| // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause |
| /* |
| * Copyright (C) STMicroelectronics 2019 |
| * Author: Christophe Kerello <christophe.kerello@st.com> |
| */ |
| |
| #define LOG_CATEGORY UCLASS_MTD |
| |
| #include <common.h> |
| #include <clk.h> |
| #include <dm.h> |
| #include <log.h> |
| #include <nand.h> |
| #include <reset.h> |
| #include <asm/gpio.h> |
| #include <dm/device_compat.h> |
| #include <linux/bitfield.h> |
| #include <linux/bitops.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/iopoll.h> |
| #include <linux/ioport.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/printk.h> |
| #include <linux/time.h> |
| |
| /* Bad block marker length */ |
| #define FMC2_BBM_LEN 2 |
| |
| /* ECC step size */ |
| #define FMC2_ECC_STEP_SIZE 512 |
| |
| /* Command delay */ |
| #define FMC2_RB_DELAY_US 30 |
| |
| /* Max chip enable */ |
| #define FMC2_MAX_CE 4 |
| |
| /* Timings */ |
| #define FMC2_THIZ 1 |
| #define FMC2_TIO 8000 |
| #define FMC2_TSYNC 3000 |
| #define FMC2_PCR_TIMING_MASK 0xf |
| #define FMC2_PMEM_PATT_TIMING_MASK 0xff |
| |
| /* FMC2 Controller Registers */ |
| #define FMC2_BCR1 0x0 |
| #define FMC2_PCR 0x80 |
| #define FMC2_SR 0x84 |
| #define FMC2_PMEM 0x88 |
| #define FMC2_PATT 0x8c |
| #define FMC2_HECCR 0x94 |
| #define FMC2_BCHISR 0x254 |
| #define FMC2_BCHICR 0x258 |
| #define FMC2_BCHPBR1 0x260 |
| #define FMC2_BCHPBR2 0x264 |
| #define FMC2_BCHPBR3 0x268 |
| #define FMC2_BCHPBR4 0x26c |
| #define FMC2_BCHDSR0 0x27c |
| #define FMC2_BCHDSR1 0x280 |
| #define FMC2_BCHDSR2 0x284 |
| #define FMC2_BCHDSR3 0x288 |
| #define FMC2_BCHDSR4 0x28c |
| |
| /* Register: FMC2_BCR1 */ |
| #define FMC2_BCR1_FMC2EN BIT(31) |
| |
| /* Register: FMC2_PCR */ |
| #define FMC2_PCR_PWAITEN BIT(1) |
| #define FMC2_PCR_PBKEN BIT(2) |
| #define FMC2_PCR_PWID GENMASK(5, 4) |
| #define FMC2_PCR_PWID_BUSWIDTH_8 0 |
| #define FMC2_PCR_PWID_BUSWIDTH_16 1 |
| #define FMC2_PCR_ECCEN BIT(6) |
| #define FMC2_PCR_ECCALG BIT(8) |
| #define FMC2_PCR_TCLR GENMASK(12, 9) |
| #define FMC2_PCR_TCLR_DEFAULT 0xf |
| #define FMC2_PCR_TAR GENMASK(16, 13) |
| #define FMC2_PCR_TAR_DEFAULT 0xf |
| #define FMC2_PCR_ECCSS GENMASK(19, 17) |
| #define FMC2_PCR_ECCSS_512 1 |
| #define FMC2_PCR_ECCSS_2048 3 |
| #define FMC2_PCR_BCHECC BIT(24) |
| #define FMC2_PCR_WEN BIT(25) |
| |
| /* Register: FMC2_SR */ |
| #define FMC2_SR_NWRF BIT(6) |
| |
| /* Register: FMC2_PMEM */ |
| #define FMC2_PMEM_MEMSET GENMASK(7, 0) |
| #define FMC2_PMEM_MEMWAIT GENMASK(15, 8) |
| #define FMC2_PMEM_MEMHOLD GENMASK(23, 16) |
| #define FMC2_PMEM_MEMHIZ GENMASK(31, 24) |
| #define FMC2_PMEM_DEFAULT 0x0a0a0a0a |
| |
| /* Register: FMC2_PATT */ |
| #define FMC2_PATT_ATTSET GENMASK(7, 0) |
| #define FMC2_PATT_ATTWAIT GENMASK(15, 8) |
| #define FMC2_PATT_ATTHOLD GENMASK(23, 16) |
| #define FMC2_PATT_ATTHIZ GENMASK(31, 24) |
| #define FMC2_PATT_DEFAULT 0x0a0a0a0a |
| |
| /* Register: FMC2_BCHISR */ |
| #define FMC2_BCHISR_DERF BIT(1) |
| #define FMC2_BCHISR_EPBRF BIT(4) |
| |
| /* Register: FMC2_BCHICR */ |
| #define FMC2_BCHICR_CLEAR_IRQ GENMASK(4, 0) |
| |
| /* Register: FMC2_BCHDSR0 */ |
| #define FMC2_BCHDSR0_DUE BIT(0) |
| #define FMC2_BCHDSR0_DEF BIT(1) |
| #define FMC2_BCHDSR0_DEN GENMASK(7, 4) |
| |
| /* Register: FMC2_BCHDSR1 */ |
| #define FMC2_BCHDSR1_EBP1 GENMASK(12, 0) |
| #define FMC2_BCHDSR1_EBP2 GENMASK(28, 16) |
| |
| /* Register: FMC2_BCHDSR2 */ |
| #define FMC2_BCHDSR2_EBP3 GENMASK(12, 0) |
| #define FMC2_BCHDSR2_EBP4 GENMASK(28, 16) |
| |
| /* Register: FMC2_BCHDSR3 */ |
| #define FMC2_BCHDSR3_EBP5 GENMASK(12, 0) |
| #define FMC2_BCHDSR3_EBP6 GENMASK(28, 16) |
| |
| /* Register: FMC2_BCHDSR4 */ |
| #define FMC2_BCHDSR4_EBP7 GENMASK(12, 0) |
| #define FMC2_BCHDSR4_EBP8 GENMASK(28, 16) |
| |
| #define FMC2_TIMEOUT_5S 5000000 |
| |
| enum stm32_fmc2_ecc { |
| FMC2_ECC_HAM = 1, |
| FMC2_ECC_BCH4 = 4, |
| FMC2_ECC_BCH8 = 8 |
| }; |
| |
