blob: 0b4ea828f605ff5e1553cffa806848a3089f1442 [file] [log] [blame]
/*
* (C) Copyright 2015 Google, Inc
*
* SPDX-License-Identifier: GPL-2.0
*/
#include <common.h>
#include <clk-uclass.h>
#include <dm.h>
#include <errno.h>
#include <syscon.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/cru_rk3399.h>
#include <asm/arch/hardware.h>
#include <dm/lists.h>
#include <dt-bindings/clock/rk3399-cru.h>
DECLARE_GLOBAL_DATA_PTR;
struct rk3399_clk_priv {
struct rk3399_cru *cru;
ulong rate;
};
struct pll_div {
u32 refdiv;
u32 fbdiv;
u32 postdiv1;
u32 postdiv2;
u32 frac;
};
#define RATE_TO_DIV(input_rate, output_rate) \
((input_rate) / (output_rate) - 1);
#define DIV_TO_RATE(input_rate, div) ((input_rate) / ((div) + 1))
#define PLL_DIVISORS(hz, _refdiv, _postdiv1, _postdiv2) {\
.refdiv = _refdiv,\
.fbdiv = (u32)((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ),\
.postdiv1 = _postdiv1, .postdiv2 = _postdiv2};
static const struct pll_div gpll_init_cfg = PLL_DIVISORS(GPLL_HZ, 2, 2, 1);
static const struct pll_div cpll_init_cfg = PLL_DIVISORS(CPLL_HZ, 1, 2, 2);
static const struct pll_div ppll_init_cfg = PLL_DIVISORS(PPLL_HZ, 2, 2, 1);
static const struct pll_div apll_l_1600_cfg = PLL_DIVISORS(1600*MHz, 3, 1, 1);
static const struct pll_div apll_l_600_cfg = PLL_DIVISORS(600*MHz, 1, 2, 1);
static const struct pll_div *apll_l_cfgs[] = {
[APLL_L_1600_MHZ] = &apll_l_1600_cfg,
[APLL_L_600_MHZ] = &apll_l_600_cfg,
};
enum {
/* PLL_CON0 */
PLL_FBDIV_MASK = 0xfff,
PLL_FBDIV_SHIFT = 0,
/* PLL_CON1 */
PLL_POSTDIV2_SHIFT = 12,
PLL_POSTDIV2_MASK = 0x7 << PLL_POSTDIV2_SHIFT,
PLL_POSTDIV1_SHIFT = 8,
PLL_POSTDIV1_MASK = 0x7 << PLL_POSTDIV1_SHIFT,
PLL_REFDIV_MASK = 0x3f,
PLL_REFDIV_SHIFT = 0,
/* PLL_CON2 */
PLL_LOCK_STATUS_SHIFT = 31,
PLL_LOCK_STATUS_MASK = 1 << PLL_LOCK_STATUS_SHIFT,
PLL_FRACDIV_MASK = 0xffffff,
PLL_FRACDIV_SHIFT = 0,
/* PLL_CON3 */
PLL_MODE_SHIFT = 8,
PLL_MODE_MASK = 3 << PLL_MODE_SHIFT,
PLL_MODE_SLOW = 0,
PLL_MODE_NORM,
PLL_MODE_DEEP,
PLL_DSMPD_SHIFT = 3,
PLL_DSMPD_MASK = 1 << PLL_DSMPD_SHIFT,
PLL_INTEGER_MODE = 1,
/* PMUCRU_CLKSEL_CON0 */
PMU_PCLK_DIV_CON_MASK = 0x1f,
PMU_PCLK_DIV_CON_SHIFT = 0,
/* PMUCRU_CLKSEL_CON1 */
SPI3_PLL_SEL_SHIFT = 7,
SPI3_PLL_SEL_MASK = 1 << SPI3_PLL_SEL_SHIFT,
SPI3_PLL_SEL_24M = 0,
SPI3_PLL_SEL_PPLL = 1,
SPI3_DIV_CON_SHIFT = 0x0,
SPI3_DIV_CON_MASK = 0x7f,
/* PMUCRU_CLKSEL_CON2 */
I2C_DIV_CON_MASK = 0x7f,
I2C8_DIV_CON_SHIFT = 8,
I2C0_DIV_CON_SHIFT = 0,
/* PMUCRU_CLKSEL_CON3 */
I2C4_DIV_CON_SHIFT = 0,
/* CLKSEL_CON0 */
ACLKM_CORE_L_DIV_CON_SHIFT = 8,
ACLKM_CORE_L_DIV_CON_MASK = 0x1f << ACLKM_CORE_L_DIV_CON_SHIFT,
CLK_CORE_L_PLL_SEL_SHIFT = 6,
CLK_CORE_L_PLL_SEL_MASK = 3 << CLK_CORE_L_PLL_SEL_SHIFT,
CLK_CORE_L_PLL_SEL_ALPLL = 0x0,
CLK_CORE_L_PLL_SEL_ABPLL = 0x1,
