blob: c5c1331a4c3c33a5c4364616a4956b9bfc959611 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* sun50i H616 platform dram controller driver
*
* While controller is very similar to that in H6, PHY is completely
* unknown. That's why this driver has plenty of magic numbers. Some
* meaning was nevertheless deduced from strings found in boot0 and
* known meaning of some dram parameters.
* This driver supports DDR3, LPDDR3 and LPDDR4 memory. There is no
* DDR4 support yet.
*
* (C) Copyright 2020 Jernej Skrabec <jernej.skrabec@siol.net>
*
*/
#include <common.h>
#include <init.h>
#include <log.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/dram.h>
#include <asm/arch/cpu.h>
#include <asm/arch/prcm.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/kconfig.h>
enum {
MBUS_QOS_LOWEST = 0,
MBUS_QOS_LOW,
MBUS_QOS_HIGH,
MBUS_QOS_HIGHEST
};
static void mbus_configure_port(u8 port,
bool bwlimit,
bool priority,
u8 qos,
u8 waittime,
u8 acs,
u16 bwl0,
u16 bwl1,
u16 bwl2)
{
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
const u32 cfg0 = ( (bwlimit ? (1 << 0) : 0)
| (priority ? (1 << 1) : 0)
| ((qos & 0x3) << 2)
| ((waittime & 0xf) << 4)
| ((acs & 0xff) << 8)
| (bwl0 << 16) );
const u32 cfg1 = ((u32)bwl2 << 16) | (bwl1 & 0xffff);
debug("MBUS port %d cfg0 %08x cfg1 %08x\n", port, cfg0, cfg1);
writel_relaxed(cfg0, &mctl_com->master[port].cfg0);
writel_relaxed(cfg1, &mctl_com->master[port].cfg1);
}
#define MBUS_CONF(port, bwlimit, qos, acs, bwl0, bwl1, bwl2) \
mbus_configure_port(port, bwlimit, false, \
MBUS_QOS_ ## qos, 0, acs, bwl0, bwl1, bwl2)
static void mctl_set_master_priority(void)
{
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
/* enable bandwidth limit windows and set windows size 1us */
writel(399, &mctl_com->tmr);
writel(BIT(16), &mctl_com->bwcr);
MBUS_CONF( 0, true, HIGHEST, 0, 256, 128, 100);
MBUS_CONF( 1, true, HIGH, 0, 1536, 1400, 256);
MBUS_CONF( 2, true, HIGHEST, 0, 512, 256, 96);
MBUS_CONF( 3, true, HIGH, 0, 256, 100, 80);
MBUS_CONF( 4, true, HIGH, 2, 8192, 5500, 5000);
MBUS_CONF( 5, true, HIGH, 2, 100, 64, 32);
MBUS_CONF( 6, true, HIGH, 2, 100, 64, 32);
MBUS_CONF( 8, true, HIGH, 0, 256, 128, 64);
MBUS_CONF(11, true, HIGH, 0, 256, 128, 100);
MBUS_CONF(14, true, HIGH, 0, 1024, 256, 64);
MBUS_CONF(16, true, HIGHEST, 6, 8192, 2800, 2400);
MBUS_CONF(21, true, HIGHEST, 6, 2048, 768, 512);
MBUS_CONF(25, true, HIGHEST, 0, 100, 64, 32);
MBUS_CONF(26, true, HIGH, 2, 8192, 5500, 5000);
MBUS_CONF(37, true, HIGH, 0, 256, 128, 64);
MBUS_CONF(38, true, HIGH, 2, 100, 64, 32);
MBUS_CONF(39, true, HIGH, 2, 8192, 5500, 5000);
MBUS_CONF(40, true, HIGH, 2, 100, 64, 32);
dmb();
}
static void mctl_sys_init(u32 clk_rate)
{
struct sunxi_ccm_reg * const ccm =
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
struct sunxi_mctl_ctl_reg * const mctl_ctl =
(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
/* Put all DRAM-related blocks to reset state */
clrbits_le32(&ccm->mbus_cfg, MBUS_ENABLE);
clrbits_le32(&ccm->mbus_cfg, MBUS_RESET);
clrbits_le32(&ccm->dram_gate_reset, BIT(GATE_SHIFT));
udelay(5);
clrbits_le32(&ccm->dram_gate_reset, BIT(RESET_SHIFT));
clrbits_le32(&ccm->pll5_cfg, CCM_PLL5_CTRL_EN);
clrbits_le32(&ccm->dram_clk_cfg, DRAM_MOD_RESET);
udelay(5);
/* Set PLL5 rate to doubled DRAM clock rate */
writel(CCM_PLL5_CTRL_EN | CCM_PLL5_LOCK_EN | CCM_PLL5_OUT_EN |
CCM_PLL5_CTRL_N(clk_rate * 2 / 24), &ccm->pll5_cfg);
mctl_await_completion(&ccm->pll5_cfg, CCM_PLL5_LOCK, CCM_PLL5_LOCK);
/* Configure DRAM mod clock */
writel(DRAM_CLK_SRC_PLL5, &ccm->dram_clk_cfg);
writel(BIT(RESET_SHIFT), &ccm->dram_gate_reset);
udelay(5);
setbits_le32(&ccm->dram_gate_reset, BIT(GATE_SHIFT));
/* Disable all channels */
writel(0, &mctl_com->maer0);
writel(0, &mctl_com->maer1);
writel(0, &mctl_com->maer2);
/* Configure MBUS and enable DRAM mod reset */
setbits_le32(&ccm->mbus_cfg, MBUS_RESET);
setbits_le32(&ccm->mbus_cfg, MBUS_ENABLE);
clrbits_le32(&mctl_com->unk_0x500, BIT(25));
setbits_le32(&ccm->dram_clk_cfg, DRAM_MOD_RESET);
udelay(5);
/* Unknown hack, which enables access of mctl_ctl regs */
writel(0x8000, &mctl_ctl->clken);
}
static void mctl_set_addrmap(const struct dram_config *config)
{
struct sunxi_mctl_ctl_reg * const mctl_ctl =
(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
u8 cols = config->cols;
u8 rows = config->rows;
u8 ranks = config->ranks;
if (!config->bus_full_width)
cols -= 1;
/* Ranks */
if (ranks == 2)
mctl_ctl->addrmap[0] = rows + cols - 3;
else
mctl_ctl->addrmap[0] = 0x1F;
/* Banks, hardcoded to 8 banks now */
mctl_ctl->addrmap[1] = (cols - 2) | (cols - 2) << 8 | (cols - 2) << 16;
/* Columns */
mctl_ctl->addrmap[2] = 0;
switch (cols) {
case 7:
mctl_ctl->addrmap[3] = 0x1F1F1F00;
mctl_ctl->addrmap[4] = 0x1F1F;
