blob: 4d643bc64bc2ac089819b870626cf98c124e1d93 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* LPC32xx SLC NAND flash controller driver
*
* (C) Copyright 2015-2018 Vladimir Zapolskiy <vz@mleia.com>
* Copyright (c) 2015 Tyco Fire Protection Products.
*
* Hardware ECC support original source code
* Copyright (C) 2008 by NXP Semiconductors
* Author: Kevin Wells
*/
#include <config.h>
#include <log.h>
#include <nand.h>
#include <linux/bug.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/rawnand.h>
#include <linux/errno.h>
#include <asm/io.h>
#include <asm/arch/config.h>
#include <asm/arch/clk.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch/dma.h>
#include <asm/arch/cpu.h>
#include <linux/printk.h>
struct lpc32xx_nand_slc_regs {
u32 data;
u32 addr;
u32 cmd;
u32 stop;
u32 ctrl;
u32 cfg;
u32 stat;
u32 int_stat;
u32 ien;
u32 isr;
u32 icr;
u32 tac;
u32 tc;
u32 ecc;
u32 dma_data;
};
/* CFG register */
#define CFG_CE_LOW (1 << 5)
#define CFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */
#define CFG_ECC_EN (1 << 3) /* ECC enable bit */
#define CFG_DMA_BURST (1 << 2) /* DMA burst bit */
#define CFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */
/* CTRL register */
#define CTRL_SW_RESET (1 << 2)
#define CTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */
#define CTRL_DMA_START (1 << 0) /* Start DMA channel bit */
/* STAT register */
#define STAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */
#define STAT_NAND_READY (1 << 0)
/* INT_STAT register */
#define INT_STAT_TC (1 << 1)
#define INT_STAT_RDY (1 << 0)
/* TAC register bits, be aware of overflows */
#define TAC_W_RDY(n) (max_t(uint32_t, (n), 0xF) << 28)
#define TAC_W_WIDTH(n) (max_t(uint32_t, (n), 0xF) << 24)
#define TAC_W_HOLD(n) (max_t(uint32_t, (n), 0xF) << 20)
#define TAC_W_SETUP(n) (max_t(uint32_t, (n), 0xF) << 16)
#define TAC_R_RDY(n) (max_t(uint32_t, (n), 0xF) << 12)
#define TAC_R_WIDTH(n) (max_t(uint32_t, (n), 0xF) << 8)
#define TAC_R_HOLD(n) (max_t(uint32_t, (n), 0xF) << 4)
#define TAC_R_SETUP(n) (max_t(uint32_t, (n), 0xF) << 0)
/* NAND ECC Layout for small page NAND devices
* Note: For large page devices, the default layouts are used. */
static struct nand_ecclayout lpc32xx_nand_oob_16 = {
.eccbytes = 6,
.eccpos = { 10, 11, 12, 13, 14, 15, },
.oobfree = {
{ .offset = 0, .length = 4, },
{ .offset = 6, .length = 4, },
}
};
#if defined(CONFIG_DMA_LPC32XX) && !defined(CONFIG_SPL_BUILD)
#define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / CFG_SYS_NAND_ECCSIZE)
/*
* DMA Descriptors
* For Large Block: 17 descriptors = ((16 Data and ECC Read) + 1 Spare Area)
* For Small Block: 5 descriptors = ((4 Data and ECC Read) + 1 Spare Area)
*/
static struct lpc32xx_dmac_ll dmalist[ECCSTEPS * 2 + 1];
static u32 ecc_buffer[8]; /* MAX ECC size */
static unsigned int dmachan = (unsigned int)-1; /* Invalid channel */
/*
* Helper macro for the DMA client (i.e. NAND SLC):
* - to write the next DMA linked list item address
* (see arch/include/asm/arch-lpc32xx/dma.h).
* - to assign the DMA data register to DMA source or destination address.
* - to assign the ECC register to DMA source or destination address.