CLK_CORE_L_PLL_SEL_DPLL = 0x10,
CLK_CORE_L_PLL_SEL_GPLL = 0x11,
CLK_CORE_L_DIV_MASK = 0x1f,
CLK_CORE_L_DIV_SHIFT = 0,
/* CLKSEL_CON1 */
PCLK_DBG_L_DIV_SHIFT = 0x8,
PCLK_DBG_L_DIV_MASK = 0x1f << PCLK_DBG_L_DIV_SHIFT,
ATCLK_CORE_L_DIV_SHIFT = 0,
ATCLK_CORE_L_DIV_MASK = 0x1f << ATCLK_CORE_L_DIV_SHIFT,
/* CLKSEL_CON14 */
PCLK_PERIHP_DIV_CON_SHIFT = 12,
PCLK_PERIHP_DIV_CON_MASK = 0x7 << PCLK_PERIHP_DIV_CON_SHIFT,
HCLK_PERIHP_DIV_CON_SHIFT = 8,
HCLK_PERIHP_DIV_CON_MASK = 3 << HCLK_PERIHP_DIV_CON_SHIFT,
ACLK_PERIHP_PLL_SEL_SHIFT = 7,
ACLK_PERIHP_PLL_SEL_MASK = 1 << ACLK_PERIHP_PLL_SEL_SHIFT,
ACLK_PERIHP_PLL_SEL_CPLL = 0,
ACLK_PERIHP_PLL_SEL_GPLL = 1,
ACLK_PERIHP_DIV_CON_SHIFT = 0,
ACLK_PERIHP_DIV_CON_MASK = 0x1f,
/* CLKSEL_CON21 */
ACLK_EMMC_PLL_SEL_SHIFT = 7,
ACLK_EMMC_PLL_SEL_MASK = 0x1 << ACLK_EMMC_PLL_SEL_SHIFT,
ACLK_EMMC_PLL_SEL_GPLL = 0x1,
ACLK_EMMC_DIV_CON_SHIFT = 0,
ACLK_EMMC_DIV_CON_MASK = 0x1f,
/* CLKSEL_CON22 */
CLK_EMMC_PLL_SHIFT = 8,
CLK_EMMC_PLL_MASK = 0x7 << CLK_EMMC_PLL_SHIFT,
CLK_EMMC_PLL_SEL_GPLL = 0x1,
CLK_EMMC_PLL_SEL_24M = 0x5,
CLK_EMMC_DIV_CON_SHIFT = 0,
CLK_EMMC_DIV_CON_MASK = 0x7f << CLK_EMMC_DIV_CON_SHIFT,
/* CLKSEL_CON23 */
PCLK_PERILP0_DIV_CON_SHIFT = 12,
PCLK_PERILP0_DIV_CON_MASK = 0x7 << PCLK_PERILP0_DIV_CON_SHIFT,
HCLK_PERILP0_DIV_CON_SHIFT = 8,
HCLK_PERILP0_DIV_CON_MASK = 3 << HCLK_PERILP0_DIV_CON_SHIFT,
ACLK_PERILP0_PLL_SEL_SHIFT = 7,
ACLK_PERILP0_PLL_SEL_MASK = 1 << ACLK_PERILP0_PLL_SEL_SHIFT,
ACLK_PERILP0_PLL_SEL_CPLL = 0,
ACLK_PERILP0_PLL_SEL_GPLL = 1,
ACLK_PERILP0_DIV_CON_SHIFT = 0,
ACLK_PERILP0_DIV_CON_MASK = 0x1f,
/* CLKSEL_CON25 */
PCLK_PERILP1_DIV_CON_SHIFT = 8,
PCLK_PERILP1_DIV_CON_MASK = 0x7 << PCLK_PERILP1_DIV_CON_SHIFT,
HCLK_PERILP1_PLL_SEL_SHIFT = 7,
HCLK_PERILP1_PLL_SEL_MASK = 1 << HCLK_PERILP1_PLL_SEL_SHIFT,
HCLK_PERILP1_PLL_SEL_CPLL = 0,
HCLK_PERILP1_PLL_SEL_GPLL = 1,
HCLK_PERILP1_DIV_CON_SHIFT = 0,
HCLK_PERILP1_DIV_CON_MASK = 0x1f,
/* CLKSEL_CON26 */
CLK_SARADC_DIV_CON_SHIFT = 8,
CLK_SARADC_DIV_CON_MASK = 0xff << CLK_SARADC_DIV_CON_SHIFT,
/* CLKSEL_CON27 */
CLK_TSADC_SEL_X24M = 0x0,
CLK_TSADC_SEL_SHIFT = 15,
CLK_TSADC_SEL_MASK = 1 << CLK_TSADC_SEL_SHIFT,
CLK_TSADC_DIV_CON_SHIFT = 0,
CLK_TSADC_DIV_CON_MASK = 0x3ff,
/* CLKSEL_CON47 & CLKSEL_CON48 */
ACLK_VOP_PLL_SEL_SHIFT = 6,
ACLK_VOP_PLL_SEL_MASK = 0x3 << ACLK_VOP_PLL_SEL_SHIFT,
ACLK_VOP_PLL_SEL_CPLL = 0x1,
ACLK_VOP_DIV_CON_SHIFT = 0,
ACLK_VOP_DIV_CON_MASK = 0x1f << ACLK_VOP_DIV_CON_SHIFT,
/* CLKSEL_CON49 & CLKSEL_CON50 */
DCLK_VOP_DCLK_SEL_SHIFT = 11,
DCLK_VOP_DCLK_SEL_MASK = 1 << DCLK_VOP_DCLK_SEL_SHIFT,
DCLK_VOP_DCLK_SEL_DIVOUT = 0,
DCLK_VOP_PLL_SEL_SHIFT = 8,
DCLK_VOP_PLL_SEL_MASK = 3 << DCLK_VOP_PLL_SEL_SHIFT,
DCLK_VOP_PLL_SEL_VPLL = 0,
DCLK_VOP_DIV_CON_MASK = 0xff,
