blob: d11e6f6270cd4b3c5a2e8b5b99380a7a61045536 [file] [log] [blame]
/*
* (C) Copyright 2007
* Sascha Hauer, Pengutronix
*
* (C) Copyright 2008-2010 Freescale Semiconductor, Inc.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <div64.h>
#include <asm/io.h>
#include <asm/errno.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/crm_regs.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
#ifdef CONFIG_FSL_ESDHC
#include <fsl_esdhc.h>
#endif
#include <netdev.h>
#include <spl.h>
#define CLK_CODE(arm, ahb, sel) (((arm) << 16) + ((ahb) << 8) + (sel))
#define CLK_CODE_ARM(c) (((c) >> 16) & 0xFF)
#define CLK_CODE_AHB(c) (((c) >> 8) & 0xFF)
#define CLK_CODE_PATH(c) ((c) & 0xFF)
#define CCM_GET_DIVIDER(x, m, o) (((x) & (m)) >> (o))
#ifdef CONFIG_FSL_ESDHC
DECLARE_GLOBAL_DATA_PTR;
#endif
static int g_clk_mux_auto[8] = {
CLK_CODE(1, 3, 0), CLK_CODE(1, 2, 1), CLK_CODE(2, 1, 1), -1,
CLK_CODE(1, 6, 0), CLK_CODE(1, 4, 1), CLK_CODE(2, 2, 1), -1,
};
static int g_clk_mux_consumer[16] = {
CLK_CODE(1, 4, 0), CLK_CODE(1, 3, 1), CLK_CODE(1, 3, 1), -1,
-1, -1, CLK_CODE(4, 1, 0), CLK_CODE(1, 5, 0),
CLK_CODE(1, 8, 1), CLK_CODE(1, 6, 1), CLK_CODE(2, 4, 0), -1,
-1, -1, CLK_CODE(4, 2, 0), -1,
};
static int hsp_div_table[3][16] = {
{4, 3, 2, -1, -1, -1, 1, 5, 4, 3, 2, -1, -1, -1, 1, -1},
{-1, -1, -1, -1, -1, -1, -1, -1, 8, 6, 4, -1, -1, -1, 2, -1},
{3, -1, -1, -1, -1, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1},
};
u32 get_cpu_rev(void)
{
int reg;
struct iim_regs *iim =
(struct iim_regs *)IIM_BASE_ADDR;
reg = readl(&iim->iim_srev);
if (!reg) {
reg = readw(ROMPATCH_REV);
reg <<= 4;
} else {
reg += CHIP_REV_1_0;
}
return 0x35000 + (reg & 0xFF);
}
static u32 get_arm_div(u32 pdr0, u32 *fi, u32 *fd)
{
int *pclk_mux;
if (pdr0 & MXC_CCM_PDR0_AUTO_CON) {
pclk_mux = g_clk_mux_consumer +
((pdr0 & MXC_CCM_PDR0_CON_MUX_DIV_MASK) >>
MXC_CCM_PDR0_CON_MUX_DIV_OFFSET);
} else {
pclk_mux = g_clk_mux_auto +
((pdr0 & MXC_CCM_PDR0_AUTO_MUX_DIV_MASK) >>
MXC_CCM_PDR0_AUTO_MUX_DIV_OFFSET);
}
if ((*pclk_mux) == -1)
return -1;
if (fi && fd) {
if (!CLK_CODE_PATH(*pclk_mux)) {
*fi = *fd = 1;
return CLK_CODE_ARM(*pclk_mux);
}
if (pdr0 & MXC_CCM_PDR0_AUTO_CON) {
*fi = 3;
*fd = 4;
} else {
*fi = 2;
*fd = 3;
}
}
return CLK_CODE_ARM(*pclk_mux);
}
static int get_ahb_div(u32 pdr0)
{
int *pclk_mux;
pclk_mux = g_clk_mux_consumer +
((pdr0 & MXC_CCM_PDR0_CON_MUX_DIV_MASK) >>