*/
#define lpc32xx_dmac_next_lli(x) ((u32)x)
#define lpc32xx_dmac_set_dma_data() ((u32)&lpc32xx_nand_slc_regs->dma_data)
#define lpc32xx_dmac_set_ecc() ((u32)&lpc32xx_nand_slc_regs->ecc)
#endif
static struct lpc32xx_nand_slc_regs __iomem *lpc32xx_nand_slc_regs
= (struct lpc32xx_nand_slc_regs __iomem *)SLC_NAND_BASE;
static void lpc32xx_nand_init(void)
{
uint32_t hclk = get_hclk_clk_rate();
/* Reset SLC NAND controller */
writel(CTRL_SW_RESET, &lpc32xx_nand_slc_regs->ctrl);
/* 8-bit bus, no DMA, no ECC, ordinary CE signal */
writel(0, &lpc32xx_nand_slc_regs->cfg);
/* Interrupts disabled and cleared */
writel(0, &lpc32xx_nand_slc_regs->ien);
writel(INT_STAT_TC | INT_STAT_RDY,
&lpc32xx_nand_slc_regs->icr);
/* Configure NAND flash timings */
writel(TAC_W_RDY(CFG_LPC32XX_NAND_SLC_WDR_CLKS) |
TAC_W_WIDTH(hclk / CFG_LPC32XX_NAND_SLC_WWIDTH) |
TAC_W_HOLD(hclk / CFG_LPC32XX_NAND_SLC_WHOLD) |
TAC_W_SETUP(hclk / CFG_LPC32XX_NAND_SLC_WSETUP) |
TAC_R_RDY(CFG_LPC32XX_NAND_SLC_RDR_CLKS) |
TAC_R_WIDTH(hclk / CFG_LPC32XX_NAND_SLC_RWIDTH) |
TAC_R_HOLD(hclk / CFG_LPC32XX_NAND_SLC_RHOLD) |
TAC_R_SETUP(hclk / CFG_LPC32XX_NAND_SLC_RSETUP),
&lpc32xx_nand_slc_regs->tac);
}
static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd,
int cmd, unsigned int ctrl)
{
debug("ctrl: 0x%08x, cmd: 0x%08x\n", ctrl, cmd);
if (ctrl & NAND_NCE)
setbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_CE_LOW);
else
clrbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_CE_LOW);
if (cmd == NAND_CMD_NONE)
return;
if (ctrl & NAND_CLE)
writel(cmd & 0xFF, &lpc32xx_nand_slc_regs->cmd);
else if (ctrl & NAND_ALE)
writel(cmd & 0xFF, &lpc32xx_nand_slc_regs->addr);
}
static int lpc32xx_nand_dev_ready(struct mtd_info *mtd)
{
return readl(&lpc32xx_nand_slc_regs->stat) & STAT_NAND_READY;
}
#if defined(CONFIG_DMA_LPC32XX) && !defined(CONFIG_SPL_BUILD)
/*
* Prepares DMA descriptors for NAND RD/WR operations
* If the size is < 256 Bytes then it is assumed to be
* an OOB transfer
*/
static void lpc32xx_nand_dma_configure(struct nand_chip *chip,
const u8 *buffer, int size,
int read)
{
u32 i, dmasrc, ctrl, ecc_ctrl, oob_ctrl, dmadst;
struct lpc32xx_dmac_ll *dmalist_cur;
struct lpc32xx_dmac_ll *dmalist_cur_ecc;
/*
* CTRL descriptor entry for reading ECC
* Copy Multiple times to sync DMA with Flash Controller
*/
ecc_ctrl = 0x5 |
DMAC_CHAN_SRC_BURST_1 |
DMAC_CHAN_DEST_BURST_1 |
DMAC_CHAN_SRC_WIDTH_32 |
DMAC_CHAN_DEST_WIDTH_32 |
DMAC_CHAN_DEST_AHB1;
/* CTRL descriptor entry for reading/writing Data */
ctrl = (CFG_SYS_NAND_ECCSIZE / 4) |
DMAC_CHAN_SRC_BURST_4 |
DMAC_CHAN_DEST_BURST_4 |
DMAC_CHAN_SRC_WIDTH_32 |
