32_index(dev, "inter-gphy-val", (i * 2) + 1, |
| &priv->gphy_values[i].value); |
| } |
| |
| priv->active_port = dev_read_u32_default(dev, "def-active-port", 1); |
| priv->init_rgmii = dev_read_u32_default(dev, "init-rgmii", 1); |
| priv->ni_xram_base = dev_read_u32_default(dev, "ni-xram-base", 1); |
| return 0; |
| } |
| |
| static const struct eth_ops cortina_eth_ops = { |
| .start = cortina_eth_start, |
| .send = cortina_eth_send, |
| .recv = cortina_eth_recv, |
| .stop = cortina_eth_stop, |
| }; |
| |
| static const struct udevice_id cortina_eth_ids[] = { |
| { .compatible = "eth_cortina" }, |
| { } |
| }; |
| |
| U_BOOT_DRIVER(eth_cortina) = { |
| .name = "eth_cortina", |
| .id = UCLASS_ETH, |
| .of_match = cortina_eth_ids, |
| .probe = cortina_eth_probe, |
| .ops = &cortina_eth_ops, |
| .priv_auto = sizeof(struct cortina_ni_priv), |
| .plat_auto = sizeof(struct eth_pdata), |
| .of_to_plat = ca_ni_of_to_plat, |
| }; |