| struct stm32_fmc2_timings { |
| u8 tclr; |
| u8 tar; |
| u8 thiz; |
| u8 twait; |
| u8 thold_mem; |
| u8 tset_mem; |
| u8 thold_att; |
| u8 tset_att; |
| }; |
| |
| struct stm32_fmc2_nand { |
| struct nand_chip chip; |
| struct stm32_fmc2_timings timings; |
| struct gpio_desc wp_gpio; |
| int ncs; |
| int cs_used[FMC2_MAX_CE]; |
| }; |
| |
| static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip) |
| { |
| return container_of(chip, struct stm32_fmc2_nand, chip); |
| } |
| |
| struct stm32_fmc2_nfc_data { |
| int max_ncs; |
| struct udevice *(*get_cdev)(struct udevice *dev); |
| }; |
| |
| struct stm32_fmc2_nfc { |
| struct nand_hw_control base; |
| struct stm32_fmc2_nand nand; |
| struct nand_ecclayout ecclayout; |
| fdt_addr_t io_base; |
| fdt_addr_t data_base[FMC2_MAX_CE]; |
| fdt_addr_t cmd_base[FMC2_MAX_CE]; |
| fdt_addr_t addr_base[FMC2_MAX_CE]; |
| struct clk clk; |
| const struct stm32_fmc2_nfc_data *data; |
| |
| u8 cs_assigned; |
| int cs_sel; |
| }; |
| |
| static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_hw_control *base) |
| { |
| return container_of(base, struct stm32_fmc2_nfc, base); |
| } |
| |
| static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip) |
| { |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); |
| struct stm32_fmc2_timings *timings = &nand->timings; |
| u32 pmem, patt; |
| |
| /* Set tclr/tar timings */ |
| clrsetbits_le32(nfc->io_base + FMC2_PCR, |
| FMC2_PCR_TCLR | FMC2_PCR_TAR, |
| FIELD_PREP(FMC2_PCR_TCLR, timings->tclr) | |
| FIELD_PREP(FMC2_PCR_TAR, timings->tar)); |
| |
| /* Set tset/twait/thold/thiz timings in common bank */ |
| pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem); |
| pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait); |
| pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem); |
| pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz); |
| writel(pmem, nfc->io_base + FMC2_PMEM); |
| |
| /* Set tset/twait/thold/thiz timings in attribut bank */ |
| patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att); |
| patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait); |
| patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att); |
| patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz); |
| writel(patt, nfc->io_base + FMC2_PATT); |
| } |
| |
| static void stm32_fmc2_nfc_setup(struct nand_chip *chip) |
| { |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| u32 pcr = 0, pcr_mask; |
| |
| /* Configure ECC algorithm (default configuration is Hamming) */ |
| pcr_mask = FMC2_PCR_ECCALG; |
| pcr_mask |= FMC2_PCR_BCHECC; |
| if (chip->ecc.strength == FMC2_ECC_BCH8) { |
| pcr |= FMC2_PCR_ECCALG; |
| pcr |= FMC2_PCR_BCHECC; |
| } else if (chip->ecc.strength == FMC2_ECC_BCH4) { |
| pcr |= FMC2_PCR_ECCALG; |
| } |
| |
| /* Set buswidth */ |
| pcr_mask |= FMC2_PCR_PWID; |
| if (chip->options & NAND_BUSWIDTH_16) |
| pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16); |
| |
| /* Set ECC sector size */ |
| pcr_mask |= FMC2_PCR_ECCSS; |
| pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512); |
| |
| clrsetbits_le32(nfc->io_base + FMC2_PCR, pcr_mask, pcr); |
| } |
| |
| static void stm32_fmc2_nfc_select_chip(struct mtd_info *mtd, int chipnr) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); |
| |
| if (chipnr < 0 || chipnr >= nand->ncs) |
| return; |
| |
| if (nand->cs_used[chipnr] == nfc->cs_sel) |
| return; |
| |
| nfc->cs_sel = nand->cs_used[chipnr]; |
| chip->IO_ADDR_R = (void __iomem *)nfc->data_base[nfc->cs_sel]; |
| chip->IO_ADDR_W = (void __iomem *)nfc->data_base[nfc->cs_sel]; |
| |
| stm32_fmc2_nfc_setup(chip); |
| stm32_fmc2_nfc_timings_init(chip); |
| } |
| |
| static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc, |
| bool set) |
| { |
| u32 pcr; |
| |
| pcr = set ? FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16) : |
| FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_8); |
| |
