| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * sun50i H6 platform dram controller init |
| * |
| * (C) Copyright 2017 Icenowy Zheng <icenowy@aosc.io> |
| * |
| */ |
| #include <common.h> |
| #include <init.h> |
| #include <log.h> |
| #include <asm/io.h> |
| #include <asm/arch/clock.h> |
| #include <asm/arch/dram.h> |
| #include <asm/arch/cpu.h> |
| #include <asm/arch/prcm.h> |
| #include <linux/bitops.h> |
| #include <linux/delay.h> |
| |
| /* |
| * The DRAM controller structure on H6 is similar to the ones on A23/A80: |
| * they all contains 3 parts, COM, CTL and PHY. (As a note on A33/A83T/H3/A64 |
| * /H5/R40 CTL and PHY is composed). |
| * |
| * COM is allwinner-specific. On H6, the address mapping function is moved |
| * from COM to CTL (with the standard ADDRMAP registers on DesignWare memory |
| * controller). |
| * |
| * CTL (controller) and PHY is from DesignWare. |
| * |
| * The CTL part is a bit similar to the one on A23/A80 (because they all |
| * originate from DesignWare), but gets more registers added. |
| * |
| * The PHY part is quite new, not seen in any previous Allwinner SoCs, and |
| * not seen on other SoCs in U-Boot. The only SoC that is also known to have |
| * similar PHY is ZynqMP. |
| */ |
| |
| static void mctl_sys_init(struct dram_para *para); |
| static void mctl_com_init(struct dram_para *para); |
| static bool mctl_channel_init(struct dram_para *para); |
| |
| static bool mctl_core_init(struct dram_para *para) |
| { |
| mctl_sys_init(para); |
| mctl_com_init(para); |
| switch (para->type) { |
| case SUNXI_DRAM_TYPE_LPDDR3: |
| case SUNXI_DRAM_TYPE_DDR3: |
| mctl_set_timing_params(para); |
| break; |
| default: |
| panic("Unsupported DRAM type!"); |
| }; |
| return mctl_channel_init(para); |
| } |
| |
| /* PHY initialisation */ |
| static void mctl_phy_pir_init(u32 val) |
| { |
| struct sunxi_mctl_phy_reg * const mctl_phy = |
| (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE; |
| |
| writel(val, &mctl_phy->pir); |
| writel(val | BIT(0), &mctl_phy->pir); /* Start initialisation. */ |
| mctl_await_completion(&mctl_phy->pgsr[0], BIT(0), BIT(0)); |
| } |
| |
| enum { |
| MBUS_PORT_CPU = 0, |
| MBUS_PORT_GPU = 1, |
| MBUS_PORT_MAHB = 2, |
| MBUS_PORT_DMA = 3, |
| MBUS_PORT_VE = 4, |
| MBUS_PORT_CE = 5, |
| MBUS_PORT_TSC0 = 6, |
| MBUS_PORT_NDFC0 = 8, |
| MBUS_PORT_CSI0 = 11, |
| MBUS_PORT_DI0 = 14, |
| MBUS_PORT_DI1 = 15, |
| MBUS_PORT_DE300 = 16, |
| MBUS_PORT_IOMMU = 25, |
| MBUS_PORT_VE2 = 26, |
| MBUS_PORT_USB3 = 37, |
| MBUS_PORT_PCIE = 38, |
| MBUS_PORT_VP9 = 39, |
| MBUS_PORT_HDCP2 = 40, |
| }; |
| |
| enum { |
| MBUS_QOS_LOWEST = 0, |
| MBUS_QOS_LOW, |
| MBUS_QOS_HIGH, |
| MBUS_QOS_HIGHEST |
| }; |
| |
| static void mbus_configure_port(u8 port, |
| bool bwlimit, |
| bool priority, |
| u8 qos, |
| u8 waittime, |