break;
case 8:
mctl_ctl->addrmap[3] = 0x1F1F0000;
mctl_ctl->addrmap[4] = 0x1F1F;
break;
case 9:
mctl_ctl->addrmap[3] = 0x1F000000;
mctl_ctl->addrmap[4] = 0x1F1F;
break;
case 10:
mctl_ctl->addrmap[3] = 0;
mctl_ctl->addrmap[4] = 0x1F1F;
break;
case 11:
mctl_ctl->addrmap[3] = 0;
mctl_ctl->addrmap[4] = 0x1F00;
break;
case 12:
mctl_ctl->addrmap[3] = 0;
mctl_ctl->addrmap[4] = 0;
break;
default:
panic("Unsupported DRAM configuration: column number invalid\n");
}
/* Rows */
mctl_ctl->addrmap[5] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
switch (rows) {
case 13:
mctl_ctl->addrmap[6] = (cols - 3) | 0x0F0F0F00;
mctl_ctl->addrmap[7] = 0x0F0F;
break;
case 14:
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | 0x0F0F0000;
mctl_ctl->addrmap[7] = 0x0F0F;
break;
case 15:
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | 0x0F000000;
mctl_ctl->addrmap[7] = 0x0F0F;
break;
case 16:
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
mctl_ctl->addrmap[7] = 0x0F0F;
break;
case 17:
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
mctl_ctl->addrmap[7] = (cols - 3) | 0x0F00;
break;
case 18:
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
mctl_ctl->addrmap[7] = (cols - 3) | ((cols - 3) << 8);
break;
default:
panic("Unsupported DRAM configuration: row number invalid\n");
}
/* Bank groups, DDR4 only */
mctl_ctl->addrmap[8] = 0x3F3F;
}
static const u8 phy_init[] = {
#ifdef CONFIG_SUNXI_DRAM_H616_DDR3_1333
0x07, 0x0b, 0x02, 0x16, 0x0d, 0x0e, 0x14, 0x19,
0x0a, 0x15, 0x03, 0x13, 0x04, 0x0c, 0x10, 0x06,
0x0f, 0x11, 0x1a, 0x01, 0x12, 0x17, 0x00, 0x08,
0x09, 0x05, 0x18
#elif defined(CONFIG_SUNXI_DRAM_H616_LPDDR3)
0x18, 0x06, 0x00, 0x05, 0x04, 0x03, 0x09, 0x02,
0x08, 0x01, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x07,
0x17, 0x19, 0x1a
#elif defined(CONFIG_SUNXI_DRAM_H616_LPDDR4)
0x02, 0x00, 0x17, 0x05, 0x04, 0x19, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x01,
0x18, 0x03, 0x1a
#endif
};
#define MASK_BYTE(reg, nr) (((reg) >> ((nr) * 8)) & 0x1f)
static void mctl_phy_configure_odt(const struct dram_para *para)
{
uint32_t val_lo, val_hi;
/*
* This part should be applicable to all memory types, but is
* usually found in LPDDR4 bootloaders. Therefore, we will leave
* only for this type of memory.
*/
if (para->type == SUNXI_DRAM_TYPE_LPDDR4) {
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x390, BIT(5), BIT(4));
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x3d0, BIT(5), BIT(4));
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x410, BIT(5), BIT(4));
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x450, BIT(5), BIT(4));
}
val_lo = para->dx_dri;
val_hi = (para->type == SUNXI_DRAM_TYPE_LPDDR4) ? 0x04040404 : para->dx_dri;
writel_relaxed(MASK_BYTE(val_lo, 0), SUNXI_DRAM_PHY0_BASE + 0x388);
writel_relaxed(MASK_BYTE(val_hi, 0), SUNXI_DRAM_PHY0_BASE + 0x38c);
writel_relaxed(MASK_BYTE(val_lo, 1), SUNXI_DRAM_PHY0_BASE + 0x3c8);
writel_relaxed(MASK_BYTE(val_hi, 1), SUNXI_DRAM_PHY0_BASE + 0x3cc);
writel_relaxed(MASK_BYTE(val_lo, 2), SUNXI_DRAM_PHY0_BASE + 0x408);
writel_relaxed(MASK_BYTE(val_hi, 2), SUNXI_DRAM_PHY0_BASE + 0x40c);
writel_relaxed(MASK_BYTE(val_lo, 3), SUNXI_DRAM_PHY0_BASE + 0x448);
writel_relaxed(MASK_BYTE(val_hi, 3), SUNXI_DRAM_PHY0_BASE + 0x44c);
val_lo = para->ca_dri;
val_hi = para->ca_dri;
writel_relaxed(MASK_BYTE(val_lo, 0), SUNXI_DRAM_PHY0_BASE + 0x340);
writel_relaxed(MASK_BYTE(val_hi, 0), SUNXI_DRAM_PHY0_BASE + 0x344);
writel_relaxed(MASK_BYTE(val_lo, 1), SUNXI_DRAM_PHY0_BASE + 0x348);
writel_relaxed(MASK_BYTE(val_hi, 1), SUNXI_DRAM_PHY0_BASE + 0x34c);
val_lo = (para->type == SUNXI_DRAM_TYPE_LPDDR3) ? 0 : para->dx_odt;
val_hi = (para->type == SUNXI_DRAM_TYPE_LPDDR4) ? 0 : para->dx_odt;
writel_relaxed(MASK_BYTE(val_lo, 0), SUNXI_DRAM_PHY0_BASE + 0x380);
writel_relaxed(MASK_BYTE(val_hi, 0), SUNXI_DRAM_PHY0_BASE + 0x384);
writel_relaxed(MASK_BYTE(val_lo, 1), SUNXI_DRAM_PHY0_BASE + 0x3c0);
writel_relaxed(MASK_BYTE(val_hi, 1), SUNXI_DRAM_PHY0_BASE + 0x3c4);
writel_relaxed(MASK_BYTE(val_lo, 2), SUNXI_DRAM_PHY0_BASE + 0x400);
writel_relaxed(MASK_BYTE(val_hi, 2), SUNXI_DRAM_PHY0_BASE + 0x404);
writel_relaxed(MASK_BYTE(val_lo, 3), SUNXI_DRAM_PHY0_BASE + 0x440);
writel_relaxed(MASK_BYTE(val_hi, 3), SUNXI_DRAM_PHY0_BASE + 0x444);
dmb();
}
static bool mctl_phy_write_leveling(const struct dram_config *config)
{
bool result = true;
u32 val;
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0xc0, 0x80);
writel(4, SUNXI_DRAM_PHY0_BASE + 0xc);
writel(0x40, SUNXI_DRAM_PHY0_BASE + 0x10);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 4);
if (config->bus_full_width)
val = 0xf;
else
val = 3;
mctl_await_completion((u32 *)(SUNXI_DRAM_PHY0_BASE + 0x188), val, val);
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 4);
