| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright 2014-2015 Freescale Semiconductor, Inc. |
| */ |
| |
| #include <common.h> |
| #include <cpu_func.h> |
| #include <image.h> |
| #include <log.h> |
| #include <asm/cache.h> |
| #include <asm/global_data.h> |
| #include <asm/io.h> |
| #include <asm/ptrace.h> |
| #include <asm/system.h> |
| #include <asm/arch/mp.h> |
| #include <asm/arch/soc.h> |
| #include <linux/compat.h> |
| #include <linux/delay.h> |
| #include <linux/psci.h> |
| #include <malloc.h> |
| #include "cpu.h" |
| #include <asm/arch-fsl-layerscape/soc.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| void *get_spin_tbl_addr(void) |
| { |
| /* the spin table is at the beginning */ |
| return secondary_boot_code_start; |
| } |
| |
| void update_os_arch_secondary_cores(uint8_t os_arch) |
| { |
| u64 *table = get_spin_tbl_addr(); |
| int i; |
| |
| for (i = 1; i < CONFIG_MAX_CPUS; i++) { |
| if (os_arch == IH_ARCH_DEFAULT) |
| table[i * WORDS_PER_SPIN_TABLE_ENTRY + |
| SPIN_TABLE_ELEM_ARCH_COMP_IDX] = OS_ARCH_SAME; |
| else |
| table[i * WORDS_PER_SPIN_TABLE_ENTRY + |
| SPIN_TABLE_ELEM_ARCH_COMP_IDX] = OS_ARCH_DIFF; |
| } |
| } |
| |
| #ifdef CONFIG_FSL_LSCH3 |
| static void wake_secondary_core_n(int cluster, int core, int cluster_cores) |
| { |
| struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| struct ccsr_reset __iomem *rst = (void *)(CONFIG_SYS_FSL_RST_ADDR); |
| u32 mpidr = 0; |
| |
| mpidr = ((cluster << 8) | core); |
| /* |
| * mpidr_el1 register value of core which needs to be released |
| * is written to scratchrw[6] register |
| */ |
| gur_out32(&gur->scratchrw[6], mpidr); |
| asm volatile("dsb st" : : : "memory"); |
| rst->brrl |= 1 << ((cluster * cluster_cores) + core); |
| asm volatile("dsb st" : : : "memory"); |
| /* |
| * scratchrw[6] register value is polled |
| * when the value becomes zero, this means that this core is up |
| * and running, next core can be released now |
| */ |
| while (gur_in32(&gur->scratchrw[6]) != 0) |
| ; |
| } |
| #endif |
| |
| int fsl_layerscape_wake_seconday_cores(void) |
| { |
| struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| #ifdef CONFIG_FSL_LSCH3 |
| struct ccsr_reset __iomem *rst = (void *)(CONFIG_SYS_FSL_RST_ADDR); |
| u32 svr, ver, cluster, type; |
| int j = 0, cluster_cores = 0; |
| #elif defined(CONFIG_FSL_LSCH2) |
| struct ccsr_scfg __iomem *scfg = (void *)(CONFIG_SYS_FSL_SCFG_ADDR); |
| #endif |
| u32 cores, cpu_up_mask = 1; |
| int i, timeout = 10; |
| u64 *table; |
| #ifdef CONFIG_EFI_LOADER |
| void *reloc_addr; |
| #endif |
| |
| #ifdef COUNTER_FREQUENCY_REAL |
| /* update for secondary cores */ |
| __real_cntfrq = COUNTER_FREQUENCY_REAL; |
| flush_dcache_range((unsigned long)&__real_cntfrq, |
| (unsigned long)&__real_cntfrq + 8); |
| #endif |
| |
| #ifdef CONFIG_EFI_LOADER |
| /* |
| * EFI will reserve 64kb for its runtime services. This will probably |
| * overlap with our spin table code, which is why we have to relocate |
| * it. |
| * Keep this after the __real_cntfrq update, so we have it when we |
| * copy the complete section here. |
| */ |
| reloc_addr = memalign(PAGE_SIZE, |
| round_up(secondary_boot_code_size, PAGE_SIZE)); |
