| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Freescale i.MX28 SPI driver |
| * |
| * Copyright (C) 2019 DENX Software Engineering |
| * Lukasz Majewski, DENX Software Engineering, lukma@denx.de |
| * |
| * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com> |
| * on behalf of DENX Software Engineering GmbH |
| * |
| * NOTE: This driver only supports the SPI-controller chipselects, |
| * GPIO driven chipselects are not supported. |
| */ |
| |
| #include <common.h> |
| #include <dm.h> |
| #include <dt-structs.h> |
| #include <cpu_func.h> |
| #include <errno.h> |
| #include <log.h> |
| #include <malloc.h> |
| #include <memalign.h> |
| #include <spi.h> |
| #include <asm/cache.h> |
| #include <linux/bitops.h> |
| #include <linux/errno.h> |
| #include <asm/io.h> |
| #include <asm/arch/clock.h> |
| #include <asm/arch/imx-regs.h> |
| #include <asm/arch/sys_proto.h> |
| #include <asm/mach-imx/dma.h> |
| |
| #define MXS_SPI_MAX_TIMEOUT 1000000 |
| #define MXS_SPI_PORT_OFFSET 0x2000 |
| #define MXS_SSP_CHIPSELECT_MASK 0x00300000 |
| #define MXS_SSP_CHIPSELECT_SHIFT 20 |
| |
| #define MXSSSP_SMALL_TRANSFER 512 |
| |
| /* Base numbers of i.MX2[38] clk for ssp0 IP block */ |
| #define MXS_SSP_IMX23_CLKID_SSP0 33 |
| #define MXS_SSP_IMX28_CLKID_SSP0 46 |
| |
| struct mxs_spi_platdata { |
| #if CONFIG_IS_ENABLED(OF_PLATDATA) |
| struct dtd_fsl_imx23_spi dtplat; |
| #endif |
| s32 frequency; /* Default clock frequency, -1 for none */ |
| fdt_addr_t base; /* SPI IP block base address */ |
| int num_cs; /* Number of CSes supported */ |
| int dma_id; /* ID of the DMA channel */ |
| int clk_id; /* ID of the SSP clock */ |
| }; |
| |
| struct mxs_spi_priv { |
| struct mxs_ssp_regs *regs; |
| unsigned int dma_channel; |
| unsigned int max_freq; |
| unsigned int clk_id; |
| unsigned int mode; |
| }; |
| |
| static void mxs_spi_start_xfer(struct mxs_ssp_regs *ssp_regs) |
| { |
| writel(SSP_CTRL0_LOCK_CS, &ssp_regs->hw_ssp_ctrl0_set); |
| writel(SSP_CTRL0_IGNORE_CRC, &ssp_regs->hw_ssp_ctrl0_clr); |
| } |
| |
| static void mxs_spi_end_xfer(struct mxs_ssp_regs *ssp_regs) |
| { |
| writel(SSP_CTRL0_LOCK_CS, &ssp_regs->hw_ssp_ctrl0_clr); |
| writel(SSP_CTRL0_IGNORE_CRC, &ssp_regs->hw_ssp_ctrl0_set); |
| } |
| |
| static int mxs_spi_xfer_pio(struct mxs_spi_priv *priv, |
| char *data, int length, int write, |
| unsigned long flags) |
| { |
| struct mxs_ssp_regs *ssp_regs = priv->regs; |
| |
| if (flags & SPI_XFER_BEGIN) |
| mxs_spi_start_xfer(ssp_regs); |
| |
| while (length--) { |
| /* We transfer 1 byte */ |
| #if defined(CONFIG_MX23) |
| writel(SSP_CTRL0_XFER_COUNT_MASK, &ssp_regs->hw_ssp_ctrl0_clr); |
| writel(1, &ssp_regs->hw_ssp_ctrl0_set); |
| #elif defined(CONFIG_MX28) |
| writel(1, &ssp_regs->hw_ssp_xfer_size); |
| #endif |
| |
| if ((flags & SPI_XFER_END) && !length) |
| mxs_spi_end_xfer(ssp_regs); |