MXC_CCM_PDR0_CON_MUX_DIV_OFFSET);
if ((*pclk_mux) == -1)
return -1;
return CLK_CODE_AHB(*pclk_mux);
}
static u32 decode_pll(u32 reg, u32 infreq)
{
u32 mfi = (reg >> 10) & 0xf;
s32 mfn = reg & 0x3ff;
u32 mfd = (reg >> 16) & 0x3ff;
u32 pd = (reg >> 26) & 0xf;
mfi = mfi <= 5 ? 5 : mfi;
mfn = mfn >= 512 ? mfn - 1024 : mfn;
mfd += 1;
pd += 1;
return lldiv(2 * (u64)infreq * (mfi * mfd + mfn),
mfd * pd);
}
static u32 get_mcu_main_clk(void)
{
u32 arm_div = 0, fi = 0, fd = 0;
struct ccm_regs *ccm =
(struct ccm_regs *)IMX_CCM_BASE;
arm_div = get_arm_div(readl(&ccm->pdr0), &fi, &fd);
fi *= decode_pll(readl(&ccm->mpctl), MXC_HCLK);
return fi / (arm_div * fd);
}
static u32 get_ipg_clk(void)
{
u32 freq = get_mcu_main_clk();
struct ccm_regs *ccm =
(struct ccm_regs *)IMX_CCM_BASE;
u32 pdr0 = readl(&ccm->pdr0);
return freq / (get_ahb_div(pdr0) * 2);
}
static u32 get_ipg_per_clk(void)
{
u32 freq = get_mcu_main_clk();
struct ccm_regs *ccm =
(struct ccm_regs *)IMX_CCM_BASE;
u32 pdr0 = readl(&ccm->pdr0);
u32 pdr4 = readl(&ccm->pdr4);
u32 div;
if (pdr0 & MXC_CCM_PDR0_PER_SEL) {
div = CCM_GET_DIVIDER(pdr4,
MXC_CCM_PDR4_PER0_PODF_MASK,
MXC_CCM_PDR4_PER0_PODF_OFFSET) + 1;
} else {
div = CCM_GET_DIVIDER(pdr0,
MXC_CCM_PDR0_PER_PODF_MASK,
MXC_CCM_PDR0_PER_PODF_OFFSET) + 1;
div *= get_ahb_div(pdr0);
}
return freq / div;
}
u32 imx_get_uartclk(void)
{
u32 freq;
struct ccm_regs *ccm =
(struct ccm_regs *)IMX_CCM_BASE;
u32 pdr4 = readl(&ccm->pdr4);
if (readl(&ccm->pdr3) & MXC_CCM_PDR3_UART_M_U)
freq = get_mcu_main_clk();
else
freq = decode_pll(readl(&ccm->ppctl), MXC_HCLK);
freq /= CCM_GET_DIVIDER(pdr4,
MXC_CCM_PDR4_UART_PODF_MASK,
MXC_CCM_PDR4_UART_PODF_OFFSET) + 1;
return freq;
}
unsigned int mxc_get_main_clock(enum mxc_main_clock clk)
{
u32 nfc_pdf, hsp_podf;
u32 pll, ret_val = 0, usb_podf;
struct ccm_regs *ccm =
(struct ccm_regs *)IMX_CCM_BASE;
u32 reg = readl(&ccm->pdr0);
u32 reg4 = readl(&ccm->pdr4);
reg |= 0x1;
switch (clk) {
case CPU_CLK:
ret_val = get_mcu_main_clk();
break;
case AHB_CLK:
ret_val = get_mcu_main_clk();
break;
case HSP_CLK:
if (reg & CLKMODE_CONSUMER) {
hsp_podf = (reg >> 20) & 0x3;
pll = get_mcu_main_clk();
hsp_podf = hsp_div_table[hsp_podf][(reg>>16)&0xF];
if (hsp_podf > 0) {
ret_val = pll / hsp_podf;
} else {
puts("mismatch HSP with ARM clock setting\n");
ret_val = 0;
}
} else {
ret_val = get_mcu_main_clk();
}
break;
case IPG_CLK:
ret_val = get_ipg_clk();
break;
case IPG_PER_CLK:
ret_val = get_ipg_per_clk();
break;
case NFC_CLK:
nfc_pdf = (reg4 >> 28) & 0xF;
pll = get_mcu_main_clk();
/* AHB/nfc_pdf */
ret_val = pll / (nfc_pdf + 1);
break;
case USB_CLK:
usb_podf = (reg4 >> 22) & 0x3F;
if (reg4 & 0x200)
pll = get_mcu_main_clk();
else
pll = decode_pll(readl(&ccm->ppctl), MXC_HCLK);
ret_val = pll / (usb_podf + 1);
break;
default:
printf("Unknown clock: %d\n", clk);
break;
}
return ret_val;
}
unsigned int mxc_get_peri_clock(enum mxc_peri_clock clk)
{
u32 ret_val = 0, pdf, pre_pdf, clk_sel;
struct ccm_regs *ccm =
(struct ccm_regs *)IMX_CCM_BASE;
u32 mpdr2 = readl(&ccm->pdr2);
u32 mpdr3 = readl(&ccm->pdr3);
u32 mpdr4 = readl(&ccm->pdr4);
switch (clk) {
case UART1_BAUD:
case UART2_BAUD:
case UART3_BAUD:
clk_sel = mpdr3 & (1 << 14);
pdf = (mpdr4 >> 10) & 0x3F;
ret_val = ((clk_sel != 0) ? mxc_get_main_clock(CPU_CLK) :
decode_pll(readl(&ccm->ppctl), MXC_HCLK)) / (pdf + 1);
break;
case SSI1_BAUD:
pre_pdf = (mpdr2 >> 24) & 0x7;
pdf = mpdr2 & 0x3F;
clk_sel = mpdr2 & (1 << 6);
ret_val = ((clk_sel != 0) ? mxc_get_main_clock(CPU_CLK) :
decode_pll(readl(&ccm->ppctl), MXC_HCLK)) /
((pre_pdf + 1) * (pdf + 1));
break;
case SSI2_BAUD:
pre_pdf = (mpdr2 >> 27) & 0x7;
pdf = (mpdr2 >> 8) & 0x3F;
clk_sel = mpdr2 & (1 << 6);
ret_val = ((clk_sel != 0) ? mxc_get_main_clock(CPU_CLK) :
decode_pll(readl(&ccm->ppctl), MXC_HCLK)) /
((pre_pdf + 1) * (pdf + 1));
break;
case CSI_BAUD:
clk_sel = mpdr2 & (1 << 7);
pdf = (mpdr2 >> 16) & 0x3F;
ret_val = ((clk_sel != 0) ? mxc_get_main_clock(CPU_CLK) :
decode_pll(readl(&ccm->ppctl), MXC_HCLK)) / (pdf + 1);
break;
case MSHC_CLK:
pre_pdf = readl(&ccm->pdr1);
clk_sel = (pre_pdf & 0x80);
pdf = (pre_pdf >> 22) & 0x3F;
pre_pdf = (pre_pdf >> 28) & 0x7;
ret_val = ((clk_sel != 0) ? mxc_get_main_clock(CPU_CLK) :
decode_pll(readl(&ccm->ppctl), MXC_HCLK)) /
((pre_pdf + 1) * (pdf + 1));
break;
case ESDHC1_CLK:
clk_sel = mpdr3 & 0x40;
pdf = mpdr3 & 0x3F;
ret_val = ((clk_sel != 0) ? mxc_get_main_clock(CPU_CLK) :
decode_pll(readl(&ccm->ppctl), MXC_HCLK)) / (pdf + 1);
break;
case ESDHC2_CLK:
clk_sel = mpdr3 & 0x40;
pdf = (mpdr3 >> 8) & 0x3F;
ret_val = ((clk_sel != 0) ? mxc_get_main_clock(CPU_CLK) :
decode_pll(readl(&ccm->ppctl), MXC_HCLK)) / (pdf + 1);
break;
case ESDHC3_CLK:
clk_sel = mpdr3 & 0x40;
pdf = (mpdr3 >> 16) & 0x3F;
ret_val = ((clk_sel != 0) ? mxc_get_main_clock(CPU_CLK) :