DCLK_VOP_DIV_CON_SHIFT = 0,
/* CLKSEL_CON58 */
CLK_SPI_PLL_SEL_MASK = 1,
CLK_SPI_PLL_SEL_CPLL = 0,
CLK_SPI_PLL_SEL_GPLL = 1,
CLK_SPI_PLL_DIV_CON_MASK = 0x7f,
CLK_SPI5_PLL_DIV_CON_SHIFT = 8,
CLK_SPI5_PLL_SEL_SHIFT = 15,
/* CLKSEL_CON59 */
CLK_SPI1_PLL_SEL_SHIFT = 15,
CLK_SPI1_PLL_DIV_CON_SHIFT = 8,
CLK_SPI0_PLL_SEL_SHIFT = 7,
CLK_SPI0_PLL_DIV_CON_SHIFT = 0,
/* CLKSEL_CON60 */
CLK_SPI4_PLL_SEL_SHIFT = 15,
CLK_SPI4_PLL_DIV_CON_SHIFT = 8,
CLK_SPI2_PLL_SEL_SHIFT = 7,
CLK_SPI2_PLL_DIV_CON_SHIFT = 0,
/* CLKSEL_CON61 */
CLK_I2C_PLL_SEL_MASK = 1,
CLK_I2C_PLL_SEL_CPLL = 0,
CLK_I2C_PLL_SEL_GPLL = 1,
CLK_I2C5_PLL_SEL_SHIFT = 15,
CLK_I2C5_DIV_CON_SHIFT = 8,
CLK_I2C1_PLL_SEL_SHIFT = 7,
CLK_I2C1_DIV_CON_SHIFT = 0,
/* CLKSEL_CON62 */
CLK_I2C6_PLL_SEL_SHIFT = 15,
CLK_I2C6_DIV_CON_SHIFT = 8,
CLK_I2C2_PLL_SEL_SHIFT = 7,
CLK_I2C2_DIV_CON_SHIFT = 0,
/* CLKSEL_CON63 */
CLK_I2C7_PLL_SEL_SHIFT = 15,
CLK_I2C7_DIV_CON_SHIFT = 8,
CLK_I2C3_PLL_SEL_SHIFT = 7,
CLK_I2C3_DIV_CON_SHIFT = 0,
/* CRU_SOFTRST_CON4 */
RESETN_DDR0_REQ_SHIFT = 8,
RESETN_DDR0_REQ_MASK = 1 << RESETN_DDR0_REQ_SHIFT,
RESETN_DDRPHY0_REQ_SHIFT = 9,
RESETN_DDRPHY0_REQ_MASK = 1 << RESETN_DDRPHY0_REQ_SHIFT,
RESETN_DDR1_REQ_SHIFT = 12,
RESETN_DDR1_REQ_MASK = 1 << RESETN_DDR1_REQ_SHIFT,
RESETN_DDRPHY1_REQ_SHIFT = 13,
RESETN_DDRPHY1_REQ_MASK = 1 << RESETN_DDRPHY1_REQ_SHIFT,
};
#define VCO_MAX_KHZ (3200 * (MHz / KHz))
#define VCO_MIN_KHZ (800 * (MHz / KHz))
#define OUTPUT_MAX_KHZ (3200 * (MHz / KHz))
#define OUTPUT_MIN_KHZ (16 * (MHz / KHz))
/*
* the div restructions of pll in integer mode, these are defined in
* * CRU_*PLL_CON0 or PMUCRU_*PLL_CON0
*/
#define PLL_DIV_MIN 16
#define PLL_DIV_MAX 3200
/*
* How to calculate the PLL(from TRM V0.3 Part 1 Page 63):
* Formulas also embedded within the Fractional PLL Verilog model:
* If DSMPD = 1 (DSM is disabled, "integer mode")
* FOUTVCO = FREF / REFDIV * FBDIV
* FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2
* Where:
* FOUTVCO = Fractional PLL non-divided output frequency
* FOUTPOSTDIV = Fractional PLL divided output frequency
* (output of second post divider)
* FREF = Fractional PLL input reference frequency, (the OSC_HZ 24MHz input)
* REFDIV = Fractional PLL input reference clock divider
* FBDIV = Integer value programmed into feedback divide
*
*/
static void rkclk_set_pll(u32 *pll_con, const struct pll_div *div)
{
/* All 8 PLLs have same VCO and output frequency range restrictions. */
u32 vco_khz = OSC_HZ / 1000 * div->fbdiv / div->refdiv;
u32 output_khz = vco_khz / div->postdiv1 / div->postdiv2;
debug("PLL at %p: fbdiv=%d, refdiv=%d, postdiv1=%d, "
"postdiv2=%d, vco=%u khz, output=%u khz\n",
pll_con, div->fbdiv, div->refdiv, div->postdiv1,
div->postdiv2, vco_khz, output_khz);