| |
| if (write) |
| writel(SSP_CTRL0_READ, &ssp_regs->hw_ssp_ctrl0_clr); |
| else |
| writel(SSP_CTRL0_READ, &ssp_regs->hw_ssp_ctrl0_set); |
| |
| writel(SSP_CTRL0_RUN, &ssp_regs->hw_ssp_ctrl0_set); |
| |
| if (mxs_wait_mask_set(&ssp_regs->hw_ssp_ctrl0_reg, |
| SSP_CTRL0_RUN, MXS_SPI_MAX_TIMEOUT)) { |
| printf("MXS SPI: Timeout waiting for start\n"); |
| return -ETIMEDOUT; |
| } |
| |
| if (write) |
| writel(*data++, &ssp_regs->hw_ssp_data); |
| |
| writel(SSP_CTRL0_DATA_XFER, &ssp_regs->hw_ssp_ctrl0_set); |
| |
| if (!write) { |
| if (mxs_wait_mask_clr(&ssp_regs->hw_ssp_status_reg, |
| SSP_STATUS_FIFO_EMPTY, MXS_SPI_MAX_TIMEOUT)) { |
| printf("MXS SPI: Timeout waiting for data\n"); |
| return -ETIMEDOUT; |
| } |
| |
| *data = readl(&ssp_regs->hw_ssp_data); |
| data++; |
| } |
| |
| if (mxs_wait_mask_clr(&ssp_regs->hw_ssp_ctrl0_reg, |
| SSP_CTRL0_RUN, MXS_SPI_MAX_TIMEOUT)) { |
| printf("MXS SPI: Timeout waiting for finish\n"); |
| return -ETIMEDOUT; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int mxs_spi_xfer_dma(struct mxs_spi_priv *priv, |
| char *data, int length, int write, |
| unsigned long flags) |
| { struct mxs_ssp_regs *ssp_regs = priv->regs; |
| const int xfer_max_sz = 0xff00; |
| const int desc_count = DIV_ROUND_UP(length, xfer_max_sz) + 1; |
| struct mxs_dma_desc *dp; |
| uint32_t ctrl0; |
| uint32_t cache_data_count; |
| const uint32_t dstart = (uint32_t)data; |
| int dmach; |
| int tl; |
| int ret = 0; |
| |
| #if defined(CONFIG_MX23) |
| const int mxs_spi_pio_words = 1; |
| #elif defined(CONFIG_MX28) |
| const int mxs_spi_pio_words = 4; |
| #endif |
| |
| ALLOC_CACHE_ALIGN_BUFFER(struct mxs_dma_desc, desc, desc_count); |
| |
| memset(desc, 0, sizeof(struct mxs_dma_desc) * desc_count); |
| |
| ctrl0 = readl(&ssp_regs->hw_ssp_ctrl0); |
| ctrl0 |= SSP_CTRL0_DATA_XFER; |
| |
| if (flags & SPI_XFER_BEGIN) |
| ctrl0 |= SSP_CTRL0_LOCK_CS; |
| if (!write) |
| ctrl0 |= SSP_CTRL0_READ; |
| |
| if (length % ARCH_DMA_MINALIGN) |
| cache_data_count = roundup(length, ARCH_DMA_MINALIGN); |
| else |
| cache_data_count = length; |
| |
| /* Flush data to DRAM so DMA can pick them up */ |
| if (write) |
| flush_dcache_range(dstart, dstart + cache_data_count); |
| |
| /* Invalidate the area, so no writeback into the RAM races with DMA */ |
| invalidate_dcache_range(dstart, dstart + cache_data_count); |
| |
| dmach = priv->dma_channel; |
| |
| dp = desc; |
| while (length) { |
| dp->address = (dma_addr_t)dp; |
| dp->cmd.address = (dma_addr_t)data; |
| |
| /* |
| * This is correct, even though it does indeed look insane. |
| * I hereby have to, wholeheartedly, thank Freescale Inc., |
| * for always inventing insane hardware and keeping me busy |
| * and employed ;-) |
| */ |
| if (write) |
| dp->cmd.data = MXS_DMA_DESC_COMMAND_DMA_READ; |
| else |