| clrsetbits_le32(nfc->io_base + FMC2_PCR, FMC2_PCR_PWID, pcr); |
| } |
| |
| static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable) |
| { |
| clrsetbits_le32(nfc->io_base + FMC2_PCR, FMC2_PCR_ECCEN, |
| enable ? FMC2_PCR_ECCEN : 0); |
| } |
| |
| static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc) |
| { |
| writel(FMC2_BCHICR_CLEAR_IRQ, nfc->io_base + FMC2_BCHICR); |
| } |
| |
| static void stm32_fmc2_nfc_cmd_ctrl(struct mtd_info *mtd, int cmd, |
| unsigned int ctrl) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| |
| if (cmd == NAND_CMD_NONE) |
| return; |
| |
| if (ctrl & NAND_CLE) { |
| writeb(cmd, nfc->cmd_base[nfc->cs_sel]); |
| return; |
| } |
| |
| writeb(cmd, nfc->addr_base[nfc->cs_sel]); |
| } |
| |
| /* |
| * Enable ECC logic and reset syndrome/parity bits previously calculated |
| * Syndrome/parity bits is cleared by setting the ECCEN bit to 0 |
| */ |
| static void stm32_fmc2_nfc_hwctl(struct mtd_info *mtd, int mode) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| |
| stm32_fmc2_nfc_set_ecc(nfc, false); |
| |
| if (chip->ecc.strength != FMC2_ECC_HAM) { |
| clrsetbits_le32(nfc->io_base + FMC2_PCR, FMC2_PCR_WEN, |
| mode == NAND_ECC_WRITE ? FMC2_PCR_WEN : 0); |
| |
| stm32_fmc2_nfc_clear_bch_irq(nfc); |
| } |
| |
| stm32_fmc2_nfc_set_ecc(nfc, true); |
| } |
| |
| /* |
| * ECC Hamming calculation |
| * ECC is 3 bytes for 512 bytes of data (supports error correction up to |
| * max of 1-bit) |
| */ |
| static int stm32_fmc2_nfc_ham_calculate(struct mtd_info *mtd, const u8 *data, |
| u8 *ecc) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| u32 heccr, sr; |
| int ret; |
| |
| ret = readl_poll_timeout(nfc->io_base + FMC2_SR, sr, |
| sr & FMC2_SR_NWRF, FMC2_TIMEOUT_5S); |
| if (ret < 0) { |
| log_err("Ham timeout\n"); |
| return ret; |
| } |
| |
| heccr = readl(nfc->io_base + FMC2_HECCR); |
| |
| ecc[0] = heccr; |
| ecc[1] = heccr >> 8; |
| ecc[2] = heccr >> 16; |
| |
| stm32_fmc2_nfc_set_ecc(nfc, false); |
| |
| return 0; |
| } |
| |
| static int stm32_fmc2_nfc_ham_correct(struct mtd_info *mtd, u8 *dat, |
| u8 *read_ecc, u8 *calc_ecc) |
| { |
| u8 bit_position = 0, b0, b1, b2; |
| u32 byte_addr = 0, b; |
| u32 i, shifting = 1; |
| |
| /* Indicate which bit and byte is faulty (if any) */ |
| b0 = read_ecc[0] ^ calc_ecc[0]; |
| b1 = read_ecc[1] ^ calc_ecc[1]; |
| b2 = read_ecc[2] ^ calc_ecc[2]; |
| b = b0 | (b1 << 8) | (b2 << 16); |
| |
| /* No errors */ |
| if (likely(!b)) |
| return 0; |
| |
| /* Calculate bit position */ |
| for (i = 0; i < 3; i++) { |
| switch (b % 4) { |
| case 2: |
| bit_position += shifting; |
| case 1: |
| break; |
| default: |
| return -EBADMSG; |
| } |
| shifting <<= 1; |
| b >>= 2; |
| } |
| |
| /* Calculate byte position */ |
| shifting = 1; |
| for (i = 0; i < 9; i++) { |
| switch (b % 4) { |
| case 2: |
| byte_addr += shifting; |
| case 1: |
| break; |
| default: |
| return -EBADMSG; |
| } |
| shifting <<= 1; |
| b >>= 2; |
| } |
| |
| /* Flip the bit */ |
| dat[byte_addr] ^= (1 << bit_position); |
| |
| return 1; |
| } |
| |
| /* |
| * ECC BCH calculation and correction |
| * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to |
| * max of 4-bit/8-bit) |
| */ |
| |
| static int stm32_fmc2_nfc_bch_calculate(struct mtd_info *mtd, const u8 *data, |
| u8 *ecc) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| u32 bchpbr, bchisr; |
| int ret; |
| |
| /* Wait until the BCH code is ready */ |
| ret = readl_poll_timeout(nfc->io_base + FMC2_BCHISR, bchisr, |
| bchisr & FMC2_BCHISR_EPBRF, FMC2_TIMEOUT_5S); |
| if (ret < 0) { |
| log_err("Bch timeout\n"); |
| return ret; |
| } |
| |
| /* Read parity bits */ |
| bchpbr = readl(nfc->io_base + FMC2_BCHPBR1); |
| ecc[0] = bchpbr; |
| ecc[1] = bchpbr >> 8; |
| ecc[2] = bchpbr >> 16; |
| ecc[3] = bchpbr >> 24; |
| |
| bchpbr = readl(nfc->io_base + FMC2_BCHPBR2); |
| ecc[4] = bchpbr; |
| ecc[5] = bchpbr >> 8; |