| u8 acs, |
| u16 bwl0, |
| u16 bwl1, |
| u16 bwl2) |
| { |
| struct sunxi_mctl_com_reg * const mctl_com = |
| (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE; |
| |
| const u32 cfg0 = ( (bwlimit ? (1 << 0) : 0) |
| | (priority ? (1 << 1) : 0) |
| | ((qos & 0x3) << 2) |
| | ((waittime & 0xf) << 4) |
| | ((acs & 0xff) << 8) |
| | (bwl0 << 16) ); |
| const u32 cfg1 = ((u32)bwl2 << 16) | (bwl1 & 0xffff); |
| |
| debug("MBUS port %d cfg0 %08x cfg1 %08x\n", port, cfg0, cfg1); |
| writel(cfg0, &mctl_com->master[port].cfg0); |
| writel(cfg1, &mctl_com->master[port].cfg1); |
| } |
| |
| #define MBUS_CONF(port, bwlimit, qos, acs, bwl0, bwl1, bwl2) \ |
| mbus_configure_port(MBUS_PORT_ ## port, bwlimit, false, \ |
| MBUS_QOS_ ## qos, 0, acs, bwl0, bwl1, bwl2) |
| |
| static void mctl_set_master_priority(void) |
| { |
| struct sunxi_mctl_com_reg * const mctl_com = |
| (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE; |
| |
| /* enable bandwidth limit windows and set windows size 1us */ |
| writel(399, &mctl_com->tmr); |
| writel(BIT(16), &mctl_com->bwcr); |
| |
| MBUS_CONF( CPU, true, HIGHEST, 0, 256, 128, 100); |
| MBUS_CONF( GPU, true, HIGH, 0, 1536, 1400, 256); |
| MBUS_CONF( MAHB, true, HIGHEST, 0, 512, 256, 96); |
| MBUS_CONF( DMA, true, HIGH, 0, 256, 100, 80); |
| MBUS_CONF( VE, true, HIGH, 2, 8192, 5500, 5000); |
| MBUS_CONF( CE, true, HIGH, 2, 100, 64, 32); |
| MBUS_CONF( TSC0, true, HIGH, 2, 100, 64, 32); |
| MBUS_CONF(NDFC0, true, HIGH, 0, 256, 128, 64); |
| MBUS_CONF( CSI0, true, HIGH, 0, 256, 128, 100); |
| MBUS_CONF( DI0, true, HIGH, 0, 1024, 256, 64); |
| MBUS_CONF(DE300, true, HIGHEST, 6, 8192, 2800, 2400); |
| MBUS_CONF(IOMMU, true, HIGHEST, 0, 100, 64, 32); |
| MBUS_CONF( VE2, true, HIGH, 2, 8192, 5500, 5000); |
| MBUS_CONF( USB3, true, HIGH, 0, 256, 128, 64); |
| MBUS_CONF( PCIE, true, HIGH, 2, 100, 64, 32); |
| MBUS_CONF( VP9, true, HIGH, 2, 8192, 5500, 5000); |
| MBUS_CONF(HDCP2, true, HIGH, 2, 100, 64, 32); |
| } |
| |
| static void mctl_sys_init(struct dram_para *para) |
| { |
| struct sunxi_ccm_reg * const ccm = |
| (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; |
| struct sunxi_mctl_com_reg * const mctl_com = |
| (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE; |
| struct sunxi_mctl_ctl_reg * const mctl_ctl = |
| (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE; |
| |
| /* Put all DRAM-related blocks to reset state */ |
| clrbits_le32(&ccm->mbus_cfg, MBUS_ENABLE | MBUS_RESET); |
| clrbits_le32(&ccm->dram_gate_reset, BIT(0)); |
| udelay(5); |
| writel(0, &ccm->dram_gate_reset); |
| clrbits_le32(&ccm->pll5_cfg, CCM_PLL5_CTRL_EN); |
| clrbits_le32(&ccm->dram_clk_cfg, DRAM_MOD_RESET); |
| |
| udelay(5); |
| |
| /* Set PLL5 rate to doubled DRAM clock rate */ |
| writel(CCM_PLL5_CTRL_EN | CCM_PLL5_LOCK_EN | |