val = readl(SUNXI_DRAM_PHY0_BASE + 0x258);
if (val == 0 || val == 0x3f)
result = false;
val = readl(SUNXI_DRAM_PHY0_BASE + 0x25c);
if (val == 0 || val == 0x3f)
result = false;
val = readl(SUNXI_DRAM_PHY0_BASE + 0x318);
if (val == 0 || val == 0x3f)
result = false;
val = readl(SUNXI_DRAM_PHY0_BASE + 0x31c);
if (val == 0 || val == 0x3f)
result = false;
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0xc0);
if (config->ranks == 2) {
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0xc0, 0x40);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 4);
if (config->bus_full_width)
val = 0xf;
else
val = 3;
mctl_await_completion((u32 *)(SUNXI_DRAM_PHY0_BASE + 0x188), val, val);
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 4);
}
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0xc0);
return result;
}
static bool mctl_phy_read_calibration(const struct dram_config *config)
{
bool result = true;
u32 val, tmp;
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0x30, 0x20);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 1);
if (config->bus_full_width)
val = 0xf;
else
val = 3;
while ((readl(SUNXI_DRAM_PHY0_BASE + 0x184) & val) != val) {
if (readl(SUNXI_DRAM_PHY0_BASE + 0x184) & 0x20) {
result = false;
break;
}
}
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 1);
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0x30);
if (config->ranks == 2) {
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0x30, 0x10);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 1);
while ((readl(SUNXI_DRAM_PHY0_BASE + 0x184) & val) != val) {
if (readl(SUNXI_DRAM_PHY0_BASE + 0x184) & 0x20) {
result = false;
break;
}
}
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 1);
}
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0x30);
val = readl(SUNXI_DRAM_PHY0_BASE + 0x274) & 7;
tmp = readl(SUNXI_DRAM_PHY0_BASE + 0x26c) & 7;
if (val < tmp)
val = tmp;
tmp = readl(SUNXI_DRAM_PHY0_BASE + 0x32c) & 7;
if (val < tmp)
val = tmp;
tmp = readl(SUNXI_DRAM_PHY0_BASE + 0x334) & 7;
if (val < tmp)
val = tmp;
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x38, 0x7, (val + 2) & 7);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 4, 0x20);
return result;
}
static bool mctl_phy_read_training(const struct dram_para *para,
const struct dram_config *config)
{
u32 val1, val2, *ptr1, *ptr2;
bool result = true;
int i;
if (para->type == SUNXI_DRAM_TYPE_LPDDR4) {
writel(0, SUNXI_DRAM_PHY0_BASE + 0x800);
writel(0, SUNXI_DRAM_PHY0_BASE + 0x81c);
}
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 3, 2);
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x804, 0x3f, 0xf);
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x808, 0x3f, 0xf);
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0xa04, 0x3f, 0xf);
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0xa08, 0x3f, 0xf);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 6);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 1);
mctl_await_completion((u32 *)(SUNXI_DRAM_PHY0_BASE + 0x840), 0xc, 0xc);
if (readl(SUNXI_DRAM_PHY0_BASE + 0x840) & 3)
result = false;
if (config->bus_full_width) {
mctl_await_completion((u32 *)(SUNXI_DRAM_PHY0_BASE + 0xa40), 0xc, 0xc);
if (readl(SUNXI_DRAM_PHY0_BASE + 0xa40) & 3)
result = false;
}
ptr1 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x898);
ptr2 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x850);
for (i = 0; i < 9; i++) {
val1 = readl(&ptr1[i]);
val2 = readl(&ptr2[i]);
if (val1 - val2 <= 6)
result = false;
}
ptr1 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x8bc);
ptr2 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x874);
for (i = 0; i < 9; i++) {
val1 = readl(&ptr1[i]);
val2 = readl(&ptr2[i]);
if (val1 - val2 <= 6)
result = false;
}
if (config->bus_full_width) {
ptr1 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0xa98);
ptr2 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0xa50);
for (i = 0; i < 9; i++) {
val1 = readl(&ptr1[i]);
val2 = readl(&ptr2[i]);
if (val1 - val2 <= 6)
result = false;
}
ptr1 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0xabc);
ptr2 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0xa74);
for (i = 0; i < 9; i++) {
val1 = readl(&ptr1[i]);
val2 = readl(&ptr2[i]);
if (val1 - val2 <= 6)
result = false;
}
}
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 3);
if (config->ranks == 2) {
/* maybe last parameter should be 1? */
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 3, 2);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 6);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 1);
mctl_await_completion((u32 *)(SUNXI_DRAM_PHY0_BASE + 0x840), 0xc, 0xc);
if (readl(SUNXI_DRAM_PHY0_BASE + 0x840) & 3)
result = false;