| ecc[6] = bchpbr >> 16; |
| |
| if (chip->ecc.strength == FMC2_ECC_BCH8) { |
| ecc[7] = bchpbr >> 24; |
| |
| bchpbr = readl(nfc->io_base + FMC2_BCHPBR3); |
| ecc[8] = bchpbr; |
| ecc[9] = bchpbr >> 8; |
| ecc[10] = bchpbr >> 16; |
| ecc[11] = bchpbr >> 24; |
| |
| bchpbr = readl(nfc->io_base + FMC2_BCHPBR4); |
| ecc[12] = bchpbr; |
| } |
| |
| stm32_fmc2_nfc_set_ecc(nfc, false); |
| |
| return 0; |
| } |
| |
| static int stm32_fmc2_nfc_bch_correct(struct mtd_info *mtd, u8 *dat, |
| u8 *read_ecc, u8 *calc_ecc) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| u32 bchdsr0, bchdsr1, bchdsr2, bchdsr3, bchdsr4, bchisr; |
| u16 pos[8]; |
| int i, ret, den, eccsize = chip->ecc.size; |
| unsigned int nb_errs = 0; |
| |
| /* Wait until the decoding error is ready */ |
| ret = readl_poll_timeout(nfc->io_base + FMC2_BCHISR, bchisr, |
| bchisr & FMC2_BCHISR_DERF, FMC2_TIMEOUT_5S); |
| if (ret < 0) { |
| log_err("Bch timeout\n"); |
| return ret; |
| } |
| |
| bchdsr0 = readl(nfc->io_base + FMC2_BCHDSR0); |
| bchdsr1 = readl(nfc->io_base + FMC2_BCHDSR1); |
| bchdsr2 = readl(nfc->io_base + FMC2_BCHDSR2); |
| bchdsr3 = readl(nfc->io_base + FMC2_BCHDSR3); |
| bchdsr4 = readl(nfc->io_base + FMC2_BCHDSR4); |
| |
| stm32_fmc2_nfc_set_ecc(nfc, false); |
| |
| /* No errors found */ |
| if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF))) |
| return 0; |
| |
| /* Too many errors detected */ |
| if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE)) |
| return -EBADMSG; |
| |
| pos[0] = FIELD_GET(FMC2_BCHDSR1_EBP1, bchdsr1); |
| pos[1] = FIELD_GET(FMC2_BCHDSR1_EBP2, bchdsr1); |
| pos[2] = FIELD_GET(FMC2_BCHDSR2_EBP3, bchdsr2); |
| pos[3] = FIELD_GET(FMC2_BCHDSR2_EBP4, bchdsr2); |
| pos[4] = FIELD_GET(FMC2_BCHDSR3_EBP5, bchdsr3); |
| pos[5] = FIELD_GET(FMC2_BCHDSR3_EBP6, bchdsr3); |
| pos[6] = FIELD_GET(FMC2_BCHDSR4_EBP7, bchdsr4); |
| pos[7] = FIELD_GET(FMC2_BCHDSR4_EBP8, bchdsr4); |
| |
| den = FIELD_GET(FMC2_BCHDSR0_DEN, bchdsr0); |
| for (i = 0; i < den; i++) { |
| if (pos[i] < eccsize * 8) { |
| __change_bit(pos[i], (unsigned long *)dat); |
| nb_errs++; |
| } |
| } |
| |
| return nb_errs; |
| } |
| |
| static int stm32_fmc2_nfc_read_page(struct mtd_info *mtd, |
| struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| int i, s, stat, eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| int eccsteps = chip->ecc.steps; |
| int eccstrength = chip->ecc.strength; |
| u8 *p = buf; |
| u8 *ecc_calc = chip->buffers->ecccalc; |
| u8 *ecc_code = chip->buffers->ecccode; |
| unsigned int max_bitflips = 0; |
| |
| for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps; |
| s++, i += eccbytes, p += eccsize) { |
| chip->ecc.hwctl(mtd, NAND_ECC_READ); |
| |
| /* Read the nand page sector (512 bytes) */ |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, s * eccsize, -1); |
| chip->read_buf(mtd, p, eccsize); |
| |
| /* Read the corresponding ECC bytes */ |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, i, -1); |
| chip->read_buf(mtd, ecc_code, eccbytes); |
| |
| /* Correct the data */ |
| stat = chip->ecc.correct(mtd, p, ecc_code, ecc_calc); |
| if (stat == -EBADMSG) |
| /* Check for empty pages with bitflips */ |
| stat = nand_check_erased_ecc_chunk(p, eccsize, |
| ecc_code, eccbytes, |
| NULL, 0, |
| eccstrength); |
| |
| if (stat < 0) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += stat; |
| max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| } |
| } |
| |
| /* Read oob */ |
| if (oob_required) { |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1); |
| chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| } |
| |
| return max_bitflips; |
| } |
| |
| static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc, bool has_parent) |
| { |
| u32 pcr = readl(nfc->io_base + FMC2_PCR); |
| |
| /* Set CS used to undefined */ |
| nfc->cs_sel = -1; |
| |
| /* Enable wait feature and nand flash memory bank */ |
| pcr |= FMC2_PCR_PWAITEN; |