assert(vco_khz >= VCO_MIN_KHZ && vco_khz <= VCO_MAX_KHZ &&
output_khz >= OUTPUT_MIN_KHZ && output_khz <= OUTPUT_MAX_KHZ &&
div->fbdiv >= PLL_DIV_MIN && div->fbdiv <= PLL_DIV_MAX);
/*
* When power on or changing PLL setting,
* we must force PLL into slow mode to ensure output stable clock.
*/
rk_clrsetreg(&pll_con[3], PLL_MODE_MASK,
PLL_MODE_SLOW << PLL_MODE_SHIFT);
/* use integer mode */
rk_clrsetreg(&pll_con[3], PLL_DSMPD_MASK,
PLL_INTEGER_MODE << PLL_DSMPD_SHIFT);
rk_clrsetreg(&pll_con[0], PLL_FBDIV_MASK,
div->fbdiv << PLL_FBDIV_SHIFT);
rk_clrsetreg(&pll_con[1],
PLL_POSTDIV2_MASK | PLL_POSTDIV1_MASK |
PLL_REFDIV_MASK | PLL_REFDIV_SHIFT,
(div->postdiv2 << PLL_POSTDIV2_SHIFT) |
(div->postdiv1 << PLL_POSTDIV1_SHIFT) |
(div->refdiv << PLL_REFDIV_SHIFT));
/* waiting for pll lock */
while (!(readl(&pll_con[2]) & (1 << PLL_LOCK_STATUS_SHIFT)))
udelay(1);
/* pll enter normal mode */
rk_clrsetreg(&pll_con[3], PLL_MODE_MASK,
PLL_MODE_NORM << PLL_MODE_SHIFT);
}
static int pll_para_config(u32 freq_hz, struct pll_div *div)
{
u32 ref_khz = OSC_HZ / KHz, refdiv, fbdiv = 0;
u32 postdiv1, postdiv2 = 1;
u32 fref_khz;
u32 diff_khz, best_diff_khz;
const u32 max_refdiv = 63, max_fbdiv = 3200, min_fbdiv = 16;
const u32 max_postdiv1 = 7, max_postdiv2 = 7;
u32 vco_khz;
u32 freq_khz = freq_hz / KHz;
if (!freq_hz) {
printf("%s: the frequency can't be 0 Hz\n", __func__);
return -1;
}
postdiv1 = DIV_ROUND_UP(VCO_MIN_KHZ, freq_khz);
if (postdiv1 > max_postdiv1) {
postdiv2 = DIV_ROUND_UP(postdiv1, max_postdiv1);
postdiv1 = DIV_ROUND_UP(postdiv1, postdiv2);
}
vco_khz = freq_khz * postdiv1 * postdiv2;
if (vco_khz < VCO_MIN_KHZ || vco_khz > VCO_MAX_KHZ ||
postdiv2 > max_postdiv2) {
printf("%s: Cannot find out a supported VCO"
" for Frequency (%uHz).\n", __func__, freq_hz);
return -1;
}
div->postdiv1 = postdiv1;
div->postdiv2 = postdiv2;
best_diff_khz = vco_khz;
for (refdiv = 1; refdiv < max_refdiv && best_diff_khz; refdiv++) {
fref_khz = ref_khz / refdiv;
fbdiv = vco_khz / fref_khz;
if ((fbdiv >= max_fbdiv) || (fbdiv <= min_fbdiv))
continue;
diff_khz = vco_khz - fbdiv * fref_khz;
if (fbdiv + 1 < max_fbdiv && diff_khz > fref_khz / 2) {
fbdiv++;
diff_khz = fref_khz - diff_khz;
}
if (diff_khz >= best_diff_khz)
continue;
best_diff_khz = diff_khz;
div->refdiv = refdiv;
div->fbdiv = fbdiv;
}
if (best_diff_khz > 4 * (MHz/KHz)) {
printf("%s: Failed to match output frequency %u, "
"difference is %u Hz,exceed 4MHZ\n", __func__, freq_hz,
best_diff_khz * KHz);
return -1;
}
return 0;
}
static void rkclk_init(struct rk3399_cru *cru)
{
u32 aclk_div;
u32 hclk_div;
u32 pclk_div;
/*
* some cru registers changed by bootrom, we'd better reset them to
* reset/default values described in TRM to avoid confusion in kernel.