if (config->bus_full_width) {
mctl_await_completion((u32 *)(SUNXI_DRAM_PHY0_BASE + 0xa40), 0xc, 0xc);
if (readl(SUNXI_DRAM_PHY0_BASE + 0xa40) & 3)
result = false;
}
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 3);
}
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 3);
return result;
}
static bool mctl_phy_write_training(const struct dram_config *config)
{
u32 val1, val2, *ptr1, *ptr2;
bool result = true;
int i;
writel(0, SUNXI_DRAM_PHY0_BASE + 0x134);
writel(0, SUNXI_DRAM_PHY0_BASE + 0x138);
writel(0, SUNXI_DRAM_PHY0_BASE + 0x19c);
writel(0, SUNXI_DRAM_PHY0_BASE + 0x1a0);
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 0xc, 8);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x10);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x20);
mctl_await_completion((u32 *)(SUNXI_DRAM_PHY0_BASE + 0x8e0), 3, 3);
if (readl(SUNXI_DRAM_PHY0_BASE + 0x8e0) & 0xc)
result = false;
if (config->bus_full_width) {
mctl_await_completion((u32 *)(SUNXI_DRAM_PHY0_BASE + 0xae0), 3, 3);
if (readl(SUNXI_DRAM_PHY0_BASE + 0xae0) & 0xc)
result = false;
}
ptr1 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x938);
ptr2 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x8f0);
for (i = 0; i < 9; i++) {
val1 = readl(&ptr1[i]);
val2 = readl(&ptr2[i]);
if (val1 - val2 <= 6)
result = false;
}
ptr1 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x95c);
ptr2 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x914);
for (i = 0; i < 9; i++) {
val1 = readl(&ptr1[i]);
val2 = readl(&ptr2[i]);
if (val1 - val2 <= 6)
result = false;
}
if (config->bus_full_width) {
ptr1 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0xb38);
ptr2 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0xaf0);
for (i = 0; i < 9; i++) {
val1 = readl(&ptr1[i]);
val2 = readl(&ptr2[i]);
if (val1 - val2 <= 6)
result = false;
}
ptr1 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0xb5c);
ptr2 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0xb14);
for (i = 0; i < 9; i++) {
val1 = readl(&ptr1[i]);
val2 = readl(&ptr2[i]);
if (val1 - val2 <= 6)
result = false;
}
}
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x60);
if (config->ranks == 2) {
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 0xc, 4);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x10);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x20);
mctl_await_completion((u32 *)(SUNXI_DRAM_PHY0_BASE + 0x8e0), 3, 3);
if (readl(SUNXI_DRAM_PHY0_BASE + 0x8e0) & 0xc)
result = false;
if (config->bus_full_width) {
mctl_await_completion((u32 *)(SUNXI_DRAM_PHY0_BASE + 0xae0), 3, 3);
if (readl(SUNXI_DRAM_PHY0_BASE + 0xae0) & 0xc)
result = false;
}
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x60);
}
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 0xc);
return result;
}
static void mctl_phy_bit_delay_compensation(const struct dram_para *para)
{
u32 *ptr, val;
int i;
if (para->tpr10 & TPR10_DX_BIT_DELAY1) {
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x60, 1);
setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 8);
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x10);
if (para->type == SUNXI_DRAM_TYPE_LPDDR4)
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x4, 0x80);
if (para->tpr10 & BIT(30))
val = para->tpr11 & 0x3f;
else
val = (para->tpr11 & 0xf) << 1;
ptr = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x484);
for (i = 0; i < 9; i++) {
writel_relaxed(val, ptr);
writel_relaxed(val, ptr + 0x30);
ptr += 2;
}
if (para->tpr10 & BIT(30))
val = (para->odt_en >> 15) & 0x1e;
else
val = (para->tpr11 >> 15) & 0x1e;
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x4d0);
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x590);
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x4cc);
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x58c);
if (para->tpr10 & BIT(30))
val = (para->tpr11 >> 8) & 0x3f;
else
val = (para->tpr11 >> 3) & 0x1e;
ptr = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x4d8);
for (i = 0; i < 9; i++) {
writel_relaxed(val, ptr);
writel_relaxed(val, ptr + 0x30);
ptr += 2;
}
if (para->tpr10 & BIT(30))
val = (para->odt_en >> 19) & 0x1e;
else
val = (para->tpr11 >> 19) & 0x1e;
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x524);
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x5e4);
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x520);
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x5e0);
if (para->tpr10 & BIT(30))
val = (para->tpr11 >> 16) & 0x3f;
else
val = (para->tpr11 >> 7) & 0x1e;
ptr = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x604);
for (i = 0; i < 9; i++) {
writel_relaxed(val, ptr);
writel_relaxed(val, ptr + 0x30);
ptr += 2;
}
if (para->tpr10 & BIT(30))
val = (para->odt_en >> 23) & 0x1e;
else