| if (reloc_addr) { |
| debug("Relocating spin table from %p to %p (size %lx)\n", |
| secondary_boot_code_start, reloc_addr, |
| secondary_boot_code_size); |
| memcpy(reloc_addr, secondary_boot_code_start, |
| secondary_boot_code_size); |
| flush_dcache_range((unsigned long)reloc_addr, |
| (unsigned long)reloc_addr + |
| secondary_boot_code_size); |
| |
| /* set new entry point for secondary cores */ |
| secondary_boot_addr += reloc_addr - |
| secondary_boot_code_start; |
| flush_dcache_range((unsigned long)&secondary_boot_addr, |
| (unsigned long)&secondary_boot_addr + 8); |
| |
| /* this will be used to reserve the memory */ |
| secondary_boot_code_start = reloc_addr; |
| } |
| #endif |
| |
| cores = cpu_mask(); |
| /* Clear spin table so that secondary processors |
| * observe the correct value after waking up from wfe. |
| */ |
| table = get_spin_tbl_addr(); |
| memset(table, 0, CONFIG_MAX_CPUS*SPIN_TABLE_ELEM_SIZE); |
| flush_dcache_range((unsigned long)table, |
| (unsigned long)table + |
| (CONFIG_MAX_CPUS*SPIN_TABLE_ELEM_SIZE)); |
| |
| debug("Waking secondary cores to start from %lx\n", gd->relocaddr); |
| |
| #ifdef CONFIG_FSL_LSCH3 |
| gur_out32(&gur->bootlocptrh, (u32)(gd->relocaddr >> 32)); |
| gur_out32(&gur->bootlocptrl, (u32)gd->relocaddr); |
| |
| svr = gur_in32(&gur->svr); |
| ver = SVR_SOC_VER(svr); |
| if (ver == SVR_LS2080A || ver == SVR_LS2085A) { |
| gur_out32(&gur->scratchrw[6], 1); |
| asm volatile("dsb st" : : : "memory"); |
| rst->brrl = cores; |
| asm volatile("dsb st" : : : "memory"); |
| } else { |
| /* |
| * Release the cores out of reset one-at-a-time to avoid |
| * power spikes |
| */ |
| i = 0; |
| cluster = in_le32(&gur->tp_cluster[i].lower); |
| for (j = 0; j < TP_INIT_PER_CLUSTER; j++) { |
| type = initiator_type(cluster, j); |
| if (type && |
| TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM) |
| cluster_cores++; |
| } |
| |
| do { |
| cluster = in_le32(&gur->tp_cluster[i].lower); |
| for (j = 0; j < TP_INIT_PER_CLUSTER; j++) { |
| type = initiator_type(cluster, j); |
| if (type && |
| TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM) |
| wake_secondary_core_n(i, j, |
| cluster_cores); |
| } |
| i++; |
| } while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC); |
| } |
| #elif defined(CONFIG_FSL_LSCH2) |
| scfg_out32(&scfg->scratchrw[0], (u32)(gd->relocaddr >> 32)); |
| scfg_out32(&scfg->scratchrw[1], (u32)gd->relocaddr); |
| asm volatile("dsb st" : : : "memory"); |
| gur_out32(&gur->brrl, cores); |
| asm volatile("dsb st" : : : "memory"); |
| |
| /* Bootup online cores */ |
| scfg_out32(&scfg->corebcr, cores); |
| #endif |
| /* This is needed as a precautionary measure. |
| * If some code before this has accidentally released the secondary |
| * cores then the pre-bootloader code will trap them in a "wfe" unless |
| * the scratchrw[6] is set. In this case we need a sev here to get these |
| * cores moving again. |
| */ |
| asm volatile("sev"); |
| |
| while (timeout--) { |
| flush_dcache_range((unsigned long)table, (unsigned long)table + |
| CONFIG_MAX_CPUS * 64); |
| for (i = 1; i < CONFIG_MAX_CPUS; i++) { |
| if (table[i * WORDS_PER_SPIN_TABLE_ENTRY + |