* Please consider these three lines as a fix of bootrom bug.
*/
rk_clrsetreg(&cru->clksel_con[12], 0xffff, 0x4101);
rk_clrsetreg(&cru->clksel_con[19], 0xffff, 0x033f);
rk_clrsetreg(&cru->clksel_con[56], 0x0003, 0x0003);
/* configure gpll cpll */
rkclk_set_pll(&cru->gpll_con[0], &gpll_init_cfg);
rkclk_set_pll(&cru->cpll_con[0], &cpll_init_cfg);
/* configure perihp aclk, hclk, pclk */
aclk_div = GPLL_HZ / PERIHP_ACLK_HZ - 1;
assert((aclk_div + 1) * PERIHP_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f);
hclk_div = PERIHP_ACLK_HZ / PERIHP_HCLK_HZ - 1;
assert((hclk_div + 1) * PERIHP_HCLK_HZ ==
PERIHP_ACLK_HZ && (hclk_div < 0x4));
pclk_div = PERIHP_ACLK_HZ / PERIHP_PCLK_HZ - 1;
assert((pclk_div + 1) * PERIHP_PCLK_HZ ==
PERIHP_ACLK_HZ && (pclk_div < 0x7));
rk_clrsetreg(&cru->clksel_con[14],
PCLK_PERIHP_DIV_CON_MASK | HCLK_PERIHP_DIV_CON_MASK |
ACLK_PERIHP_PLL_SEL_MASK | ACLK_PERIHP_DIV_CON_MASK,
pclk_div << PCLK_PERIHP_DIV_CON_SHIFT |
hclk_div << HCLK_PERIHP_DIV_CON_SHIFT |
ACLK_PERIHP_PLL_SEL_GPLL << ACLK_PERIHP_PLL_SEL_SHIFT |
aclk_div << ACLK_PERIHP_DIV_CON_SHIFT);
/* configure perilp0 aclk, hclk, pclk */
aclk_div = GPLL_HZ / PERILP0_ACLK_HZ - 1;
assert((aclk_div + 1) * PERILP0_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f);
hclk_div = PERILP0_ACLK_HZ / PERILP0_HCLK_HZ - 1;
assert((hclk_div + 1) * PERILP0_HCLK_HZ ==
PERILP0_ACLK_HZ && (hclk_div < 0x4));
pclk_div = PERILP0_ACLK_HZ / PERILP0_PCLK_HZ - 1;
assert((pclk_div + 1) * PERILP0_PCLK_HZ ==
PERILP0_ACLK_HZ && (pclk_div < 0x7));
rk_clrsetreg(&cru->clksel_con[23],
PCLK_PERILP0_DIV_CON_MASK | HCLK_PERILP0_DIV_CON_MASK |
ACLK_PERILP0_PLL_SEL_MASK | ACLK_PERILP0_DIV_CON_MASK,
pclk_div << PCLK_PERILP0_DIV_CON_SHIFT |
hclk_div << HCLK_PERILP0_DIV_CON_SHIFT |
ACLK_PERILP0_PLL_SEL_GPLL << ACLK_PERILP0_PLL_SEL_SHIFT |
aclk_div << ACLK_PERILP0_DIV_CON_SHIFT);
/* perilp1 hclk select gpll as source */
hclk_div = GPLL_HZ / PERILP1_HCLK_HZ - 1;
assert((hclk_div + 1) * PERILP1_HCLK_HZ ==
GPLL_HZ && (hclk_div < 0x1f));
pclk_div = PERILP1_HCLK_HZ / PERILP1_HCLK_HZ - 1;
assert((pclk_div + 1) * PERILP1_HCLK_HZ ==
PERILP1_HCLK_HZ && (hclk_div < 0x7));
rk_clrsetreg(&cru->clksel_con[25],
PCLK_PERILP1_DIV_CON_MASK | HCLK_PERILP1_DIV_CON_MASK |
HCLK_PERILP1_PLL_SEL_MASK,
pclk_div << PCLK_PERILP1_DIV_CON_SHIFT |
hclk_div << HCLK_PERILP1_DIV_CON_SHIFT |
HCLK_PERILP1_PLL_SEL_GPLL << HCLK_PERILP1_PLL_SEL_SHIFT);
}
void rk3399_configure_cpu(struct rk3399_cru *cru,
enum apll_l_frequencies apll_l_freq)
{
u32 aclkm_div;
u32 pclk_dbg_div;
u32 atclk_div;
rkclk_set_pll(&cru->apll_l_con[0], apll_l_cfgs[apll_l_freq]);
aclkm_div = APLL_HZ / ACLKM_CORE_HZ - 1;
assert((aclkm_div + 1) * ACLKM_CORE_HZ == APLL_HZ &&
aclkm_div < 0x1f);