val = (para->tpr11 >> 23) & 0x1e;
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x650);
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x710);
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x64c);
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x70c);
if (para->tpr10 & BIT(30))
val = (para->tpr11 >> 24) & 0x3f;
else
val = (para->tpr11 >> 11) & 0x1e;
ptr = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x658);
for (i = 0; i < 9; i++) {
writel_relaxed(val, ptr);
writel_relaxed(val, ptr + 0x30);
ptr += 2;
}
if (para->tpr10 & BIT(30))
val = (para->odt_en >> 27) & 0x1e;
else
val = (para->tpr11 >> 27) & 0x1e;
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x6a4);
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x764);
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x6a0);
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x760);
dmb();
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x60, 1);
}
if (para->tpr10 & TPR10_DX_BIT_DELAY0) {
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x54, 0x80);
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 4);
if (para->tpr10 & BIT(30))
val = para->tpr12 & 0x3f;
else
val = (para->tpr12 & 0xf) << 1;
ptr = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x480);
for (i = 0; i < 9; i++) {
writel_relaxed(val, ptr);
writel_relaxed(val, ptr + 0x30);
ptr += 2;
}
if (para->tpr10 & BIT(30))
val = (para->odt_en << 1) & 0x1e;
else
val = (para->tpr12 >> 15) & 0x1e;
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x528);
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x5e8);
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x4c8);
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x588);
if (para->tpr10 & BIT(30))
val = (para->tpr12 >> 8) & 0x3f;
else
val = (para->tpr12 >> 3) & 0x1e;
ptr = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x4d4);
for (i = 0; i < 9; i++) {
writel_relaxed(val, ptr);
writel_relaxed(val, ptr + 0x30);
ptr += 2;
}
if (para->tpr10 & BIT(30))
val = (para->odt_en >> 3) & 0x1e;
else
val = (para->tpr12 >> 19) & 0x1e;
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x52c);
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x5ec);
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x51c);
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x5dc);
if (para->tpr10 & BIT(30))
val = (para->tpr12 >> 16) & 0x3f;
else
val = (para->tpr12 >> 7) & 0x1e;
ptr = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x600);
for (i = 0; i < 9; i++) {
writel_relaxed(val, ptr);
writel_relaxed(val, ptr + 0x30);
ptr += 2;
}
if (para->tpr10 & BIT(30))
val = (para->odt_en >> 7) & 0x1e;
else
val = (para->tpr12 >> 23) & 0x1e;
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x6a8);
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x768);
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x648);
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x708);
if (para->tpr10 & BIT(30))
val = (para->tpr12 >> 24) & 0x3f;
else
val = (para->tpr12 >> 11) & 0x1e;
ptr = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x654);
for (i = 0; i < 9; i++) {
writel_relaxed(val, ptr);
writel_relaxed(val, ptr + 0x30);
ptr += 2;
}
if (para->tpr10 & BIT(30))
val = (para->odt_en >> 11) & 0x1e;
else
val = (para->tpr12 >> 27) & 0x1e;
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x6ac);
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x76c);
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x69c);
writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x75c);
dmb();
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x54, 0x80);
}
}
static void mctl_phy_ca_bit_delay_compensation(const struct dram_para *para,
const struct dram_config *config)
{
u32 val, *ptr;
int i;
if (para->tpr0 & BIT(30))
val = (para->tpr0 >> 7) & 0x3e;
else
val = (para->tpr10 >> 3) & 0x1e;
ptr = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x780);
for (i = 0; i < 32; i++)
writel(val, &ptr[i]);
val = (para->tpr10 << 1) & 0x1e;
writel(val, SUNXI_DRAM_PHY0_BASE + 0x7d8);
writel(val, SUNXI_DRAM_PHY0_BASE + 0x7dc);
writel(val, SUNXI_DRAM_PHY0_BASE + 0x7e0);
writel(val, SUNXI_DRAM_PHY0_BASE + 0x7f4);
val = (para->tpr10 >> 7) & 0x1e;
switch (para->type) {
case SUNXI_DRAM_TYPE_DDR3:
if (para->tpr2 & 1) {
writel(val, SUNXI_DRAM_PHY0_BASE + 0x794);
if (config->ranks == 2) {
val = (para->tpr10 >> 11) & 0x1e;
writel(val, SUNXI_DRAM_PHY0_BASE + 0x7e4);
}
if (para->tpr0 & BIT(31)) {
val = (para->tpr0 << 1) & 0x3e;
writel(val, SUNXI_DRAM_PHY0_BASE + 0x790);
writel(val, SUNXI_DRAM_PHY0_BASE + 0x7b8);
writel(val, SUNXI_DRAM_PHY0_BASE + 0x7cc);
}
} else {
writel(val, SUNXI_DRAM_PHY0_BASE + 0x7d4);
if (config->ranks == 2) {
val = (para->tpr10 >> 11) & 0x1e;
writel(val, SUNXI_DRAM_PHY0_BASE + 0x79c);