| CCM_PLL5_CTRL_N(para->clk * 2 / 24), &ccm->pll5_cfg); |
| mctl_await_completion(&ccm->pll5_cfg, CCM_PLL5_LOCK, CCM_PLL5_LOCK); |
| |
| /* Configure DRAM mod clock */ |
| writel(DRAM_CLK_SRC_PLL5, &ccm->dram_clk_cfg); |
| setbits_le32(&ccm->dram_clk_cfg, DRAM_CLK_UPDATE); |
| writel(BIT(RESET_SHIFT), &ccm->dram_gate_reset); |
| udelay(5); |
| setbits_le32(&ccm->dram_gate_reset, BIT(0)); |
| |
| /* Disable all channels */ |
| writel(0, &mctl_com->maer0); |
| writel(0, &mctl_com->maer1); |
| writel(0, &mctl_com->maer2); |
| |
| /* Configure MBUS and enable DRAM mod reset */ |
| setbits_le32(&ccm->mbus_cfg, MBUS_RESET); |
| setbits_le32(&ccm->mbus_cfg, MBUS_ENABLE); |
| setbits_le32(&ccm->dram_clk_cfg, DRAM_MOD_RESET); |
| udelay(5); |
| |
| /* Unknown hack from the BSP, which enables access of mctl_ctl regs */ |
| writel(0x8000, &mctl_ctl->unk_0x00c); |
| } |
| |
| static void mctl_set_addrmap(struct dram_para *para) |
| { |
| struct sunxi_mctl_ctl_reg * const mctl_ctl = |
| (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE; |
| u8 cols = para->cols; |
| u8 rows = para->rows; |
| u8 ranks = para->ranks; |
| |
| if (!para->bus_full_width) |
| cols -= 1; |
| |
| /* Ranks */ |
| if (ranks == 2) |
| mctl_ctl->addrmap[0] = rows + cols - 3; |
| else |
| mctl_ctl->addrmap[0] = 0x1F; |
| |
| /* Banks, hardcoded to 8 banks now */ |
| mctl_ctl->addrmap[1] = (cols - 2) | (cols - 2) << 8 | (cols - 2) << 16; |
| |
| /* Columns */ |
| mctl_ctl->addrmap[2] = 0; |
| switch (cols) { |
| case 7: |
| mctl_ctl->addrmap[3] = 0x1F1F1F00; |
| mctl_ctl->addrmap[4] = 0x1F1F; |
| break; |
| case 8: |
| mctl_ctl->addrmap[3] = 0x1F1F0000; |
| mctl_ctl->addrmap[4] = 0x1F1F; |
| break; |
| case 9: |
| mctl_ctl->addrmap[3] = 0x1F000000; |
| mctl_ctl->addrmap[4] = 0x1F1F; |
| break; |
| case 10: |
| mctl_ctl->addrmap[3] = 0; |
| mctl_ctl->addrmap[4] = 0x1F1F; |
| break; |
| case 11: |
| mctl_ctl->addrmap[3] = 0; |
| mctl_ctl->addrmap[4] = 0x1F00; |
| break; |
| case 12: |
| mctl_ctl->addrmap[3] = 0; |
| mctl_ctl->addrmap[4] = 0; |
| break; |
| default: |
| panic("Unsupported DRAM configuration: column number invalid\n"); |
| } |
| |
| /* Rows */ |
| mctl_ctl->addrmap[5] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24); |
| switch (rows) { |
| case 13: |
| mctl_ctl->addrmap[6] = (cols - 3) | 0x0F0F0F00; |
| mctl_ctl->addrmap[7] = 0x0F0F; |
| break; |
| case 14: |
| mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | 0x0F0F0000; |
| mctl_ctl->addrmap[7] = 0x0F0F; |
| break; |
| case 15: |
| mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | 0x0F000000; |
| mctl_ctl->addrmap[7] = 0x0F0F; |
| break; |
| case 16: |
| mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24); |
| mctl_ctl->addrmap[7] = 0x0F0F; |
| break; |
| case 17: |
| mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24); |