decode_pll(readl(&ccm->ppctl), MXC_HCLK)) / (pdf + 1);
break;
case SPDIF_CLK:
clk_sel = mpdr3 & 0x400000;
pre_pdf = (mpdr3 >> 29) & 0x7;
pdf = (mpdr3 >> 23) & 0x3F;
ret_val = ((clk_sel != 0) ? mxc_get_main_clock(CPU_CLK) :
decode_pll(readl(&ccm->ppctl), MXC_HCLK)) /
((pre_pdf + 1) * (pdf + 1));
break;
default:
printf("%s(): This clock: %d not supported yet\n",
__func__, clk);
break;
}
return ret_val;
}
unsigned int mxc_get_clock(enum mxc_clock clk)
{
switch (clk) {
case MXC_ARM_CLK:
return get_mcu_main_clk();
case MXC_AHB_CLK:
break;
case MXC_IPG_CLK:
return get_ipg_clk();
case MXC_IPG_PERCLK:
case MXC_I2C_CLK:
return get_ipg_per_clk();
case MXC_UART_CLK:
return imx_get_uartclk();
case MXC_ESDHC1_CLK:
return mxc_get_peri_clock(ESDHC1_CLK);
case MXC_ESDHC2_CLK:
return mxc_get_peri_clock(ESDHC2_CLK);
case MXC_ESDHC3_CLK:
return mxc_get_peri_clock(ESDHC3_CLK);
case MXC_USB_CLK:
return mxc_get_main_clock(USB_CLK);
case MXC_FEC_CLK:
return get_ipg_clk();
case MXC_CSPI_CLK:
return get_ipg_clk();
}
return -1;
}
#ifdef CONFIG_FEC_MXC
/*
* The MX35 has no fuse for MAC, return a NULL MAC
*/
void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
{
memset(mac, 0, 6);
}
u32 imx_get_fecclk(void)
{
return mxc_get_clock(MXC_IPG_CLK);
}
#endif
int do_mx35_showclocks(cmd_tbl_t *cmdtp,
int flag, int argc, char * const argv[])
{
u32 cpufreq = get_mcu_main_clk();
printf("mx35 cpu clock: %dMHz\n", cpufreq / 1000000);
printf("ipg clock : %dHz\n", get_ipg_clk());
printf("ipg per clock : %dHz\n", get_ipg_per_clk());
printf("uart clock : %dHz\n", mxc_get_clock(MXC_UART_CLK));
return 0;
}
U_BOOT_CMD(
clocks, CONFIG_SYS_MAXARGS, 1, do_mx35_showclocks,
"display clocks",
""
);
#if defined(CONFIG_DISPLAY_CPUINFO)
static char *get_reset_cause(void)
{
/* read RCSR register from CCM module */
struct ccm_regs *ccm =
(struct ccm_regs *)IMX_CCM_BASE;
u32 cause = readl(&ccm->rcsr) & 0x0F;
switch (cause) {
case 0x0000:
return "POR";
case 0x0002:
return "JTAG";
case 0x0004:
return "RST";
case 0x0008:
return "WDOG";
default:
return "unknown reset";
}
}
int print_cpuinfo(void)
{
u32 srev = get_cpu_rev();
printf("CPU: Freescale i.MX35 rev %d.%d at %d MHz.\n",
(srev & 0xF0) >> 4, (srev & 0x0F),
get_mcu_main_clk() / 1000000);
printf("Reset cause: %s\n", get_reset_cause());
return 0;
}
#endif
/*
* Initializes on-chip ethernet controllers.