}
if (para->tpr0 & BIT(31)) {
val = (para->tpr0 << 1) & 0x3e;
writel(val, SUNXI_DRAM_PHY0_BASE + 0x78c);
writel(val, SUNXI_DRAM_PHY0_BASE + 0x7a4);
writel(val, SUNXI_DRAM_PHY0_BASE + 0x7b8);
}
}
break;
case SUNXI_DRAM_TYPE_LPDDR3:
if (para->tpr2 & 1) {
writel(val, SUNXI_DRAM_PHY0_BASE + 0x7a0);
if (config->ranks == 2) {
val = (para->tpr10 >> 11) & 0x1e;
writel(val, SUNXI_DRAM_PHY0_BASE + 0x79c);
}
} else {
writel(val, SUNXI_DRAM_PHY0_BASE + 0x7e8);
if (config->ranks == 2) {
val = (para->tpr10 >> 11) & 0x1e;
writel(val, SUNXI_DRAM_PHY0_BASE + 0x7f8);
}
}
break;
case SUNXI_DRAM_TYPE_LPDDR4:
if (para->tpr2 & 1) {
writel(val, SUNXI_DRAM_PHY0_BASE + 0x788);
} else {
writel(val, SUNXI_DRAM_PHY0_BASE + 0x794);
};
break;
case SUNXI_DRAM_TYPE_DDR4:
default:
panic("This DRAM setup is currently not supported.\n");
};
}
static bool mctl_phy_init(const struct dram_para *para,
const struct dram_config *config)
{
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
struct sunxi_mctl_ctl_reg * const mctl_ctl =
(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
u32 val, val2, *ptr, mr0, mr2;
int i;
if (para->type == SUNXI_DRAM_TYPE_LPDDR4)
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x4,0x80);
if (config->bus_full_width)
val = 0xf;
else
val = 3;
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x3c, 0xf, val);
switch (para->type) {
case SUNXI_DRAM_TYPE_DDR3:
if (para->tpr2 & 0x100) {
val = 9;
val2 = 7;
} else {
val = 13;
val2 = 9;
}
break;
case SUNXI_DRAM_TYPE_LPDDR3:
if (para->tpr2 & 0x100) {
val = 12;
val2 = 6;
} else {
val = 14;
val2 = 8;
}
break;
case SUNXI_DRAM_TYPE_LPDDR4:
val = 20;
val2 = 10;
break;
case SUNXI_DRAM_TYPE_DDR4:
default:
panic("This DRAM setup is currently not supported.\n");
};
writel(val, SUNXI_DRAM_PHY0_BASE + 0x14);
writel(val, SUNXI_DRAM_PHY0_BASE + 0x35c);
writel(val, SUNXI_DRAM_PHY0_BASE + 0x368);
writel(val, SUNXI_DRAM_PHY0_BASE + 0x374);
writel(0, SUNXI_DRAM_PHY0_BASE + 0x18);
writel(0, SUNXI_DRAM_PHY0_BASE + 0x360);
writel(0, SUNXI_DRAM_PHY0_BASE + 0x36c);
writel(0, SUNXI_DRAM_PHY0_BASE + 0x378);
writel(val2, SUNXI_DRAM_PHY0_BASE + 0x1c);
writel(val2, SUNXI_DRAM_PHY0_BASE + 0x364);
writel(val2, SUNXI_DRAM_PHY0_BASE + 0x370);
writel(val2, SUNXI_DRAM_PHY0_BASE + 0x37c);
ptr = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0xc0);
for (i = 0; i < ARRAY_SIZE(phy_init); i++)
writel(phy_init[i], &ptr[i]);
if (para->tpr10 & TPR10_CA_BIT_DELAY)
mctl_phy_ca_bit_delay_compensation(para, config);
switch (para->type) {
case SUNXI_DRAM_TYPE_DDR3:
val = para->tpr6 & 0xff;
break;
case SUNXI_DRAM_TYPE_LPDDR3:
val = para->tpr6 >> 8 & 0xff;
break;
case SUNXI_DRAM_TYPE_LPDDR4:
val = para->tpr6 >> 24 & 0xff;
break;
case SUNXI_DRAM_TYPE_DDR4:
default:
panic("This DRAM setup is currently not supported.\n");
};
writel(val, SUNXI_DRAM_PHY0_BASE + 0x3dc);
writel(val, SUNXI_DRAM_PHY0_BASE + 0x45c);
mctl_phy_configure_odt(para);
switch (para->type) {
case SUNXI_DRAM_TYPE_DDR3:
val = 0x0a;
break;
case SUNXI_DRAM_TYPE_LPDDR3:
val = 0x0b;
break;
case SUNXI_DRAM_TYPE_LPDDR4:
val = 0x0d;
break;
case SUNXI_DRAM_TYPE_DDR4:
default:
panic("This DRAM setup is currently not supported.\n");
};
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 4, 0x7, val);
if (para->clk <= 672)
writel(0xf, SUNXI_DRAM_PHY0_BASE + 0x20);
if (para->clk > 500) {
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x144, BIT(7));
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x14c, 0xe0);
} else {
setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x144, BIT(7));
clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x14c, 0xe0, 0x20);
}
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x14c, 8);
mctl_await_completion((u32 *)(SUNXI_DRAM_PHY0_BASE + 0x180), 4, 4);
writel(0x37, SUNXI_DRAM_PHY0_BASE + 0x58);
clrbits_le32(&mctl_com->unk_0x500, 0x200);
writel(0, &mctl_ctl->swctl);
setbits_le32(&mctl_ctl->dfimisc, 1);
/* start DFI init */
setbits_le32(&mctl_ctl->dfimisc, 0x20);
writel(1, &mctl_ctl->swctl);
mctl_await_completion(&mctl_ctl->swstat, 1, 1);
/* poll DFI init complete */
mctl_await_completion(&mctl_ctl->dfistat, 1, 1);
writel(0, &mctl_ctl->swctl);
clrbits_le32(&mctl_ctl->dfimisc, 0x20);
clrbits_le32(&mctl_ctl->pwrctl, 0x20);
writel(1, &mctl_ctl->swctl);
mctl_await_completion(&mctl_ctl->swstat, 1, 1);
mctl_await_completion(&mctl_ctl->statr, 3, 1);
writel(0, &mctl_ctl->swctl);
clrbits_le32(&mctl_ctl->dfimisc, 1);
writel(1, &mctl_ctl->swctl);
mctl_await_completion(&mctl_ctl->swstat, 1, 1);
if (para->tpr2 & 0x100) {
mr0 = 0x1b50;
mr2 = 0x10;
} else {
mr0 = 0x1f14;
mr2 = 0x20;
}
switch (para->type) {
case SUNXI_DRAM_TYPE_DDR3:
writel(mr0, &mctl_ctl->mrctrl1);
writel(0x80000030, &mctl_ctl->mrctrl0);
