| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * drivers/mtd/nand/raw/nand_util.c |
| * |
| * Copyright (C) 2006 by Weiss-Electronic GmbH. |
| * All rights reserved. |
| * |
| * @author: Guido Classen <clagix@gmail.com> |
| * @descr: NAND Flash support |
| * @references: borrowed heavily from Linux mtd-utils code: |
| * flash_eraseall.c by Arcom Control System Ltd |
| * nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com) |
| * and Thomas Gleixner (tglx@linutronix.de) |
| * |
| * Copyright (C) 2008 Nokia Corporation: drop_ffs() function by |
| * Artem Bityutskiy <dedekind1@gmail.com> from mtd-utils |
| * |
| * Copyright 2010 Freescale Semiconductor |
| */ |
| |
| #include <common.h> |
| #include <command.h> |
| #include <log.h> |
| #include <watchdog.h> |
| #include <malloc.h> |
| #include <memalign.h> |
| #include <div64.h> |
| #include <asm/cache.h> |
| #include <dm/devres.h> |
| |
| #include <linux/errno.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/rawnand.h> |
| #include <nand.h> |
| #include <jffs2/jffs2.h> |
| |
| typedef struct erase_info erase_info_t; |
| typedef struct mtd_info mtd_info_t; |
| |
| /* support only for native endian JFFS2 */ |
| #define cpu_to_je16(x) (x) |
| #define cpu_to_je32(x) (x) |
| |
| /** |
| * nand_erase_opts: - erase NAND flash with support for various options |
| * (jffs2 formatting) |
| * |
| * @param mtd nand mtd instance to erase |
| * @param opts options, @see struct nand_erase_options |
| * Return: 0 in case of success |
| * |
| * This code is ported from flash_eraseall.c from Linux mtd utils by |
| * Arcom Control System Ltd. |
| */ |
| int nand_erase_opts(struct mtd_info *mtd, |
| const nand_erase_options_t *opts) |
| { |
| struct jffs2_unknown_node cleanmarker; |
| erase_info_t erase; |
| unsigned long erase_length, erased_length; /* in blocks */ |
| int result; |
| int percent_complete = -1; |
| const char *mtd_device = mtd->name; |
| struct mtd_oob_ops oob_opts; |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| if ((opts->offset & (mtd->erasesize - 1)) != 0) { |
| printf("Attempt to erase non block-aligned data\n"); |
| return -1; |
| } |
| |
| memset(&erase, 0, sizeof(erase)); |
| memset(&oob_opts, 0, sizeof(oob_opts)); |
| |
| erase.mtd = mtd; |
| erase.len = mtd->erasesize; |
| erase.addr = opts->offset; |
| erase_length = lldiv(opts->length + mtd->erasesize - 1, |
| mtd->erasesize); |
| |
| cleanmarker.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); |
| cleanmarker.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER); |
| cleanmarker.totlen = cpu_to_je32(8); |
| |
| /* scrub option allows to erase badblock. To prevent internal |
| * check from erase() method, set block check method to dummy |
| * and disable bad block table while erasing. |
| */ |
| if (opts->scrub) { |
| erase.scrub = opts->scrub; |
| /* |
| * We don't need the bad block table anymore... |
| * after scrub, there are no bad blocks left! |
| */ |
| if (chip->bbt) { |
| kfree(chip->bbt); |
| } |
| chip->bbt = NULL; |
| chip->options &= ~NAND_BBT_SCANNED; |
| } |
| |
| for (erased_length = 0; |
| erased_length < erase_length; |
| erase.addr += mtd->erasesize) { |
| |
| schedule(); |
| |
| if (opts->lim && (erase.addr >= (opts->offset + opts->lim))) { |
| puts("Size of erase exceeds limit\n"); |
| return -EFBIG; |
| } |
| if (!opts->scrub) { |
| int ret = mtd_block_isbad(mtd, erase.addr); |
| if (ret > 0) { |
| if (!opts->quiet) |
| printf("\rSkipping bad block at " |
| "0x%08llx " |
| " \n", |
| erase.addr); |
| |
| if (!opts->spread) |
| erased_length++; |
| |
| continue; |
| |
| } else if (ret < 0) { |
| printf("\n%s: MTD get bad block failed: %d\n", |
| mtd_device, |
| ret); |
| return -1; |
| } |
| } |
| |
| erased_length++; |
| |
| result = mtd_erase(mtd, &erase); |
| if (result != 0) { |
| printf("\n%s: MTD Erase failure: %d\n", |
| mtd_device, result); |
| continue; |
| } |
| |
| /* format for JFFS2 ? */ |
| if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) { |
| struct mtd_oob_ops ops; |