pclk_dbg_div = APLL_HZ / PCLK_DBG_HZ - 1;
assert((pclk_dbg_div + 1) * PCLK_DBG_HZ == APLL_HZ &&
pclk_dbg_div < 0x1f);
atclk_div = APLL_HZ / ATCLK_CORE_HZ - 1;
assert((atclk_div + 1) * ATCLK_CORE_HZ == APLL_HZ &&
atclk_div < 0x1f);
rk_clrsetreg(&cru->clksel_con[0],
ACLKM_CORE_L_DIV_CON_MASK | CLK_CORE_L_PLL_SEL_MASK |
CLK_CORE_L_DIV_MASK,
aclkm_div << ACLKM_CORE_L_DIV_CON_SHIFT |
CLK_CORE_L_PLL_SEL_ALPLL << CLK_CORE_L_PLL_SEL_SHIFT |
0 << CLK_CORE_L_DIV_SHIFT);
rk_clrsetreg(&cru->clksel_con[1],
PCLK_DBG_L_DIV_MASK | ATCLK_CORE_L_DIV_MASK,
pclk_dbg_div << PCLK_DBG_L_DIV_SHIFT |
atclk_div << ATCLK_CORE_L_DIV_SHIFT);
}
#define I2C_CLK_REG_MASK(bus) \
(I2C_DIV_CON_MASK << \
CLK_I2C ##bus## _DIV_CON_SHIFT | \
CLK_I2C_PLL_SEL_MASK << \
CLK_I2C ##bus## _PLL_SEL_SHIFT)
#define I2C_CLK_REG_VALUE(bus, clk_div) \
((clk_div - 1) << \
CLK_I2C ##bus## _DIV_CON_SHIFT | \
CLK_I2C_PLL_SEL_GPLL << \
CLK_I2C ##bus## _PLL_SEL_SHIFT)
#define I2C_CLK_DIV_VALUE(con, bus) \
(con >> CLK_I2C ##bus## _DIV_CON_SHIFT) & \
I2C_DIV_CON_MASK;
static ulong rk3399_i2c_get_clk(struct rk3399_cru *cru, ulong clk_id)
{
u32 div, con;
switch (clk_id) {
case SCLK_I2C1:
con = readl(&cru->clksel_con[61]);
div = I2C_CLK_DIV_VALUE(con, 1);
break;
case SCLK_I2C2:
con = readl(&cru->clksel_con[62]);
div = I2C_CLK_DIV_VALUE(con, 2);
break;
case SCLK_I2C3:
con = readl(&cru->clksel_con[63]);
div = I2C_CLK_DIV_VALUE(con, 3);
break;
case SCLK_I2C5:
con = readl(&cru->clksel_con[61]);
div = I2C_CLK_DIV_VALUE(con, 5);
break;
case SCLK_I2C6:
con = readl(&cru->clksel_con[62]);
div = I2C_CLK_DIV_VALUE(con, 6);
break;
case SCLK_I2C7:
con = readl(&cru->clksel_con[63]);
div = I2C_CLK_DIV_VALUE(con, 7);
break;
default:
printf("do not support this i2c bus\n");
return -EINVAL;
}
return DIV_TO_RATE(GPLL_HZ, div);
}
static ulong rk3399_i2c_set_clk(struct rk3399_cru *cru, ulong clk_id, uint hz)
{
int src_clk_div;
/* i2c0,4,8 src clock from ppll, i2c1,2,3,5,6,7 src clock from gpll*/
src_clk_div = GPLL_HZ / hz;
assert(src_clk_div - 1 < 127);
switch (clk_id) {
case SCLK_I2C1:
rk_clrsetreg(&cru->clksel_con[61], I2C_CLK_REG_MASK(1),
I2C_CLK_REG_VALUE(1, src_clk_div));
break;
case SCLK_I2C2:
rk_clrsetreg(&cru->clksel_con[62], I2C_CLK_REG_MASK(2),
I2C_CLK_REG_VALUE(2, src_clk_div));
break;
case SCLK_I2C3:
rk_clrsetreg(&cru->clksel_con[63], I2C_CLK_REG_MASK(3),
I2C_CLK_REG_VALUE(3, src_clk_div));
break;
case SCLK_I2C5:
rk_clrsetreg(&cru->clksel_con[61], I2C_CLK_REG_MASK(5),
I2C_CLK_REG_VALUE(5, src_clk_div));
break;
case SCLK_I2C6:
rk_clrsetreg(&cru->clksel_con[62], I2C_CLK_REG_MASK(6),
I2C_CLK_REG_VALUE(6, src_clk_div));
break;
case SCLK_I2C7:
rk_clrsetreg(&cru->clksel_con[63], I2C_CLK_REG_MASK(7),
I2C_CLK_REG_VALUE(7, src_clk_div));
break;