| mctl_ctl->addrmap[7] = (cols - 3) | 0x0F00; |
| break; |
| case 18: |
| mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24); |
| mctl_ctl->addrmap[7] = (cols - 3) | ((cols - 3) << 8); |
| break; |
| default: |
| panic("Unsupported DRAM configuration: row number invalid\n"); |
| } |
| |
| /* Bank groups, DDR4 only */ |
| mctl_ctl->addrmap[8] = 0x3F3F; |
| } |
| |
| static void mctl_com_init(struct dram_para *para) |
| { |
| struct sunxi_mctl_com_reg * const mctl_com = |
| (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE; |
| struct sunxi_mctl_ctl_reg * const mctl_ctl = |
| (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE; |
| struct sunxi_mctl_phy_reg * const mctl_phy = |
| (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE; |
| u32 reg_val, tmp; |
| |
| mctl_set_addrmap(para); |
| |
| setbits_le32(&mctl_com->cr, BIT(31)); |
| |
| /* The bonding ID seems to be always 7. */ |
| if (readl(SUNXI_SIDC_BASE + 0x100) == 7) /* bonding ID */ |
| clrbits_le32(&mctl_com->cr, BIT(27)); |
| else if (readl(SUNXI_SIDC_BASE + 0x100) == 3) |
| setbits_le32(&mctl_com->cr, BIT(27)); |
| |
| if (para->clk > 408) |
| reg_val = 0xf00; |
| else if (para->clk > 246) |
| reg_val = 0x1f00; |
| else |
| reg_val = 0x3f00; |
| clrsetbits_le32(&mctl_com->unk_0x008, 0x3f00, reg_val); |
| |
| /* TODO: DDR4 */ |
| reg_val = MSTR_BURST_LENGTH(8) | MSTR_ACTIVE_RANKS(para->ranks); |
| if (para->type == SUNXI_DRAM_TYPE_LPDDR3) |
| reg_val |= MSTR_DEVICETYPE_LPDDR3; |
| if (para->type == SUNXI_DRAM_TYPE_DDR3) |
| reg_val |= MSTR_DEVICETYPE_DDR3 | MSTR_2TMODE; |
| if (para->bus_full_width) |
| reg_val |= MSTR_BUSWIDTH_FULL; |
| else |
| reg_val |= MSTR_BUSWIDTH_HALF; |
| writel(reg_val | BIT(31), &mctl_ctl->mstr); |
| |
| if (para->type == SUNXI_DRAM_TYPE_LPDDR3) |
| reg_val = DCR_LPDDR3 | DCR_DDR8BANK; |
| if (para->type == SUNXI_DRAM_TYPE_DDR3) |
| reg_val = DCR_DDR3 | DCR_DDR8BANK | DCR_DDR2T; |
| writel(reg_val | 0x400, &mctl_phy->dcr); |
| |
| if (para->ranks == 2) |
| writel(0x0303, &mctl_ctl->odtmap); |
| else |
| writel(0x0201, &mctl_ctl->odtmap); |
| |
| /* TODO: DDR4 */ |
| if (para->type == SUNXI_DRAM_TYPE_LPDDR3) { |
| tmp = para->clk * 7 / 2000; |
| reg_val = 0x0400; |
| reg_val |= (tmp + 7) << 24; |
| reg_val |= (((para->clk < 400) ? 3 : 4) - tmp) << 16; |
| } else if (para->type == SUNXI_DRAM_TYPE_DDR3) { |
| reg_val = 0x06000400; /* TODO?: Use CL - CWL value in [7:0] */ |
| } else { |
| panic("Only (LP)DDR3 supported (type = %d)\n", para->type); |
| } |
| writel(reg_val, &mctl_ctl->odtcfg); |
| |
| if (!para->bus_full_width) { |
| writel(0x0, &mctl_phy->dx[2].gcr[0]); |
| writel(0x0, &mctl_phy->dx[3].gcr[0]); |
| } |
| } |
| |
| static void mctl_bit_delay_set(struct dram_para *para) |
| { |
| struct sunxi_mctl_phy_reg * const mctl_phy = |