| dp->cmd.data = MXS_DMA_DESC_COMMAND_DMA_WRITE; |
| |
| /* |
| * The DMA controller can transfer large chunks (64kB) at |
| * time by setting the transfer length to 0. Setting tl to |
| * 0x10000 will overflow below and make .data contain 0. |
| * Otherwise, 0xff00 is the transfer maximum. |
| */ |
| if (length >= 0x10000) |
| tl = 0x10000; |
| else |
| tl = min(length, xfer_max_sz); |
| |
| dp->cmd.data |= |
| ((tl & 0xffff) << MXS_DMA_DESC_BYTES_OFFSET) | |
| (mxs_spi_pio_words << MXS_DMA_DESC_PIO_WORDS_OFFSET) | |
| MXS_DMA_DESC_HALT_ON_TERMINATE | |
| MXS_DMA_DESC_TERMINATE_FLUSH; |
| |
| data += tl; |
| length -= tl; |
| |
| if (!length) { |
| dp->cmd.data |= MXS_DMA_DESC_IRQ | MXS_DMA_DESC_DEC_SEM; |
| |
| if (flags & SPI_XFER_END) { |
| ctrl0 &= ~SSP_CTRL0_LOCK_CS; |
| ctrl0 |= SSP_CTRL0_IGNORE_CRC; |
| } |
| } |
| |
| /* |
| * Write CTRL0, CMD0, CMD1 and XFER_SIZE registers in |
| * case of MX28, write only CTRL0 in case of MX23 due |
| * to the difference in register layout. It is utterly |
| * essential that the XFER_SIZE register is written on |
| * a per-descriptor basis with the same size as is the |
| * descriptor! |
| */ |
| dp->cmd.pio_words[0] = ctrl0; |
| #ifdef CONFIG_MX28 |
| dp->cmd.pio_words[1] = 0; |
| dp->cmd.pio_words[2] = 0; |
| dp->cmd.pio_words[3] = tl; |
| #endif |
| |
| mxs_dma_desc_append(dmach, dp); |
| |
| dp++; |
| } |
| |
| if (mxs_dma_go(dmach)) |
| ret = -EINVAL; |
| |
| /* The data arrived into DRAM, invalidate cache over them */ |
| if (!write) |
| invalidate_dcache_range(dstart, dstart + cache_data_count); |
| |
| return ret; |
| } |
| |
| int mxs_spi_xfer(struct udevice *dev, unsigned int bitlen, |
| const void *dout, void *din, unsigned long flags) |
| { |
| struct udevice *bus = dev_get_parent(dev); |
| struct mxs_spi_priv *priv = dev_get_priv(bus); |
| struct mxs_ssp_regs *ssp_regs = priv->regs; |
| int len = bitlen / 8; |
| char dummy; |
| int write = 0; |
| char *data = NULL; |
| int dma = 1; |
| |
| if (bitlen == 0) { |
| if (flags & SPI_XFER_END) { |
| din = (void *)&dummy; |
| len = 1; |
| } else |
| return 0; |
| } |
| |
| /* Half-duplex only */ |
| if (din && dout) |
| return -EINVAL; |
| /* No data */ |
| if (!din && !dout) |
| return 0; |
| |
| if (dout) { |
| data = (char *)dout; |
| write = 1; |
| } else if (din) { |
| data = (char *)din; |
| write = 0; |
| } |
| |
| /* |
| * Check for alignment, if the buffer is aligned, do DMA transfer, |
| * PIO otherwise. This is a temporary workaround until proper bounce |
| * buffer is in place. |
| */ |
| if (dma) { |
| if (((uint32_t)data) & (ARCH_DMA_MINALIGN - 1)) |
| dma = 0; |
| if (((uint32_t)len) & (ARCH_DMA_MINALIGN - 1)) |
| dma = 0; |
| } |
| |
| if (!dma || (len < MXSSSP_SMALL_TRANSFER)) { |
| writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_clr); |
| return mxs_spi_xfer_pio(priv, data, len, write, flags); |