DMAC_CHAN_DEST_WIDTH_32 |
DMAC_CHAN_DEST_AHB1;
/* CTRL descriptor entry for reading/writing Spare Area */
oob_ctrl = (CONFIG_SYS_NAND_OOBSIZE / 4) |
DMAC_CHAN_SRC_BURST_4 |
DMAC_CHAN_DEST_BURST_4 |
DMAC_CHAN_SRC_WIDTH_32 |
DMAC_CHAN_DEST_WIDTH_32 |
DMAC_CHAN_DEST_AHB1;
if (read) {
dmasrc = lpc32xx_dmac_set_dma_data();
dmadst = (u32)buffer;
ctrl |= DMAC_CHAN_DEST_AUTOINC;
} else {
dmadst = lpc32xx_dmac_set_dma_data();
dmasrc = (u32)buffer;
ctrl |= DMAC_CHAN_SRC_AUTOINC;
}
/*
* Write Operation Sequence for Small Block NAND
* ----------------------------------------------------------
* 1. X'fer 256 bytes of data from Memory to Flash.
* 2. Copy generated ECC data from Register to Spare Area
* 3. X'fer next 256 bytes of data from Memory to Flash.
* 4. Copy generated ECC data from Register to Spare Area.
* 5. X'fer 16 byets of Spare area from Memory to Flash.
* Read Operation Sequence for Small Block NAND
* ----------------------------------------------------------
* 1. X'fer 256 bytes of data from Flash to Memory.
* 2. Copy generated ECC data from Register to ECC calc Buffer.
* 3. X'fer next 256 bytes of data from Flash to Memory.
* 4. Copy generated ECC data from Register to ECC calc Buffer.
* 5. X'fer 16 bytes of Spare area from Flash to Memory.
* Write Operation Sequence for Large Block NAND
* ----------------------------------------------------------
* 1. Steps(1-4) of Write Operations repeate for four times
* which generates 16 DMA descriptors to X'fer 2048 bytes of
* data & 32 bytes of ECC data.
* 2. X'fer 64 bytes of Spare area from Memory to Flash.
* Read Operation Sequence for Large Block NAND
* ----------------------------------------------------------
* 1. Steps(1-4) of Read Operations repeate for four times
* which generates 16 DMA descriptors to X'fer 2048 bytes of
* data & 32 bytes of ECC data.
* 2. X'fer 64 bytes of Spare area from Flash to Memory.
*/
for (i = 0; i < size/CFG_SYS_NAND_ECCSIZE; i++) {
dmalist_cur = &dmalist[i * 2];
dmalist_cur_ecc = &dmalist[(i * 2) + 1];
dmalist_cur->dma_src = (read ? (dmasrc) : (dmasrc + (i*256)));
dmalist_cur->dma_dest = (read ? (dmadst + (i*256)) : dmadst);
dmalist_cur->next_lli = lpc32xx_dmac_next_lli(dmalist_cur_ecc);
dmalist_cur->next_ctrl = ctrl;
dmalist_cur_ecc->dma_src = lpc32xx_dmac_set_ecc();
dmalist_cur_ecc->dma_dest = (u32)&ecc_buffer[i];
dmalist_cur_ecc->next_lli =
lpc32xx_dmac_next_lli(&dmalist[(i * 2) + 2]);
dmalist_cur_ecc->next_ctrl = ecc_ctrl;
}
if (i) { /* Data only transfer */
dmalist_cur_ecc = &dmalist[(i * 2) - 1];
dmalist_cur_ecc->next_lli = 0;
dmalist_cur_ecc->next_ctrl |= DMAC_CHAN_INT_TC_EN;
return;
}