| pcr |= FMC2_PCR_PBKEN; |
| |
| /* Set buswidth to 8 bits mode for identification */ |
| pcr &= ~FMC2_PCR_PWID; |
| |
| /* ECC logic is disabled */ |
| pcr &= ~FMC2_PCR_ECCEN; |
| |
| /* Default mode */ |
| pcr &= ~FMC2_PCR_ECCALG; |
| pcr &= ~FMC2_PCR_BCHECC; |
| pcr &= ~FMC2_PCR_WEN; |
| |
| /* Set default ECC sector size */ |
| pcr &= ~FMC2_PCR_ECCSS; |
| pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_2048); |
| |
| /* Set default tclr/tar timings */ |
| pcr &= ~FMC2_PCR_TCLR; |
| pcr |= FIELD_PREP(FMC2_PCR_TCLR, FMC2_PCR_TCLR_DEFAULT); |
| pcr &= ~FMC2_PCR_TAR; |
| pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT); |
| |
| /* Enable FMC2 controller */ |
| if (!has_parent) |
| setbits_le32(nfc->io_base + FMC2_BCR1, FMC2_BCR1_FMC2EN); |
| |
| writel(pcr, nfc->io_base + FMC2_PCR); |
| writel(FMC2_PMEM_DEFAULT, nfc->io_base + FMC2_PMEM); |
| writel(FMC2_PATT_DEFAULT, nfc->io_base + FMC2_PATT); |
| } |
| |
| static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip, |
| const struct nand_sdr_timings *sdrt) |
| { |
| struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller); |
| struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); |
| struct stm32_fmc2_timings *tims = &nand->timings; |
| unsigned long hclk = clk_get_rate(&nfc->clk); |
| unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000); |
| unsigned long timing, tar, tclr, thiz, twait; |
| unsigned long tset_mem, tset_att, thold_mem, thold_att; |
| |
| tar = max_t(unsigned long, hclkp, sdrt->tAR_min); |
| timing = DIV_ROUND_UP(tar, hclkp) - 1; |
| tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK); |
| |
| tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min); |
| timing = DIV_ROUND_UP(tclr, hclkp) - 1; |
| tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK); |
| |
| tims->thiz = FMC2_THIZ; |
| thiz = (tims->thiz + 1) * hclkp; |
| |
| /* |
| * tWAIT > tRP |
| * tWAIT > tWP |
| * tWAIT > tREA + tIO |
| */ |
| twait = max_t(unsigned long, hclkp, sdrt->tRP_min); |
| twait = max_t(unsigned long, twait, sdrt->tWP_min); |
| twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO); |
| timing = DIV_ROUND_UP(twait, hclkp); |
| tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); |
| |
| /* |
| * tSETUP_MEM > tCS - tWAIT |
| * tSETUP_MEM > tALS - tWAIT |
| * tSETUP_MEM > tDS - (tWAIT - tHIZ) |
| */ |
| tset_mem = hclkp; |
| if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait)) |
| tset_mem = sdrt->tCS_min - twait; |
| if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait)) |
| tset_mem = sdrt->tALS_min - twait; |
| if (twait > thiz && (sdrt->tDS_min > twait - thiz) && |
| (tset_mem < sdrt->tDS_min - (twait - thiz))) |
| tset_mem = sdrt->tDS_min - (twait - thiz); |
| timing = DIV_ROUND_UP(tset_mem, hclkp); |
| tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); |
| |
| /* |
| * tHOLD_MEM > tCH |
| * tHOLD_MEM > tREH - tSETUP_MEM |
| * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT) |
| */ |
| thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min); |
| if (sdrt->tREH_min > tset_mem && |
| (thold_mem < sdrt->tREH_min - tset_mem)) |
| thold_mem = sdrt->tREH_min - tset_mem; |
| if ((sdrt->tRC_min > tset_mem + twait) && |
| (thold_mem < sdrt->tRC_min - (tset_mem + twait))) |
| thold_mem = sdrt->tRC_min - (tset_mem + twait); |
| if ((sdrt->tWC_min > tset_mem + twait) && |
| (thold_mem < sdrt->tWC_min - (tset_mem + twait))) |
| thold_mem = sdrt->tWC_min - (tset_mem + twait); |
| timing = DIV_ROUND_UP(thold_mem, hclkp); |
| tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); |
| |
| /* |
| * tSETUP_ATT > tCS - tWAIT |
| * tSETUP_ATT > tCLS - tWAIT |
| * tSETUP_ATT > tALS - tWAIT |
| * tSETUP_ATT > tRHW - tHOLD_MEM |
| * tSETUP_ATT > tDS - (tWAIT - tHIZ) |
| */ |
| tset_att = hclkp; |
| if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait)) |
| tset_att = sdrt->tCS_min - twait; |