| (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE; |
| int i, j; |
| u32 val; |
| |
| for (i = 0; i < 4; i++) { |
| val = readl(&mctl_phy->dx[i].bdlr0); |
| for (j = 0; j < 4; j++) |
| val += para->dx_write_delays[i][j] << (j * 8); |
| writel(val, &mctl_phy->dx[i].bdlr0); |
| |
| val = readl(&mctl_phy->dx[i].bdlr1); |
| for (j = 0; j < 4; j++) |
| val += para->dx_write_delays[i][j + 4] << (j * 8); |
| writel(val, &mctl_phy->dx[i].bdlr1); |
| |
| val = readl(&mctl_phy->dx[i].bdlr2); |
| for (j = 0; j < 4; j++) |
| val += para->dx_write_delays[i][j + 8] << (j * 8); |
| writel(val, &mctl_phy->dx[i].bdlr2); |
| } |
| clrbits_le32(&mctl_phy->pgcr[0], BIT(26)); |
| |
| for (i = 0; i < 4; i++) { |
| val = readl(&mctl_phy->dx[i].bdlr3); |
| for (j = 0; j < 4; j++) |
| val += para->dx_read_delays[i][j] << (j * 8); |
| writel(val, &mctl_phy->dx[i].bdlr3); |
| |
| val = readl(&mctl_phy->dx[i].bdlr4); |
| for (j = 0; j < 4; j++) |
| val += para->dx_read_delays[i][j + 4] << (j * 8); |
| writel(val, &mctl_phy->dx[i].bdlr4); |
| |
| val = readl(&mctl_phy->dx[i].bdlr5); |
| for (j = 0; j < 4; j++) |
| val += para->dx_read_delays[i][j + 8] << (j * 8); |
| writel(val, &mctl_phy->dx[i].bdlr5); |
| |
| val = readl(&mctl_phy->dx[i].bdlr6); |
| val += (para->dx_read_delays[i][12] << 8) | |
| (para->dx_read_delays[i][13] << 16); |
| writel(val, &mctl_phy->dx[i].bdlr6); |
| } |
| setbits_le32(&mctl_phy->pgcr[0], BIT(26)); |
| udelay(1); |
| |
| if (para->type != SUNXI_DRAM_TYPE_LPDDR3) |
| return; |
| |
| for (i = 1; i < 14; i++) { |
| val = readl(&mctl_phy->acbdlr[i]); |
| val += 0x0a0a0a0a; |
| writel(val, &mctl_phy->acbdlr[i]); |
| } |
| } |
| |
| static bool mctl_channel_init(struct dram_para *para) |
| { |
| struct sunxi_mctl_com_reg * const mctl_com = |
| (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE; |
| struct sunxi_mctl_ctl_reg * const mctl_ctl = |
| (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE; |
| struct sunxi_mctl_phy_reg * const mctl_phy = |
| (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE; |
| int i; |
| u32 val; |
| |
| setbits_le32(&mctl_ctl->dfiupd[0], BIT(31) | BIT(30)); |
| setbits_le32(&mctl_ctl->zqctl[0], BIT(31) | BIT(30)); |
| writel(0x2f05, &mctl_ctl->sched[0]); |
| setbits_le32(&mctl_ctl->rfshctl3, BIT(0)); |
| setbits_le32(&mctl_ctl->dfimisc, BIT(0)); |
| setbits_le32(&mctl_ctl->unk_0x00c, BIT(8)); |
| clrsetbits_le32(&mctl_phy->pgcr[1], 0x180, 0xc0); |
| /* TODO: non-LPDDR3 types */ |
| clrsetbits_le32(&mctl_phy->pgcr[2], GENMASK(17, 0), ns_to_t(7800)); |
| clrbits_le32(&mctl_phy->pgcr[6], BIT(0)); |
| clrsetbits_le32(&mctl_phy->dxccr, 0xee0, 0x220); |
| /* TODO: VT compensation */ |
| clrsetbits_le32(&mctl_phy->dsgcr, BIT(0), 0x440060); |
| clrbits_le32(&mctl_phy->vtcr[1], BIT(1)); |
| |
| for (i = 0; i < 4; i++) |