/* OOB only transfer */
if (read) {
dmasrc = lpc32xx_dmac_set_dma_data();
dmadst = (u32)buffer;
oob_ctrl |= DMAC_CHAN_DEST_AUTOINC;
} else {
dmadst = lpc32xx_dmac_set_dma_data();
dmasrc = (u32)buffer;
oob_ctrl |= DMAC_CHAN_SRC_AUTOINC;
}
/* Read/ Write Spare Area Data To/From Flash */
dmalist_cur = &dmalist[i * 2];
dmalist_cur->dma_src = dmasrc;
dmalist_cur->dma_dest = dmadst;
dmalist_cur->next_lli = 0;
dmalist_cur->next_ctrl = (oob_ctrl | DMAC_CHAN_INT_TC_EN);
}
static void lpc32xx_nand_xfer(struct mtd_info *mtd, const u8 *buf,
int len, int read)
{
struct nand_chip *chip = mtd_to_nand(mtd);
u32 config;
int ret;
/* DMA Channel Configuration */
config = (read ? DMAC_CHAN_FLOW_D_P2M : DMAC_CHAN_FLOW_D_M2P) |
(read ? DMAC_DEST_PERIP(0) : DMAC_DEST_PERIP(DMA_PERID_NAND1)) |
(read ? DMAC_SRC_PERIP(DMA_PERID_NAND1) : DMAC_SRC_PERIP(0)) |
DMAC_CHAN_ENABLE;
/* Prepare DMA descriptors */
lpc32xx_nand_dma_configure(chip, buf, len, read);
/* Setup SLC controller and start transfer */
if (read)
setbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_DMA_DIR);
else /* NAND_ECC_WRITE */
clrbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_DMA_DIR);
setbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_DMA_BURST);
/* Write length for new transfers */
if (!((readl(&lpc32xx_nand_slc_regs->stat) & STAT_DMA_FIFO) |
readl(&lpc32xx_nand_slc_regs->tc))) {
int tmp = (len != mtd->oobsize) ? mtd->oobsize : 0;
writel(len + tmp, &lpc32xx_nand_slc_regs->tc);
}
setbits_le32(&lpc32xx_nand_slc_regs->ctrl, CTRL_DMA_START);
/* Start DMA transfers */
ret = lpc32xx_dma_start_xfer(dmachan, dmalist, config);
if (unlikely(ret < 0))
BUG();
/* Wait for NAND to be ready */
while (!lpc32xx_nand_dev_ready(mtd))
;
/* Wait till DMA transfer is DONE */
if (lpc32xx_dma_wait_status(dmachan))
pr_err("NAND DMA transfer error!\r\n");
/* Stop DMA & HW ECC */
clrbits_le32(&lpc32xx_nand_slc_regs->ctrl, CTRL_DMA_START);
clrbits_le32(&lpc32xx_nand_slc_regs->cfg,
CFG_DMA_DIR | CFG_DMA_BURST | CFG_ECC_EN | CFG_DMA_ECC);
}
static u32 slc_ecc_copy_to_buffer(u8 *spare, const u32 *ecc, int count)
{
int i;
for (i = 0; i < (count * CFG_SYS_NAND_ECCBYTES);
i += CFG_SYS_NAND_ECCBYTES) {
u32 ce = ecc[i / CFG_SYS_NAND_ECCBYTES];
ce = ~(ce << 2) & 0xFFFFFF;
spare[i+2] = (u8)(ce & 0xFF); ce >>= 8;
spare[i+1] = (u8)(ce & 0xFF); ce >>= 8;
spare[i] = (u8)(ce & 0xFF);
}
return 0;
}
static int lpc32xx_ecc_calculate(struct mtd_info *mtd, const uint8_t *dat,
uint8_t *ecc_code)
{
return slc_ecc_copy_to_buffer(ecc_code, ecc_buffer, ECCSTEPS);
}
/*
* Enables and prepares SLC NAND controller
* for doing data transfers with H/W ECC enabled.