| } else { |
| writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_set); |
| return mxs_spi_xfer_dma(priv, data, len, write, flags); |
| } |
| } |
| |
| static int mxs_spi_probe(struct udevice *bus) |
| { |
| struct mxs_spi_platdata *plat = dev_get_platdata(bus); |
| struct mxs_spi_priv *priv = dev_get_priv(bus); |
| int ret; |
| |
| debug("%s: probe\n", __func__); |
| |
| #if CONFIG_IS_ENABLED(OF_PLATDATA) |
| struct dtd_fsl_imx23_spi *dtplat = &plat->dtplat; |
| struct phandle_1_arg *p1a = &dtplat->clocks[0]; |
| |
| priv->regs = (struct mxs_ssp_regs *)dtplat->reg[0]; |
| priv->dma_channel = dtplat->dmas[1]; |
| priv->clk_id = p1a->arg[0]; |
| priv->max_freq = dtplat->spi_max_frequency; |
| plat->num_cs = dtplat->num_cs; |
| |
| debug("OF_PLATDATA: regs: 0x%x max freq: %d clkid: %d\n", |
| (unsigned int)priv->regs, priv->max_freq, priv->clk_id); |
| #else |
| priv->regs = (struct mxs_ssp_regs *)plat->base; |
| priv->max_freq = plat->frequency; |
| |
| priv->dma_channel = plat->dma_id; |
| priv->clk_id = plat->clk_id; |
| #endif |
| |
| mxs_reset_block(&priv->regs->hw_ssp_ctrl0_reg); |
| |
| ret = mxs_dma_init_channel(priv->dma_channel); |
| if (ret) { |
| printf("%s: DMA init channel error %d\n", __func__, ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int mxs_spi_claim_bus(struct udevice *dev) |
| { |
| struct udevice *bus = dev_get_parent(dev); |
| struct mxs_spi_priv *priv = dev_get_priv(bus); |
| struct mxs_ssp_regs *ssp_regs = priv->regs; |
| int cs = spi_chip_select(dev); |
| |
| /* |
| * i.MX28 supports up to 3 CS (SSn0, SSn1, SSn2) |
| * To set them it uses following tuple (WAIT_FOR_IRQ,WAIT_FOR_CMD), |
| * where: |
| * |
| * WAIT_FOR_IRQ is bit 21 of HW_SSP_CTRL0 |
| * WAIT_FOR_CMD is bit 20 (#defined as MXS_SSP_CHIPSELECT_SHIFT here) of |
| * HW_SSP_CTRL0 |
| * SSn0 b00 |
| * SSn1 b01 |
| * SSn2 b10 (which require setting WAIT_FOR_IRQ) |
| * |
| * However, for now i.MX28 SPI driver will support up till 2 CSes |
| * (SSn0, and SSn1). |
| */ |
| |
| /* Ungate SSP clock and set active CS */ |
| clrsetbits_le32(&ssp_regs->hw_ssp_ctrl0, |
| BIT(MXS_SSP_CHIPSELECT_SHIFT) | |
| SSP_CTRL0_CLKGATE, (cs << MXS_SSP_CHIPSELECT_SHIFT)); |
| |
| return 0; |
| } |
| |
| static int mxs_spi_release_bus(struct udevice *dev) |
| { |
| struct udevice *bus = dev_get_parent(dev); |
| struct mxs_spi_priv *priv = dev_get_priv(bus); |
| struct mxs_ssp_regs *ssp_regs = priv->regs; |
| |
| /* Gate SSP clock */ |
| setbits_le32(&ssp_regs->hw_ssp_ctrl0, SSP_CTRL0_CLKGATE); |
| |
| return 0; |
| } |
| |
| static int mxs_spi_set_speed(struct udevice *bus, uint speed) |
| { |
| struct mxs_spi_priv *priv = dev_get_priv(bus); |
| #ifdef CONFIG_MX28 |
| int clkid = priv->clk_id - MXS_SSP_IMX28_CLKID_SSP0; |
| #else /* CONFIG_MX23 */ |
| int clkid = priv->clk_id - MXS_SSP_IMX23_CLKID_SSP0; |