| if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait)) |
| tset_att = sdrt->tCLS_min - twait; |
| if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait)) |
| tset_att = sdrt->tALS_min - twait; |
| if (sdrt->tRHW_min > thold_mem && |
| (tset_att < sdrt->tRHW_min - thold_mem)) |
| tset_att = sdrt->tRHW_min - thold_mem; |
| if (twait > thiz && (sdrt->tDS_min > twait - thiz) && |
| (tset_att < sdrt->tDS_min - (twait - thiz))) |
| tset_att = sdrt->tDS_min - (twait - thiz); |
| timing = DIV_ROUND_UP(tset_att, hclkp); |
| tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); |
| |
| /* |
| * tHOLD_ATT > tALH |
| * tHOLD_ATT > tCH |
| * tHOLD_ATT > tCLH |
| * tHOLD_ATT > tCOH |
| * tHOLD_ATT > tDH |
| * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM |
| * tHOLD_ATT > tADL - tSETUP_MEM |
| * tHOLD_ATT > tWH - tSETUP_MEM |
| * tHOLD_ATT > tWHR - tSETUP_MEM |
| * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT) |
| * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT) |
| */ |
| thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min); |
| thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min); |
| thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min); |
| thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min); |
| thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min); |
| if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) && |
| (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem)) |
| thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem; |
| if (sdrt->tADL_min > tset_mem && |
| (thold_att < sdrt->tADL_min - tset_mem)) |
| thold_att = sdrt->tADL_min - tset_mem; |
| if (sdrt->tWH_min > tset_mem && |
| (thold_att < sdrt->tWH_min - tset_mem)) |
| thold_att = sdrt->tWH_min - tset_mem; |
| if (sdrt->tWHR_min > tset_mem && |
| (thold_att < sdrt->tWHR_min - tset_mem)) |
| thold_att = sdrt->tWHR_min - tset_mem; |
| if ((sdrt->tRC_min > tset_att + twait) && |
| (thold_att < sdrt->tRC_min - (tset_att + twait))) |
| thold_att = sdrt->tRC_min - (tset_att + twait); |
| if ((sdrt->tWC_min > tset_att + twait) && |
| (thold_att < sdrt->tWC_min - (tset_att + twait))) |
| thold_att = sdrt->tWC_min - (tset_att + twait); |
| timing = DIV_ROUND_UP(thold_att, hclkp); |
| tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); |
| } |
| |
| static int stm32_fmc2_nfc_setup_interface(struct mtd_info *mtd, int chipnr, |
| const struct nand_data_interface *cf) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| const struct nand_sdr_timings *sdrt; |
| |
| sdrt = nand_get_sdr_timings(cf); |
| if (IS_ERR(sdrt)) |
| return PTR_ERR(sdrt); |
| |
| if (sdrt->tRC_min < 30000) |
| return -EOPNOTSUPP; |
| |
| if (chipnr == NAND_DATA_IFACE_CHECK_ONLY) |
| return 0; |
| |
| stm32_fmc2_nfc_calc_timings(chip, sdrt); |
| stm32_fmc2_nfc_timings_init(chip); |
| |
| return 0; |
| } |
| |
| static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip) |
| { |
| chip->ecc.hwctl = stm32_fmc2_nfc_hwctl; |
| |
| /* |
| * Specific callbacks to read/write a page depending on |
| * the algo used (Hamming, BCH). |
| */ |
| if (chip->ecc.strength == FMC2_ECC_HAM) { |
| /* Hamming is used */ |
| chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate; |
| chip->ecc.correct = stm32_fmc2_nfc_ham_correct; |
| chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3; |
| chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK; |
| return; |
| } |
| |
| /* BCH is used */ |
| chip->ecc.read_page = stm32_fmc2_nfc_read_page; |
| chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate; |
| chip->ecc.correct = stm32_fmc2_nfc_bch_correct; |
| |
| if (chip->ecc.strength == FMC2_ECC_BCH8) |
| chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13; |
| else |
| chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7; |
| } |
| |
| static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength) |
| { |
| /* Hamming */ |