*/
static void lpc32xx_hwecc_enable(struct mtd_info *mtd, int mode)
{
/* Clear ECC */
writel(CTRL_ECC_CLEAR, &lpc32xx_nand_slc_regs->ctrl);
/* Setup SLC controller for H/W ECC operations */
setbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_ECC_EN | CFG_DMA_ECC);
}
/*
* lpc32xx_correct_data - [NAND Interface] Detect and correct bit error(s)
* mtd: MTD block structure
* dat: raw data read from the chip
* read_ecc: ECC from the chip
* calc_ecc: the ECC calculated from raw data
*
* Detect and correct a 1 bit error for 256 byte block
*/
int lpc32xx_correct_data(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
{
unsigned int i;
int ret1, ret2 = 0;
u_char *r = read_ecc;
u_char *c = calc_ecc;
u16 data_offset = 0;
for (i = 0 ; i < ECCSTEPS ; i++) {
r += CFG_SYS_NAND_ECCBYTES;
c += CFG_SYS_NAND_ECCBYTES;
data_offset += CFG_SYS_NAND_ECCSIZE;
ret1 = nand_correct_data(mtd, dat + data_offset, r, c);
if (ret1 < 0)
return -EBADMSG;
else
ret2 += ret1;
}
return ret2;
}
static void lpc32xx_dma_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
lpc32xx_nand_xfer(mtd, buf, len, 1);
}
static void lpc32xx_dma_write_buf(struct mtd_info *mtd, const uint8_t *buf,
int len)
{
lpc32xx_nand_xfer(mtd, buf, len, 0);
}
/* Reuse the logic from "nand_read_page_hwecc()" */
static int lpc32xx_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
int i;
int stat;
uint8_t *p = buf;
uint8_t *ecc_calc = chip->buffers->ecccalc;
uint8_t *ecc_code = chip->buffers->ecccode;
uint32_t *eccpos = chip->ecc.layout->eccpos;
unsigned int max_bitflips = 0;
/*
* As per the "LPC32x0 and LPC32x0/01 User manual" table 173 notes
* and section 9.7, the NAND SLC & DMA allowed single DMA transaction
* of a page size using DMA controller scatter/gather mode through
* linked list; the ECC read is done without any software intervention.
*/
lpc32xx_hwecc_enable(mtd, NAND_ECC_READ);
lpc32xx_dma_read_buf(mtd, p, chip->ecc.size * chip->ecc.steps);
lpc32xx_ecc_calculate(mtd, p, &ecc_calc[0]);
lpc32xx_dma_read_buf(mtd, chip->oob_poi, mtd->oobsize);
for (i = 0; i < chip->ecc.total; i++)
ecc_code[i] = chip->oob_poi[eccpos[i]];
stat = chip->ecc.correct(mtd, p, &ecc_code[0], &ecc_calc[0]);
if (stat < 0)
mtd->ecc_stats.failed++;
else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
return max_bitflips;
}
/* Reuse the logic from "nand_write_page_hwecc()" */
static int lpc32xx_write_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip,
const uint8_t *buf, int oob_required,
int page)
{
int i;
uint8_t *ecc_calc = chip->buffers->ecccalc;
const uint8_t *p = buf;
uint32_t *eccpos = chip->ecc.layout->eccpos;
/*
* As per the "LPC32x0 and LPC32x0/01 User manual" table 173 notes
* and section 9.7, the NAND SLC & DMA allowed single DMA transaction
* of a page size using DMA controller scatter/gather mode through
* linked list; the ECC read is done without any software intervention.