| #endif |
| if (speed > priv->max_freq) |
| speed = priv->max_freq; |
| |
| debug("%s speed: %u [Hz] clkid: %d\n", __func__, speed, clkid); |
| mxs_set_ssp_busclock(clkid, speed / 1000); |
| |
| return 0; |
| } |
| |
| static int mxs_spi_set_mode(struct udevice *bus, uint mode) |
| { |
| struct mxs_spi_priv *priv = dev_get_priv(bus); |
| struct mxs_ssp_regs *ssp_regs = priv->regs; |
| u32 reg; |
| |
| priv->mode = mode; |
| debug("%s: mode 0x%x\n", __func__, mode); |
| |
| reg = SSP_CTRL1_SSP_MODE_SPI | SSP_CTRL1_WORD_LENGTH_EIGHT_BITS; |
| reg |= (priv->mode & SPI_CPOL) ? SSP_CTRL1_POLARITY : 0; |
| reg |= (priv->mode & SPI_CPHA) ? SSP_CTRL1_PHASE : 0; |
| writel(reg, &ssp_regs->hw_ssp_ctrl1); |
| |
| /* Single bit SPI support */ |
| writel(SSP_CTRL0_BUS_WIDTH_ONE_BIT, &ssp_regs->hw_ssp_ctrl0); |
| |
| return 0; |
| } |
| |
| static const struct dm_spi_ops mxs_spi_ops = { |
| .claim_bus = mxs_spi_claim_bus, |
| .release_bus = mxs_spi_release_bus, |
| .xfer = mxs_spi_xfer, |
| .set_speed = mxs_spi_set_speed, |
| .set_mode = mxs_spi_set_mode, |
| /* |
| * cs_info is not needed, since we require all chip selects to be |
| * in the device tree explicitly |
| */ |
| }; |
| |
| #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA) |
| static int mxs_ofdata_to_platdata(struct udevice *bus) |
| { |
| struct mxs_spi_platdata *plat = bus->platdata; |
| u32 prop[2]; |
| int ret; |
| |
| plat->base = dev_read_addr(bus); |
| plat->frequency = |
| dev_read_u32_default(bus, "spi-max-frequency", 40000000); |
| plat->num_cs = dev_read_u32_default(bus, "num-cs", 2); |
| |
| ret = dev_read_u32_array(bus, "dmas", prop, ARRAY_SIZE(prop)); |
| if (ret) { |
| printf("%s: Reading 'dmas' property failed!\n", __func__); |
| return ret; |
| } |
| plat->dma_id = prop[1]; |
| |
| ret = dev_read_u32_array(bus, "clocks", prop, ARRAY_SIZE(prop)); |
| if (ret) { |
| printf("%s: Reading 'clocks' property failed!\n", __func__); |
| return ret; |
| } |
| plat->clk_id = prop[1]; |
| |
| debug("%s: base=0x%x, max-frequency=%d num-cs=%d dma_id=%d clk_id=%d\n", |
| __func__, (uint)plat->base, plat->frequency, plat->num_cs, |
| plat->dma_id, plat->clk_id); |
| |
| return 0; |
| } |
| |
| static const struct udevice_id mxs_spi_ids[] = { |
| { .compatible = "fsl,imx23-spi" }, |
| { .compatible = "fsl,imx28-spi" }, |
| { } |
| }; |
| #endif |
| |
| U_BOOT_DRIVER(fsl_imx23_spi) = { |
| .name = "fsl_imx23_spi", |
| .id = UCLASS_SPI, |
| #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA) |
| .of_match = mxs_spi_ids, |
| .ofdata_to_platdata = mxs_ofdata_to_platdata, |
| #endif |
| .platdata_auto = sizeof(struct mxs_spi_platdata), |
| .ops = &mxs_spi_ops, |
| .priv_auto = sizeof(struct mxs_spi_priv), |
| .probe = mxs_spi_probe, |
| }; |
| |
| U_BOOT_DRIVER_ALIAS(fsl_imx23_spi, fsl_imx28_spi) |