default:
printf("do not support this i2c bus\n");
return -EINVAL;
}
return DIV_TO_RATE(GPLL_HZ, src_clk_div);
}
static ulong rk3399_vop_set_clk(struct rk3399_cru *cru, ulong clk_id, u32 hz)
{
struct pll_div vpll_config = {0};
int aclk_vop = 198*MHz;
void *aclkreg_addr, *dclkreg_addr;
u32 div;
switch (clk_id) {
case DCLK_VOP0:
aclkreg_addr = &cru->clksel_con[47];
dclkreg_addr = &cru->clksel_con[49];
break;
case DCLK_VOP1:
aclkreg_addr = &cru->clksel_con[48];
dclkreg_addr = &cru->clksel_con[50];
break;
default:
return -EINVAL;
}
/* vop aclk source clk: cpll */
div = CPLL_HZ / aclk_vop;
assert(div - 1 < 32);
rk_clrsetreg(aclkreg_addr,
ACLK_VOP_PLL_SEL_MASK | ACLK_VOP_DIV_CON_MASK,
ACLK_VOP_PLL_SEL_CPLL << ACLK_VOP_PLL_SEL_SHIFT |
(div - 1) << ACLK_VOP_DIV_CON_SHIFT);
/* vop dclk source from vpll, and equals to vpll(means div == 1) */
if (pll_para_config(hz, &vpll_config))
return -1;
rkclk_set_pll(&cru->vpll_con[0], &vpll_config);
rk_clrsetreg(dclkreg_addr,
DCLK_VOP_DCLK_SEL_MASK | DCLK_VOP_PLL_SEL_MASK|
DCLK_VOP_DIV_CON_MASK,
DCLK_VOP_DCLK_SEL_DIVOUT << DCLK_VOP_DCLK_SEL_SHIFT |
DCLK_VOP_PLL_SEL_VPLL << DCLK_VOP_PLL_SEL_SHIFT |
(1 - 1) << DCLK_VOP_DIV_CON_SHIFT);
return hz;
}
static ulong rk3399_mmc_get_clk(struct rk3399_cru *cru, uint clk_id)
{
u32 div, con;
switch (clk_id) {
case SCLK_SDMMC:
con = readl(&cru->clksel_con[16]);
break;
case SCLK_EMMC:
con = readl(&cru->clksel_con[21]);
break;
default:
return -EINVAL;
}
div = (con & CLK_EMMC_DIV_CON_MASK) >> CLK_EMMC_DIV_CON_SHIFT;
if ((con & CLK_EMMC_PLL_MASK) >> CLK_EMMC_PLL_SHIFT
== CLK_EMMC_PLL_SEL_24M)
return DIV_TO_RATE(24*1024*1024, div);
else
return DIV_TO_RATE(GPLL_HZ, div);
}
static ulong rk3399_mmc_set_clk(struct rk3399_cru *cru,
ulong clk_id, ulong set_rate)
{
int src_clk_div;
int aclk_emmc = 198*MHz;
switch (clk_id) {
case SCLK_SDMMC:
/* Select clk_sdmmc source from GPLL by default */
src_clk_div = GPLL_HZ / set_rate;
if (src_clk_div > 127) {
/* use 24MHz source for 400KHz clock */
src_clk_div = 24*1024*1024 / set_rate;
rk_clrsetreg(&cru->clksel_con[16],
CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
CLK_EMMC_PLL_SEL_24M << CLK_EMMC_PLL_SHIFT |
(src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
} else {
rk_clrsetreg(&cru->clksel_con[16],
CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT |
(src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
}
break;
case SCLK_EMMC:
/* Select aclk_emmc source from GPLL */
src_clk_div = GPLL_HZ / aclk_emmc;
assert(src_clk_div - 1 < 31);
rk_clrsetreg(&cru->clksel_con[21],
ACLK_EMMC_PLL_SEL_MASK | ACLK_EMMC_DIV_CON_MASK,
ACLK_EMMC_PLL_SEL_GPLL << ACLK_EMMC_PLL_SEL_SHIFT |
(src_clk_div - 1) << ACLK_EMMC_DIV_CON_SHIFT);
/* Select clk_emmc source from GPLL too */