* to override, implement board_eth_init()
*/
int cpu_eth_init(bd_t *bis)
{
int rc = -ENODEV;
#if defined(CONFIG_FEC_MXC)
rc = fecmxc_initialize(bis);
#endif
return rc;
}
#ifdef CONFIG_FSL_ESDHC
/*
* Initializes on-chip MMC controllers.
* to override, implement board_mmc_init()
*/
int cpu_mmc_init(bd_t *bis)
{
return fsl_esdhc_mmc_init(bis);
}
#endif
int get_clocks(void)
{
#ifdef CONFIG_FSL_ESDHC
#if CONFIG_SYS_FSL_ESDHC_ADDR == MMC_SDHC2_BASE_ADDR
gd->arch.sdhc_clk = mxc_get_clock(MXC_ESDHC2_CLK);
#elif CONFIG_SYS_FSL_ESDHC_ADDR == MMC_SDHC3_BASE_ADDR
gd->arch.sdhc_clk = mxc_get_clock(MXC_ESDHC3_CLK);
#else
gd->arch.sdhc_clk = mxc_get_clock(MXC_ESDHC1_CLK);
#endif
#endif
return 0;
}
#define RCSR_MEM_CTL_WEIM 0
#define RCSR_MEM_CTL_NAND 1
#define RCSR_MEM_CTL_ATA 2
#define RCSR_MEM_CTL_EXPANSION 3
#define RCSR_MEM_TYPE_NOR 0
#define RCSR_MEM_TYPE_ONENAND 2
#define RCSR_MEM_TYPE_SD 0
#define RCSR_MEM_TYPE_I2C 2
#define RCSR_MEM_TYPE_SPI 3
u32 spl_boot_device(void)
{
struct ccm_regs *ccm =
(struct ccm_regs *)IMX_CCM_BASE;
u32 rcsr = readl(&ccm->rcsr);
u32 mem_type, mem_ctl;
/* In external mode, no boot device is returned */
if ((rcsr >> 10) & 0x03)
return BOOT_DEVICE_NONE;
mem_ctl = (rcsr >> 25) & 0x03;
mem_type = (rcsr >> 23) & 0x03;
switch (mem_ctl) {
case RCSR_MEM_CTL_WEIM:
switch (mem_type) {
case RCSR_MEM_TYPE_NOR:
return BOOT_DEVICE_NOR;
case RCSR_MEM_TYPE_ONENAND:
return BOOT_DEVICE_ONE_NAND;
default:
return BOOT_DEVICE_NONE;
}
case RCSR_MEM_CTL_NAND:
return BOOT_DEVICE_NAND;
case RCSR_MEM_CTL_EXPANSION:
switch (mem_type) {
case RCSR_MEM_TYPE_SD:
return BOOT_DEVICE_MMC1;
case RCSR_MEM_TYPE_I2C:
return BOOT_DEVICE_I2C;
case RCSR_MEM_TYPE_SPI:
return BOOT_DEVICE_SPI;
default:
return BOOT_DEVICE_NONE;
}
}
return BOOT_DEVICE_NONE;
}
#ifdef CONFIG_SPL_BUILD
u32 spl_boot_mode(void)
{
switch (spl_boot_device()) {
case BOOT_DEVICE_MMC1:
#ifdef CONFIG_SPL_FAT_SUPPORT
return MMCSD_MODE_FAT;
#else
return MMCSD_MODE_RAW;
#endif
break;
case BOOT_DEVICE_NAND:
return 0;
break;
default:
puts("spl: ERROR: unsupported device\n");
hang();
}
}
#endif