| clrsetbits_le32(&mctl_phy->dx[i].gcr[0], 0xe00, 0x800); |
| for (i = 0; i < 4; i++) |
| clrsetbits_le32(&mctl_phy->dx[i].gcr[2], 0xffff, 0x5555); |
| for (i = 0; i < 4; i++) |
| clrsetbits_le32(&mctl_phy->dx[i].gcr[3], 0x3030, 0x1010); |
| |
| udelay(100); |
| |
| if (para->ranks == 2) |
| setbits_le32(&mctl_phy->dtcr[1], 0x30000); |
| else |
| clrsetbits_le32(&mctl_phy->dtcr[1], 0x30000, 0x10000); |
| |
| if (sunxi_dram_is_lpddr(para->type)) |
| clrbits_le32(&mctl_phy->dtcr[1], BIT(1)); |
| if (para->ranks == 2) { |
| writel(0x00010001, &mctl_phy->rankidr); |
| writel(0x20000, &mctl_phy->odtcr); |
| } else { |
| writel(0x0, &mctl_phy->rankidr); |
| writel(0x10000, &mctl_phy->odtcr); |
| } |
| |
| /* set bits [3:0] to 1? 0 not valid in ZynqMP d/s */ |
| if (para->type == SUNXI_DRAM_TYPE_LPDDR3) |
| clrsetbits_le32(&mctl_phy->dtcr[0], 0xF0000000, 0x10000040); |
| else |
| clrsetbits_le32(&mctl_phy->dtcr[0], 0xF0000000, 0x10000000); |
| if (para->clk <= 792) { |
| if (para->clk <= 672) { |
| if (para->clk <= 600) |
| val = 0x300; |
| else |
| val = 0x400; |
| } else { |
| val = 0x500; |
| } |
| } else { |
| val = 0x600; |
| } |
| /* FIXME: NOT REVIEWED YET */ |
| clrsetbits_le32(&mctl_phy->zq[0].zqcr, 0x700, val); |
| clrsetbits_le32(&mctl_phy->zq[0].zqpr[0], 0xff, |
| CONFIG_DRAM_ZQ & 0xff); |
| clrbits_le32(&mctl_phy->zq[0].zqor[0], 0xfffff); |
| setbits_le32(&mctl_phy->zq[0].zqor[0], (CONFIG_DRAM_ZQ >> 8) & 0xff); |
| setbits_le32(&mctl_phy->zq[0].zqor[0], (CONFIG_DRAM_ZQ & 0xf00) - 0x100); |
| setbits_le32(&mctl_phy->zq[0].zqor[0], (CONFIG_DRAM_ZQ & 0xff00) << 4); |
| clrbits_le32(&mctl_phy->zq[1].zqpr[0], 0xfffff); |
| setbits_le32(&mctl_phy->zq[1].zqpr[0], (CONFIG_DRAM_ZQ >> 16) & 0xff); |
| setbits_le32(&mctl_phy->zq[1].zqpr[0], ((CONFIG_DRAM_ZQ >> 8) & 0xf00) - 0x100); |
| setbits_le32(&mctl_phy->zq[1].zqpr[0], (CONFIG_DRAM_ZQ & 0xff0000) >> 4); |
| if (para->type == SUNXI_DRAM_TYPE_LPDDR3) { |
| for (i = 1; i < 14; i++) |
| writel(0x06060606, &mctl_phy->acbdlr[i]); |
| } |
| |
| val = PIR_ZCAL | PIR_DCAL | PIR_PHYRST | PIR_DRAMINIT | PIR_QSGATE | |
| PIR_RDDSKW | PIR_WRDSKW | PIR_RDEYE | PIR_WREYE; |
| if (para->type == SUNXI_DRAM_TYPE_DDR3) |
| val |= PIR_DRAMRST | PIR_WL; |
| mctl_phy_pir_init(val); |
| |
| /* TODO: DDR4 types ? */ |
| for (i = 0; i < 4; i++) |
| writel(0x00000909, &mctl_phy->dx[i].gcr[5]); |
| |
| for (i = 0; i < 4; i++) { |
| if (IS_ENABLED(CONFIG_DRAM_ODT_EN)) |
| val = 0x0; |
| else |
| val = 0xaaaa; |
| clrsetbits_le32(&mctl_phy->dx[i].gcr[2], 0xffff, val); |
| |
| if (IS_ENABLED(CONFIG_DRAM_ODT_EN)) |
| val = 0x0; |
| else |
| val = 0x2020; |
| clrsetbits_le32(&mctl_phy->dx[i].gcr[3], 0x3030, val); |
| } |
| |
| mctl_bit_delay_set(para); |
| udelay(1); |
| |
| setbits_le32(&mctl_phy->pgcr[6], BIT(0)); |
| clrbits_le32(&mctl_phy->pgcr[6], 0xfff8); |