src_clk_div = GPLL_HZ / set_rate;
assert(src_clk_div - 1 < 127);
rk_clrsetreg(&cru->clksel_con[22],
CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT |
(src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
break;
default:
return -EINVAL;
}
return rk3399_mmc_get_clk(cru, clk_id);
}
static ulong rk3399_clk_get_rate(struct clk *clk)
{
struct rk3399_clk_priv *priv = dev_get_priv(clk->dev);
ulong rate = 0;
switch (clk->id) {
case 0 ... 63:
return 0;
case SCLK_SDMMC:
case SCLK_EMMC:
rate = rk3399_mmc_get_clk(priv->cru, clk->id);
break;
case SCLK_I2C1:
case SCLK_I2C2:
case SCLK_I2C3:
case SCLK_I2C5:
case SCLK_I2C6:
case SCLK_I2C7:
rate = rk3399_i2c_get_clk(priv->cru, clk->id);
break;
case DCLK_VOP0:
case DCLK_VOP1:
break;
default:
return -ENOENT;
}
return rate;
}
static ulong rk3399_clk_set_rate(struct clk *clk, ulong rate)
{
struct rk3399_clk_priv *priv = dev_get_priv(clk->dev);
ulong ret = 0;
switch (clk->id) {
case 0 ... 63:
return 0;
case SCLK_SDMMC:
case SCLK_EMMC:
ret = rk3399_mmc_set_clk(priv->cru, clk->id, rate);
break;
case SCLK_I2C1:
case SCLK_I2C2:
case SCLK_I2C3:
case SCLK_I2C5:
case SCLK_I2C6:
case SCLK_I2C7:
ret = rk3399_i2c_set_clk(priv->cru, clk->id, rate);
break;
case DCLK_VOP0:
case DCLK_VOP1:
rate = rk3399_vop_set_clk(priv->cru, clk->id, rate);
break;
default:
return -ENOENT;
}
return ret;
}
static struct clk_ops rk3399_clk_ops = {
.get_rate = rk3399_clk_get_rate,
.set_rate = rk3399_clk_set_rate,
};
void *rockchip_get_cru(void)
{
struct udevice *dev;
fdt_addr_t *addr;
int ret;
ret = uclass_get_device_by_name(UCLASS_CLK, "clk_rk3399", &dev);
if (ret)
return ERR_PTR(ret);
addr = dev_get_addr_ptr(dev);
if ((fdt_addr_t)addr == FDT_ADDR_T_NONE)
return ERR_PTR(-EINVAL);
return addr;
}
static int rk3399_clk_probe(struct udevice *dev)
{
struct rk3399_clk_priv *priv = dev_get_priv(dev);
rkclk_init(priv->cru);
return 0;
}
static int rk3399_clk_ofdata_to_platdata(struct udevice *dev)
{
struct rk3399_clk_priv *priv = dev_get_priv(dev);
priv->cru = (struct rk3399_cru *)dev_get_addr(dev);
return 0;
}
static int rk3399_clk_bind(struct udevice *dev)
{
int ret;
/* The reset driver does not have a device node, so bind it here */
ret = device_bind_driver(gd->dm_root, "rk3399_sysreset", "reset", &dev);
if (ret)
printf("Warning: No RK3399 reset driver: ret=%d\n", ret);
return 0;
}
static const struct udevice_id rk3399_clk_ids[] = {
{ .compatible = "rockchip,rk3399-cru" },
{ }
};
U_BOOT_DRIVER(clk_rk3399) = {
.name = "clk_rk3399",
.id = UCLASS_CLK,
.of_match = rk3399_clk_ids,
.priv_auto_alloc_size = sizeof(struct rk3399_clk_priv),
.ofdata_to_platdata = rk3399_clk_ofdata_to_platdata,
.ops = &rk3399_clk_ops,
.bind = rk3399_clk_bind,
.probe = rk3399_clk_probe,
};