*/
lpc32xx_hwecc_enable(mtd, NAND_ECC_WRITE);
lpc32xx_dma_write_buf(mtd, p, chip->ecc.size * chip->ecc.steps);
lpc32xx_ecc_calculate(mtd, p, &ecc_calc[0]);
for (i = 0; i < chip->ecc.total; i++)
chip->oob_poi[eccpos[i]] = ecc_calc[i];
lpc32xx_dma_write_buf(mtd, chip->oob_poi, mtd->oobsize);
return 0;
}
#else
static void lpc32xx_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
while (len-- > 0)
*buf++ = readl(&lpc32xx_nand_slc_regs->data);
}
static void lpc32xx_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
while (len-- > 0)
writel(*buf++, &lpc32xx_nand_slc_regs->data);
}
#endif
static uint8_t lpc32xx_read_byte(struct mtd_info *mtd)
{
return readl(&lpc32xx_nand_slc_regs->data);
}
static void lpc32xx_write_byte(struct mtd_info *mtd, uint8_t byte)
{
writel(byte, &lpc32xx_nand_slc_regs->data);
}
/*
* LPC32xx has only one SLC NAND controller, don't utilize
* CONFIG_SYS_NAND_SELF_INIT to be able to reuse this function
* both in SPL NAND and U-Boot images.
*/
int board_nand_init(struct nand_chip *lpc32xx_chip)
{
#if defined(CONFIG_DMA_LPC32XX) && !defined(CONFIG_SPL_BUILD)
int ret;
/* Acquire a channel for our use */
ret = lpc32xx_dma_get_channel();
if (unlikely(ret < 0)) {
pr_info("Unable to get free DMA channel for NAND transfers\n");
return -1;
}
dmachan = (unsigned int)ret;
#endif
lpc32xx_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
lpc32xx_chip->dev_ready = lpc32xx_nand_dev_ready;
/*
* The implementation of these functions is quite common, but
* they MUST be defined, because access to data register
* is strictly 32-bit aligned.
*/
lpc32xx_chip->read_byte = lpc32xx_read_byte;
lpc32xx_chip->write_byte = lpc32xx_write_byte;
#if defined(CONFIG_DMA_LPC32XX) && !defined(CONFIG_SPL_BUILD)
/* Hardware ECC calculation is supported when DMA driver is selected */
lpc32xx_chip->ecc.mode = NAND_ECC_HW;
lpc32xx_chip->read_buf = lpc32xx_dma_read_buf;
lpc32xx_chip->write_buf = lpc32xx_dma_write_buf;
lpc32xx_chip->ecc.calculate = lpc32xx_ecc_calculate;
lpc32xx_chip->ecc.correct = lpc32xx_correct_data;
lpc32xx_chip->ecc.hwctl = lpc32xx_hwecc_enable;
lpc32xx_chip->chip_delay = 2000;
lpc32xx_chip->ecc.read_page = lpc32xx_read_page_hwecc;
lpc32xx_chip->ecc.write_page = lpc32xx_write_page_hwecc;
lpc32xx_chip->options |= NAND_NO_SUBPAGE_WRITE;
#else
/*
* Hardware ECC calculation is not supported by the driver,
* because it requires DMA support, see LPC32x0 User Manual,
* note after SLC_ECC register description (UM10326, p.198)
*/
lpc32xx_chip->ecc.mode = NAND_ECC_SOFT;
/*
* The implementation of these functions is quite common, but
* they MUST be defined, because access to data register
* is strictly 32-bit aligned.
*/
lpc32xx_chip->read_buf = lpc32xx_read_buf;
lpc32xx_chip->write_buf = lpc32xx_write_buf;
#endif
/*
* These values are predefined
* for both small and large page NAND flash devices.
*/
lpc32xx_chip->ecc.size = CFG_SYS_NAND_ECCSIZE;
lpc32xx_chip->ecc.bytes = CFG_SYS_NAND_ECCBYTES;
lpc32xx_chip->ecc.strength = 1;
if (CONFIG_SYS_NAND_PAGE_SIZE != NAND_LARGE_BLOCK_PAGE_SIZE)
lpc32xx_chip->ecc.layout = &lpc32xx_nand_oob_16;
#if defined(CONFIG_SYS_NAND_USE_FLASH_BBT)
lpc32xx_chip->bbt_options |= NAND_BBT_USE_FLASH;
#endif
/* Initialize NAND interface */
lpc32xx_nand_init();
return 0;
}