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
writel(4, &mctl_ctl->mrctrl1);
writel(0x80001030, &mctl_ctl->mrctrl0);
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
writel(mr2, &mctl_ctl->mrctrl1);
writel(0x80002030, &mctl_ctl->mrctrl0);
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
writel(0, &mctl_ctl->mrctrl1);
writel(0x80003030, &mctl_ctl->mrctrl0);
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
break;
case SUNXI_DRAM_TYPE_LPDDR3:
writel(mr0, &mctl_ctl->mrctrl1);
writel(0x800000f0, &mctl_ctl->mrctrl0);
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
writel(4, &mctl_ctl->mrctrl1);
writel(0x800000f0, &mctl_ctl->mrctrl0);
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
writel(mr2, &mctl_ctl->mrctrl1);
writel(0x800000f0, &mctl_ctl->mrctrl0);
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
writel(0x301, &mctl_ctl->mrctrl1);
writel(0x800000f0, &mctl_ctl->mrctrl0);
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
break;
case SUNXI_DRAM_TYPE_LPDDR4:
writel(0x0, &mctl_ctl->mrctrl1);
writel(0x80000030, &mctl_ctl->mrctrl0);
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
writel(0x134, &mctl_ctl->mrctrl1);
writel(0x80000030, &mctl_ctl->mrctrl0);
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
writel(0x21b, &mctl_ctl->mrctrl1);
writel(0x80000030, &mctl_ctl->mrctrl0);
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
writel(0x333, &mctl_ctl->mrctrl1);
writel(0x80000030, &mctl_ctl->mrctrl0);
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
writel(0x403, &mctl_ctl->mrctrl1);
writel(0x80000030, &mctl_ctl->mrctrl0);
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
writel(0xb04, &mctl_ctl->mrctrl1);
writel(0x80000030, &mctl_ctl->mrctrl0);
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
writel(0xc72, &mctl_ctl->mrctrl1);
writel(0x80000030, &mctl_ctl->mrctrl0);
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
writel(0xe09, &mctl_ctl->mrctrl1);
writel(0x80000030, &mctl_ctl->mrctrl0);
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
writel(0x1624, &mctl_ctl->mrctrl1);
writel(0x80000030, &mctl_ctl->mrctrl0);
mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0);
break;
case SUNXI_DRAM_TYPE_DDR4:
default:
panic("This DRAM setup is currently not supported.\n");
};
writel(0, SUNXI_DRAM_PHY0_BASE + 0x54);
writel(0, &mctl_ctl->swctl);
clrbits_le32(&mctl_ctl->rfshctl3, 1);
writel(1, &mctl_ctl->swctl);
if (para->tpr10 & TPR10_WRITE_LEVELING) {
for (i = 0; i < 5; i++)
if (mctl_phy_write_leveling(config))
break;
if (i == 5) {
debug("write leveling failed!\n");
return false;
}
}
if (para->tpr10 & TPR10_READ_CALIBRATION) {
for (i = 0; i < 5; i++)
if (mctl_phy_read_calibration(config))
break;
if (i == 5) {
debug("read calibration failed!\n");
return false;
}
}
if (para->tpr10 & TPR10_READ_TRAINING) {
for (i = 0; i < 5; i++)
if (mctl_phy_read_training(para, config))
break;
if (i == 5) {
debug("read training failed!\n");
return false;
}
}
if (para->tpr10 & TPR10_WRITE_TRAINING) {
for (i = 0; i < 5; i++)
if (mctl_phy_write_training(config))
break;
if (i == 5) {
debug("write training failed!\n");
return false;
}
}
mctl_phy_bit_delay_compensation(para);
clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x60, 4);
return true;
}
static bool mctl_ctrl_init(const struct dram_para *para,
const struct dram_config *config)
{
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
struct sunxi_mctl_ctl_reg * const mctl_ctl =
(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
u32 reg_val;
clrsetbits_le32(&mctl_com->unk_0x500, BIT(24), 0x200);
writel(0x8000, &mctl_ctl->clken);
setbits_le32(&mctl_com->unk_0x008, 0xff00);
if (para->type == SUNXI_DRAM_TYPE_LPDDR4)
writel(1, SUNXI_DRAM_COM_BASE + 0x50);
clrsetbits_le32(&mctl_ctl->sched[0], 0xff00, 0x3000);
writel(0, &mctl_ctl->hwlpctl);
setbits_le32(&mctl_com->unk_0x008, 0xff00);
reg_val = MSTR_ACTIVE_RANKS(config->ranks);
switch (para->type) {
case SUNXI_DRAM_TYPE_DDR3:
reg_val |= MSTR_BURST_LENGTH(8) | MSTR_DEVICETYPE_DDR3 | MSTR_2TMODE;
break;
case SUNXI_DRAM_TYPE_LPDDR3:
reg_val |= MSTR_BURST_LENGTH(8) | MSTR_DEVICETYPE_LPDDR3;
break;
case SUNXI_DRAM_TYPE_LPDDR4:
reg_val |= MSTR_BURST_LENGTH(16) | MSTR_DEVICETYPE_LPDDR4;
break;
case SUNXI_DRAM_TYPE_DDR4:
default:
panic("This DRAM setup is currently not supported.\n");
};
if (config->bus_full_width)
reg_val |= MSTR_BUSWIDTH_FULL;
else
reg_val |= MSTR_BUSWIDTH_HALF;
writel(BIT(31) | BIT(30) | reg_val, &mctl_ctl->mstr);
if (config->ranks == 2)
writel(0x0303, &mctl_ctl->odtmap);
else
writel(0x0201, &mctl_ctl->odtmap);
switch (para->type) {
case SUNXI_DRAM_TYPE_DDR3:
reg_val = 0x06000400;
break;
case SUNXI_DRAM_TYPE_LPDDR3:
reg_val = 0x09020400;
break;
case SUNXI_DRAM_TYPE_LPDDR4:
reg_val = 0x04000400;