| SPIN_TABLE_ELEM_STATUS_IDX]) |
| cpu_up_mask |= 1 << i; |
| } |
| if (hweight32(cpu_up_mask) == hweight32(cores)) |
| break; |
| udelay(10); |
| } |
| if (timeout <= 0) { |
| printf("CPU: Failed to bring up some cores (mask 0x%x)\n", |
| cores ^ cpu_up_mask); |
| return 1; |
| } |
| printf("CPU: %d cores online\n", hweight32(cores)); |
| |
| return 0; |
| } |
| |
| int is_core_valid(unsigned int core) |
| { |
| return !!((1 << core) & cpu_mask()); |
| } |
| |
| static int is_pos_valid(unsigned int pos) |
| { |
| return !!((1 << pos) & cpu_pos_mask()); |
| } |
| |
| int is_core_online(u64 cpu_id) |
| { |
| u64 *table = get_spin_tbl_addr(); |
| int pos = id_to_core(cpu_id); |
| table += pos * WORDS_PER_SPIN_TABLE_ENTRY; |
| return table[SPIN_TABLE_ELEM_STATUS_IDX] == 1; |
| } |
| |
| int cpu_reset(u32 nr) |
| { |
| puts("Feature is not implemented.\n"); |
| |
| return 0; |
| } |
| |
| int cpu_disable(u32 nr) |
| { |
| puts("Feature is not implemented.\n"); |
| |
| return 0; |
| } |
| |
| static int core_to_pos(int nr) |
| { |
| u32 cores = cpu_pos_mask(); |
| int i, count = 0; |
| |
| if (nr == 0) { |
| return 0; |
| } else if (nr >= hweight32(cores)) { |
| puts("Not a valid core number.\n"); |
| return -1; |
| } |
| |
| for (i = 1; i < 32; i++) { |
| if (is_pos_valid(i)) { |
| count++; |
| if (count == nr) |
| break; |
| } |
| } |
| |
| if (count != nr) |
| return -1; |
| |
| return i; |
| } |
| |
| int cpu_status(u32 nr) |
| { |
| u64 *table = get_spin_tbl_addr(); |
| int pos; |
| |
| if (nr == 0) { |
| printf("table base @ 0x%p\n", table); |
| } else { |
| pos = core_to_pos(nr); |
| if (pos < 0) |
| return -1; |
| table += pos * WORDS_PER_SPIN_TABLE_ENTRY; |
| printf("table @ 0x%p\n", table); |
| printf(" addr - 0x%016llx\n", |
| table[SPIN_TABLE_ELEM_ENTRY_ADDR_IDX]); |
| printf(" status - 0x%016llx\n", |
| table[SPIN_TABLE_ELEM_STATUS_IDX]); |
| printf(" lpid - 0x%016llx\n", |
| table[SPIN_TABLE_ELEM_LPID_IDX]); |
| } |
| |
| return 0; |
| } |
| |
| int cpu_release(u32 nr, int argc, char *const argv[]) |
| { |
| u64 boot_addr; |
| u64 *table = get_spin_tbl_addr(); |
| int pos; |
| |
| boot_addr = simple_strtoull(argv[0], NULL, 16); |
| |
| if (check_psci()) { |
| /* SPIN Table is used */ |
| pos = core_to_pos(nr); |
| if (pos <= 0) |
| return -1; |
| |
| table += pos * WORDS_PER_SPIN_TABLE_ENTRY; |
| table[SPIN_TABLE_ELEM_ENTRY_ADDR_IDX] = boot_addr; |
| flush_dcache_range((unsigned long)table, |
| (unsigned long)table + SPIN_TABLE_ELEM_SIZE); |
| asm volatile("dsb st"); |
| |
| /* |
| * The secondary CPUs polling the spin-table above for a non-zero |
| * value. To save power "wfe" is called. Thus call "sev" here to |
| * wake the CPUs and let them check the spin-table again (see |
| * slave_cpu loop in lowlevel.S) |
| */ |
| asm volatile("sev"); |
| } else { |
| /* Use PSCI to kick the core */ |
| struct pt_regs regs; |
| |
| printf("begin to kick cpu core #%d to address %llx\n", |
| nr, boot_addr); |
| regs.regs[0] = PSCI_0_2_FN64_CPU_ON; |
| regs.regs[1] = nr; |
| regs.regs[2] = boot_addr; |
| regs.regs[3] = 0; |
| smc_call(®s); |
| if (regs.regs[0]) |
| return -1; |
| } |
| |
| return 0; |
| } |