| for (i = 0; i < 4; i++) |
| clrbits_le32(&mctl_phy->dx[i].gcr[3], ~0x3ffff); |
| udelay(10); |
| |
| if (readl(&mctl_phy->pgsr[0]) & 0xff00000) { |
| /* Oops! There's something wrong! */ |
| debug("PLL = %x\n", readl(0x3001010)); |
| debug("DRAM PHY PGSR0 = %x\n", readl(&mctl_phy->pgsr[0])); |
| for (i = 0; i < 4; i++) |
| debug("DRAM PHY DX%dRSR0 = %x\n", i, readl(&mctl_phy->dx[i].rsr[0])); |
| debug("Error while initializing DRAM PHY!\n"); |
| |
| return false; |
| } |
| |
| if (sunxi_dram_is_lpddr(para->type)) |
| clrsetbits_le32(&mctl_phy->dsgcr, 0xc0, 0x40); |
| clrbits_le32(&mctl_phy->pgcr[1], 0x40); |
| clrbits_le32(&mctl_ctl->dfimisc, BIT(0)); |
| writel(1, &mctl_ctl->swctl); |
| mctl_await_completion(&mctl_ctl->swstat, 1, 1); |
| clrbits_le32(&mctl_ctl->rfshctl3, BIT(0)); |
| |
| setbits_le32(&mctl_com->unk_0x014, BIT(31)); |
| writel(0xffffffff, &mctl_com->maer0); |
| writel(0x7ff, &mctl_com->maer1); |
| writel(0xffff, &mctl_com->maer2); |
| |
| return true; |
| } |
| |
| static void mctl_auto_detect_rank_width(struct dram_para *para) |
| { |
| /* this is minimum size that it's supported */ |
| para->cols = 8; |
| para->rows = 13; |
| |
| /* |
| * Previous versions of this driver tried to auto detect the rank |
| * and width by looking at controller registers. However this proved |
| * to be not reliable, so this approach here is the more robust |
| * solution. Check the git history for details. |
| * |
| * Strategy here is to test most demanding combination first and least |
| * demanding last, otherwise HW might not be fully utilized. For |
| * example, half bus width and rank = 1 combination would also work |
| * on HW with full bus width and rank = 2, but only 1/4 RAM would be |
| * visible. |
| */ |
| |
| debug("testing 32-bit width, rank = 2\n"); |
| para->bus_full_width = 1; |
| para->ranks = 2; |
| if (mctl_core_init(para)) |
| return; |
| |
| debug("testing 32-bit width, rank = 1\n"); |
| para->bus_full_width = 1; |
| para->ranks = 1; |
| if (mctl_core_init(para)) |
| return; |
| |
| debug("testing 16-bit width, rank = 2\n"); |
| para->bus_full_width = 0; |
| para->ranks = 2; |
| if (mctl_core_init(para)) |
| return; |
| |
| debug("testing 16-bit width, rank = 1\n"); |
| para->bus_full_width = 0; |
| para->ranks = 1; |
| if (mctl_core_init(para)) |
| return; |
| |
| panic("This DRAM setup is currently not supported.\n"); |
| } |
| |
| static void mctl_auto_detect_dram_size(struct dram_para *para) |
| { |
| /* TODO: non-(LP)DDR3 */ |
| |
| /* detect row address bits */ |
| para->cols = 8; |
| para->rows = 18; |
| mctl_core_init(para); |
| |
| for (para->rows = 13; para->rows < 18; para->rows++) { |
| /* 8 banks, 8 bit per byte and 16/32 bit width */ |
| if (mctl_mem_matches((1 << (para->rows + para->cols + |
| 4 + para->bus_full_width)))) |