| if (strength == FMC2_ECC_HAM) |
| return 4; |
| |
| /* BCH8 */ |
| if (strength == FMC2_ECC_BCH8) |
| return 14; |
| |
| /* BCH4 */ |
| return 8; |
| } |
| |
| NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes, |
| FMC2_ECC_STEP_SIZE, |
| FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8); |
| |
| static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc, ofnode node) |
| { |
| struct stm32_fmc2_nand *nand = &nfc->nand; |
| u32 cs[FMC2_MAX_CE]; |
| int ret, i; |
| |
| if (!ofnode_get_property(node, "reg", &nand->ncs)) |
| return -EINVAL; |
| |
| nand->ncs /= sizeof(u32); |
| if (!nand->ncs) { |
| log_err("Invalid reg property size\n"); |
| return -EINVAL; |
| } |
| |
| ret = ofnode_read_u32_array(node, "reg", cs, nand->ncs); |
| if (ret < 0) { |
| log_err("Could not retrieve reg property\n"); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < nand->ncs; i++) { |
| if (cs[i] >= nfc->data->max_ncs) { |
| log_err("Invalid reg value: %d\n", nand->cs_used[i]); |
| return -EINVAL; |
| } |
| |
| if (nfc->cs_assigned & BIT(cs[i])) { |
| log_err("Cs already assigned: %d\n", nand->cs_used[i]); |
| return -EINVAL; |
| } |
| |
| nfc->cs_assigned |= BIT(cs[i]); |
| nand->cs_used[i] = cs[i]; |
| } |
| |
| gpio_request_by_name_nodev(node, "wp-gpios", 0, &nand->wp_gpio, |
| GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE); |
| |
| nand->chip.flash_node = node; |
| |
| return 0; |
| } |
| |
| static int stm32_fmc2_nfc_parse_dt(struct udevice *dev, |
| struct stm32_fmc2_nfc *nfc) |
| { |
| ofnode child; |
| int ret, nchips = 0; |
| |
| dev_for_each_subnode(child, dev) |
| nchips++; |
| |
| if (!nchips) { |
| log_err("NAND chip not defined\n"); |
| return -EINVAL; |
| } |
| |
| if (nchips > 1) { |
| log_err("Too many NAND chips defined\n"); |
| return -EINVAL; |
| } |
| |
| dev_for_each_subnode(child, dev) { |
| ret = stm32_fmc2_nfc_parse_child(nfc, child); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static struct udevice *stm32_fmc2_nfc_get_cdev(struct udevice *dev) |
| { |
| struct udevice *pdev = dev_get_parent(dev); |
| struct udevice *cdev = NULL; |
| bool ebi_found = false; |
| |
| if (pdev && ofnode_device_is_compatible(dev_ofnode(pdev), |
| "st,stm32mp1-fmc2-ebi")) |
| ebi_found = true; |
| |
| if (ofnode_device_is_compatible(dev_ofnode(dev), |
| "st,stm32mp1-fmc2-nfc")) { |
| if (ebi_found) |
| cdev = pdev; |
| |
| return cdev; |
| } |
| |
| if (!ebi_found) |
| cdev = dev; |
| |
| return cdev; |
| } |
| |
| static int stm32_fmc2_nfc_probe(struct udevice *dev) |
| { |
| struct stm32_fmc2_nfc *nfc = dev_get_priv(dev); |
| struct stm32_fmc2_nand *nand = &nfc->nand; |
| struct nand_chip *chip = &nand->chip; |
| struct mtd_info *mtd = &chip->mtd; |
| struct nand_ecclayout *ecclayout; |
| struct udevice *cdev; |
| struct reset_ctl reset; |
| int oob_index, chip_cs, mem_region, ret; |
| unsigned int i; |
| int start_region = 0; |
| fdt_addr_t addr; |
| |
| spin_lock_init(&nfc->controller.lock); |
| init_waitqueue_head(&nfc->controller.wq); |
| |
| nfc->data = (void *)dev_get_driver_data(dev); |
| if (!nfc->data) |
| return -EINVAL; |
| |
| if (nfc->data->get_cdev) { |
| cdev = nfc->data->get_cdev(dev); |
| if (!cdev) |
| return -EINVAL; |
| } else { |
| cdev = dev->parent; |
| } |
| |
| ret = stm32_fmc2_nfc_parse_dt(dev, nfc); |
| if (ret) |
| return ret; |
| |
| nfc->io_base = dev_read_addr(cdev); |
| if (nfc->io_base == FDT_ADDR_T_NONE) |
| return -EINVAL; |
| |
| if (dev == cdev) |
| start_region = 1; |
| |
| for (chip_cs = 0, mem_region = start_region; chip_cs < nfc->data->max_ncs; |
| chip_cs++, mem_region += 3) { |
| if (!(nfc->cs_assigned & BIT(chip_cs))) |
| continue; |
| |
| addr = dev_read_addr_index(dev, mem_region); |
| if (addr == FDT_ADDR_T_NONE) { |
| dev_err(dev, "Resource data_base not found for cs%d", chip_cs); |
| return ret; |
| } |
| nfc->data_base[chip_cs] = addr; |
| |
| addr = dev_read_addr_index(dev, mem_region + 1); |