break;
case SUNXI_DRAM_TYPE_DDR4:
default:
panic("This DRAM setup is currently not supported.\n");
};
writel(reg_val, &mctl_ctl->odtcfg);
writel(reg_val, &mctl_ctl->unk_0x2240);
writel(reg_val, &mctl_ctl->unk_0x3240);
writel(reg_val, &mctl_ctl->unk_0x4240);
writel(BIT(31), &mctl_com->cr);
mctl_set_addrmap(config);
mctl_set_timing_params(para);
writel(0, &mctl_ctl->pwrctl);
setbits_le32(&mctl_ctl->dfiupd[0], BIT(31) | BIT(30));
setbits_le32(&mctl_ctl->zqctl[0], BIT(31) | BIT(30));
setbits_le32(&mctl_ctl->unk_0x2180, BIT(31) | BIT(30));
setbits_le32(&mctl_ctl->unk_0x3180, BIT(31) | BIT(30));
setbits_le32(&mctl_ctl->unk_0x4180, BIT(31) | BIT(30));
if (para->type == SUNXI_DRAM_TYPE_LPDDR4)
setbits_le32(&mctl_ctl->dbictl, 0x1);
setbits_le32(&mctl_ctl->rfshctl3, BIT(0));
clrbits_le32(&mctl_ctl->dfimisc, BIT(0));
writel(0, &mctl_com->maer0);
writel(0, &mctl_com->maer1);
writel(0, &mctl_com->maer2);
writel(0x20, &mctl_ctl->pwrctl);
setbits_le32(&mctl_ctl->clken, BIT(8));
clrsetbits_le32(&mctl_com->unk_0x500, BIT(24), 0x300);
/* this write seems to enable PHY MMIO region */
setbits_le32(&mctl_com->unk_0x500, BIT(24));
if (!mctl_phy_init(para, config))
return false;
writel(0, &mctl_ctl->swctl);
clrbits_le32(&mctl_ctl->rfshctl3, BIT(0));
setbits_le32(&mctl_com->unk_0x014, BIT(31));
writel(0xffffffff, &mctl_com->maer0);
writel(0x7ff, &mctl_com->maer1);
writel(0xffff, &mctl_com->maer2);
writel(1, &mctl_ctl->swctl);
mctl_await_completion(&mctl_ctl->swstat, 1, 1);
return true;
}
static bool mctl_core_init(const struct dram_para *para,
const struct dram_config *config)
{
mctl_sys_init(para->clk);
return mctl_ctrl_init(para, config);
}
static void mctl_auto_detect_rank_width(const struct dram_para *para,
struct dram_config *config)
{
/* this is minimum size that it's supported */
config->cols = 8;
config->rows = 13;
/*
* Strategy here is to test most demanding combination first and least
* demanding last, otherwise HW might not be fully utilized. For
* example, half bus width and rank = 1 combination would also work
* on HW with full bus width and rank = 2, but only 1/4 RAM would be
* visible.
*/
debug("testing 32-bit width, rank = 2\n");
config->bus_full_width = 1;
config->ranks = 2;
if (mctl_core_init(para, config))
return;
debug("testing 32-bit width, rank = 1\n");
config->bus_full_width = 1;
config->ranks = 1;
if (mctl_core_init(para, config))
return;
debug("testing 16-bit width, rank = 2\n");
config->bus_full_width = 0;
config->ranks = 2;
if (mctl_core_init(para, config))
return;
debug("testing 16-bit width, rank = 1\n");
config->bus_full_width = 0;
config->ranks = 1;
if (mctl_core_init(para, config))
return;
panic("This DRAM setup is currently not supported.\n");
}
static void mctl_auto_detect_dram_size(const struct dram_para *para,
struct dram_config *config)
{
/* detect row address bits */
config->cols = 8;
config->rows = 18;
mctl_core_init(para, config);
for (config->rows = 13; config->rows < 18; config->rows++) {
/* 8 banks, 8 bit per byte and 16/32 bit width */
if (mctl_mem_matches((1 << (config->rows + config->cols +
4 + config->bus_full_width))))
break;
}
/* detect column address bits */
config->cols = 11;
mctl_core_init(para, config);
for (config->cols = 8; config->cols < 11; config->cols++) {
/* 8 bits per byte and 16/32 bit width */
if (mctl_mem_matches(1 << (config->cols + 1 +
config->bus_full_width)))
break;
}
}
static unsigned long mctl_calc_size(const struct dram_config *config)
{
u8 width = config->bus_full_width ? 4 : 2;
/* 8 banks */
return (1ULL << (config->cols + config->rows + 3)) * width * config->ranks;
}
static const struct dram_para para = {
.clk = CONFIG_DRAM_CLK,
#ifdef CONFIG_SUNXI_DRAM_H616_DDR3_1333
.type = SUNXI_DRAM_TYPE_DDR3,
#elif defined(CONFIG_SUNXI_DRAM_H616_LPDDR3)
.type = SUNXI_DRAM_TYPE_LPDDR3,
#elif defined(CONFIG_SUNXI_DRAM_H616_LPDDR4)
.type = SUNXI_DRAM_TYPE_LPDDR4,
#endif
.dx_odt = CONFIG_DRAM_SUN50I_H616_DX_ODT,
.dx_dri = CONFIG_DRAM_SUN50I_H616_DX_DRI,
.ca_dri = CONFIG_DRAM_SUN50I_H616_CA_DRI,
.odt_en = CONFIG_DRAM_SUN50I_H616_ODT_EN,
.tpr0 = CONFIG_DRAM_SUN50I_H616_TPR0,
.tpr2 = CONFIG_DRAM_SUN50I_H616_TPR2,
.tpr6 = CONFIG_DRAM_SUN50I_H616_TPR6,
.tpr10 = CONFIG_DRAM_SUN50I_H616_TPR10,
.tpr11 = CONFIG_DRAM_SUN50I_H616_TPR11,
.tpr12 = CONFIG_DRAM_SUN50I_H616_TPR12,
};
unsigned long sunxi_dram_init(void)
{
struct sunxi_prcm_reg *const prcm =
(struct sunxi_prcm_reg *)SUNXI_PRCM_BASE;
struct dram_config config;
unsigned long size;
setbits_le32(&prcm->res_cal_ctrl, BIT(8));
clrbits_le32(&prcm->ohms240, 0x3f);
mctl_auto_detect_rank_width(&para, &config);
mctl_auto_detect_dram_size(&para, &config);
mctl_core_init(&para, &config);
size = mctl_calc_size(&config);
mctl_set_master_priority();
return size;
};