| break; |
| } |
| |
| /* detect column address bits */ |
| para->cols = 11; |
| mctl_core_init(para); |
| |
| for (para->cols = 8; para->cols < 11; para->cols++) { |
| /* 8 bits per byte and 16/32 bit width */ |
| if (mctl_mem_matches(1 << (para->cols + 1 + |
| para->bus_full_width))) |
| break; |
| } |
| } |
| |
| unsigned long mctl_calc_size(struct dram_para *para) |
| { |
| u8 width = para->bus_full_width ? 4 : 2; |
| |
| /* TODO: non-(LP)DDR3 */ |
| |
| /* 8 banks */ |
| return (1ULL << (para->cols + para->rows + 3)) * width * para->ranks; |
| } |
| |
| #define SUN50I_H6_LPDDR3_DX_WRITE_DELAYS \ |
| {{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \ |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \ |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0 }, \ |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }} |
| #define SUN50I_H6_LPDDR3_DX_READ_DELAYS \ |
| {{ 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0 }, \ |
| { 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0 }, \ |
| { 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0 }, \ |
| { 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0 }} |
| |
| #define SUN50I_H6_DDR3_DX_WRITE_DELAYS \ |
| {{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \ |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \ |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \ |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }} |
| #define SUN50I_H6_DDR3_DX_READ_DELAYS \ |
| {{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \ |
| { 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0 }, \ |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \ |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }} |
| |
| unsigned long sunxi_dram_init(void) |
| { |
| struct sunxi_mctl_com_reg * const mctl_com = |
| (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE; |
| struct sunxi_prcm_reg *const prcm = |
| (struct sunxi_prcm_reg *)SUNXI_PRCM_BASE; |
| struct dram_para para = { |
| .clk = CONFIG_DRAM_CLK, |
| #ifdef CONFIG_SUNXI_DRAM_H6_LPDDR3 |
| .type = SUNXI_DRAM_TYPE_LPDDR3, |
| .dx_read_delays = SUN50I_H6_LPDDR3_DX_READ_DELAYS, |
| .dx_write_delays = SUN50I_H6_LPDDR3_DX_WRITE_DELAYS, |
| #elif defined(CONFIG_SUNXI_DRAM_H6_DDR3_1333) |
| .type = SUNXI_DRAM_TYPE_DDR3, |
| .dx_read_delays = SUN50I_H6_DDR3_DX_READ_DELAYS, |
| .dx_write_delays = SUN50I_H6_DDR3_DX_WRITE_DELAYS, |
| #endif |
| }; |
| |
| unsigned long size; |
| |
| setbits_le32(&prcm->res_cal_ctrl, BIT(8)); |
| clrbits_le32(&prcm->ohms240, 0x3f); |
| |
| mctl_auto_detect_rank_width(¶); |
| mctl_auto_detect_dram_size(¶); |
| |
| mctl_core_init(¶); |
| |
| size = mctl_calc_size(¶); |
| |
| clrsetbits_le32(&mctl_com->cr, 0xf0, (size >> (10 + 10 + 4)) & 0xf0); |
| |
| mctl_set_master_priority(); |
| |
| return size; |
| }; |