| if (addr == FDT_ADDR_T_NONE) { |
| dev_err(dev, "Resource cmd_base not found for cs%d", chip_cs); |
| return ret; |
| } |
| nfc->cmd_base[chip_cs] = addr; |
| |
| addr = dev_read_addr_index(dev, mem_region + 2); |
| if (addr == FDT_ADDR_T_NONE) { |
| dev_err(dev, "Resource addr_base not found for cs%d", chip_cs); |
| return ret; |
| } |
| nfc->addr_base[chip_cs] = addr; |
| } |
| |
| /* Enable the clock */ |
| ret = clk_get_by_index(cdev, 0, &nfc->clk); |
| if (ret) |
| return ret; |
| |
| ret = clk_enable(&nfc->clk); |
| if (ret) |
| return ret; |
| |
| /* Reset */ |
| ret = reset_get_by_index(dev, 0, &reset); |
| if (!ret) { |
| reset_assert(&reset); |
| udelay(2); |
| reset_deassert(&reset); |
| } |
| |
| stm32_fmc2_nfc_init(nfc, dev != cdev); |
| |
| chip->controller = &nfc->base; |
| chip->select_chip = stm32_fmc2_nfc_select_chip; |
| chip->setup_data_interface = stm32_fmc2_nfc_setup_interface; |
| chip->cmd_ctrl = stm32_fmc2_nfc_cmd_ctrl; |
| chip->chip_delay = FMC2_RB_DELAY_US; |
| chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE | |
| NAND_USE_BOUNCE_BUFFER; |
| |
| /* Default ECC settings */ |
| chip->ecc.mode = NAND_ECC_HW; |
| chip->ecc.size = FMC2_ECC_STEP_SIZE; |
| chip->ecc.strength = FMC2_ECC_BCH8; |
| |
| /* Disable Write Protect */ |
| if (dm_gpio_is_valid(&nand->wp_gpio)) |
| dm_gpio_set_value(&nand->wp_gpio, 0); |
| |
| ret = nand_scan_ident(mtd, nand->ncs, NULL); |
| if (ret) |
| return ret; |
| |
| /* |
| * Only NAND_ECC_HW mode is actually supported |
| * Hamming => ecc.strength = 1 |
| * BCH4 => ecc.strength = 4 |
| * BCH8 => ecc.strength = 8 |
| * ECC sector size = 512 |
| */ |
| if (chip->ecc.mode != NAND_ECC_HW) { |
| dev_err(dev, "Nand_ecc_mode is not well defined in the DT\n"); |
| return -EINVAL; |
| } |
| |
| ret = nand_check_ecc_caps(chip, &stm32_fmc2_nfc_ecc_caps, |
| mtd->oobsize - FMC2_BBM_LEN); |
| if (ret) { |
| dev_err(dev, "No valid ECC settings set\n"); |
| return ret; |
| } |
| |
| if (chip->bbt_options & NAND_BBT_USE_FLASH) |
| chip->bbt_options |= NAND_BBT_NO_OOB; |
| |
| stm32_fmc2_nfc_nand_callbacks_setup(chip); |
| |
| /* Define ECC layout */ |
| ecclayout = &nfc->ecclayout; |
| ecclayout->eccbytes = chip->ecc.bytes * |
| (mtd->writesize / chip->ecc.size); |
| oob_index = FMC2_BBM_LEN; |
| for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) |
| ecclayout->eccpos[i] = oob_index; |
| ecclayout->oobfree->offset = oob_index; |
| ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset; |
| chip->ecc.layout = ecclayout; |
| |
| if (chip->options & NAND_BUSWIDTH_16) |
| stm32_fmc2_nfc_set_buswidth_16(nfc, true); |
| |
| ret = nand_scan_tail(mtd); |
| if (ret) |
| return ret; |
| |
| return nand_register(0, mtd); |
| } |
| |
| static const struct stm32_fmc2_nfc_data stm32_fmc2_nfc_mp1_data = { |
| .max_ncs = 2, |
| .get_cdev = stm32_fmc2_nfc_get_cdev, |
| }; |
| |
| static const struct stm32_fmc2_nfc_data stm32_fmc2_nfc_mp25_data = { |
| .max_ncs = 4, |
| }; |
| |
| static const struct udevice_id stm32_fmc2_nfc_match[] = { |
| { |
| .compatible = "st,stm32mp15-fmc2", |
| .data = (ulong)&stm32_fmc2_nfc_mp1_data, |
| }, |
| { |
| .compatible = "st,stm32mp1-fmc2-nfc", |
| .data = (ulong)&stm32_fmc2_nfc_mp1_data, |
| }, |
| { |
| .compatible = "st,stm32mp25-fmc2-nfc", |
| .data = (ulong)&stm32_fmc2_nfc_mp25_data, |
| }, |
| { /* Sentinel */ } |
| }; |
| |
| U_BOOT_DRIVER(stm32_fmc2_nfc) = { |
| .name = "stm32_fmc2_nfc", |
| .id = UCLASS_MTD, |
| .of_match = stm32_fmc2_nfc_match, |
| .probe = stm32_fmc2_nfc_probe, |
| .priv_auto = sizeof(struct stm32_fmc2_nfc), |
| }; |
| |
| void board_nand_init(void) |
| { |
| struct udevice *dev; |
| int ret; |
| |
| ret = uclass_get_device_by_driver(UCLASS_MTD, |
| DM_DRIVER_GET(stm32_fmc2_nfc), |
| &dev); |
| if (ret && ret != -ENODEV) |
| log_err("Failed to initialize STM32 FMC2 NFC controller. (error %d)\n", |
| ret); |
| } |