| ops.ooblen = 8; |
| ops.datbuf = NULL; |
| ops.oobbuf = (uint8_t *)&cleanmarker; |
| ops.ooboffs = 0; |
| ops.mode = MTD_OPS_AUTO_OOB; |
| |
| result = mtd_write_oob(mtd, erase.addr, &ops); |
| if (result != 0) { |
| printf("\n%s: MTD writeoob failure: %d\n", |
| mtd_device, result); |
| continue; |
| } |
| } |
| |
| if (!opts->quiet) { |
| unsigned long long n = erased_length * 100ULL; |
| int percent; |
| |
| do_div(n, erase_length); |
| percent = (int)n; |
| |
| /* output progress message only at whole percent |
| * steps to reduce the number of messages printed |
| * on (slow) serial consoles |
| */ |
| if (percent != percent_complete) { |
| percent_complete = percent; |
| |
| printf("\rErasing at 0x%llx -- %3d%% complete.", |
| erase.addr, percent); |
| |
| if (opts->jffs2 && result == 0) |
| printf(" Cleanmarker written at 0x%llx.", |
| erase.addr); |
| } |
| } |
| } |
| if (!opts->quiet) |
| printf("\n"); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK |
| |
| #define NAND_CMD_LOCK_TIGHT 0x2c |
| #define NAND_CMD_LOCK_STATUS 0x7a |
| |
| /****************************************************************************** |
| * Support for locking / unlocking operations of some NAND devices |
| *****************************************************************************/ |
| |
| /** |
| * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT |
| * state |
| * |
| * @param mtd nand mtd instance |
| * @param tight bring device in lock tight mode |
| * |
| * Return: 0 on success, -1 in case of error |
| * |
| * The lock / lock-tight command only applies to the whole chip. To get some |
| * parts of the chip lock and others unlocked use the following sequence: |
| * |
| * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin) |
| * - Call nand_unlock() once for each consecutive area to be unlocked |
| * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1) |
| * |
| * If the device is in lock-tight state software can't change the |
| * current active lock/unlock state of all pages. nand_lock() / nand_unlock() |
| * calls will fail. It is only posible to leave lock-tight state by |
| * an hardware signal (low pulse on _WP pin) or by power down. |
| */ |
| int nand_lock(struct mtd_info *mtd, int tight) |
| { |
| int ret = 0; |
| int status; |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| /* select the NAND device */ |
| chip->select_chip(mtd, 0); |
| |
| /* check the Lock Tight Status */ |
| chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, 0); |
| if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) { |
| printf("nand_lock: Device is locked tight!\n"); |
| ret = -1; |
| goto out; |
| } |
| |
| chip->cmdfunc(mtd, |
| (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK), |
| -1, -1); |
| |
| /* call wait ready function */ |
| status = chip->waitfunc(mtd, chip); |
| |
| /* see if device thinks it succeeded */ |
| if (status & 0x01) { |
| ret = -1; |
| } |
| |
| out: |
| /* de-select the NAND device */ |
| chip->select_chip(mtd, -1); |
| return ret; |
| } |
| |
| /** |
| * nand_get_lock_status: - query current lock state from one page of NAND |
| * flash |
| * |
| * @param mtd nand mtd instance |
| * @param offset page address to query (must be page-aligned!) |
| * |
| * Return: -1 in case of error |
| * >0 lock status: |
| * bitfield with the following combinations: |
| * NAND_LOCK_STATUS_TIGHT: page in tight state |
| * NAND_LOCK_STATUS_UNLOCK: page unlocked |
| * |
| */ |
| int nand_get_lock_status(struct mtd_info *mtd, loff_t offset) |
| { |
| int ret = 0; |
| int chipnr; |
| int page; |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| /* select the NAND device */ |
| chipnr = (int)(offset >> chip->chip_shift); |
| chip->select_chip(mtd, chipnr); |
| |
| |
| if ((offset & (mtd->writesize - 1)) != 0) { |
| printf("nand_get_lock_status: " |
| "Start address must be beginning of " |
| "nand page!\n"); |
| ret = -1; |
| goto out; |
| } |
| |
| /* check the Lock Status */ |
| page = (int)(offset >> chip->page_shift); |
| chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask); |
| |
| ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT |
| | NAND_LOCK_STATUS_UNLOCK); |
| |
| out: |
| /* de-select the NAND device */ |
| chip->select_chip(mtd, -1); |
| return ret; |
| } |
| |
| /** |
| * nand_unlock: - Unlock area of NAND pages |
| * only one consecutive area can be unlocked at one time! |
| * |
| * @param mtd nand mtd instance |
| * @param start start byte address |
| * @param length number of bytes to unlock (must be a multiple of |
| * page size mtd->writesize) |
| * @param allexcept if set, unlock everything not selected |
| * |
| * Return: 0 on success, -1 in case of error |
| */ |
| int nand_unlock(struct mtd_info *mtd, loff_t start, size_t length, |
| int allexcept) |
| { |
| int ret = 0; |
| int chipnr; |
| int status; |
| int page; |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| debug("nand_unlock%s: start: %08llx, length: %zd!\n", |
| allexcept ? " (allexcept)" : "", start, length); |
| |
| /* select the NAND device */ |
| chipnr = (int)(start >> chip->chip_shift); |
| chip->select_chip(mtd, chipnr); |
| |
| /* check the WP bit */ |
| chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); |
| if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) { |
| printf("nand_unlock: Device is write protected!\n"); |
| ret = -1; |
| goto out; |
| } |
| |
| /* check the Lock Tight Status */ |
| page = (int)(start >> chip->page_shift); |
| chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask); |
| if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) { |
| printf("nand_unlock: Device is locked tight!\n"); |
| ret = -1; |
| goto out; |
| } |
| |
| if ((start & (mtd->erasesize - 1)) != 0) { |
| printf("nand_unlock: Start address must be beginning of " |
| "nand block!\n"); |
| ret = -1; |
| goto out; |
| } |
| |
| if (length == 0 || (length & (mtd->erasesize - 1)) != 0) { |
| printf("nand_unlock: Length must be a multiple of nand block " |
| "size %08x!\n", mtd->erasesize); |
| ret = -1; |
| goto out; |
| } |
| |
| /* |
| * Set length so that the last address is set to the |
| * starting address of the last block |
| */ |
| length -= mtd->erasesize; |
| |
| /* submit address of first page to unlock */ |
| chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask); |
| |
| /* submit ADDRESS of LAST page to unlock */ |
| page += (int)(length >> chip->page_shift); |
| |
| /* |
| * Page addresses for unlocking are supposed to be block-aligned. |
| * At least some NAND chips use the low bit to indicate that the |
| * page range should be inverted. |
| */ |
| if (allexcept) |
| page |= 1; |
| |
| chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask); |
| |
| /* call wait ready function */ |
| status = chip->waitfunc(mtd, chip); |
| /* see if device thinks it succeeded */ |
| if (status & 0x01) { |
| /* there was an error */ |
| ret = -1; |
| goto out; |
| } |
| |
| out: |
| /* de-select the NAND device */ |
| chip->select_chip(mtd, -1); |
| return ret; |
| } |
| #endif |
| |
| /** |
| * check_skip_len |
| * |
| * Check if there are any bad blocks, and whether length including bad |
| * blocks fits into device |
| * |
| * @param mtd nand mtd instance |
| * @param offset offset in flash |
| * @param length image length |
| * @param used length of flash needed for the requested length |
| * Return: 0 if the image fits and there are no bad blocks |
| * 1 if the image fits, but there are bad blocks |
| * -1 if the image does not fit |
| */ |
| static int check_skip_len(struct mtd_info *mtd, loff_t offset, size_t length, |
| size_t *used) |
| { |
| size_t len_excl_bad = 0; |
| int ret = 0; |
| |
| while (len_excl_bad < length) { |
| size_t block_len, block_off; |
| loff_t block_start; |
| |
| if (offset >= mtd->size) |
| return -1; |
| |
| block_start = offset & ~(loff_t)(mtd->erasesize - 1); |
| block_off = offset & (mtd->erasesize - 1); |
| block_len = mtd->erasesize - block_off; |
| |
| if (!nand_block_isbad(mtd, block_start)) |
| len_excl_bad += block_len; |
| else |
| ret = 1; |
| |
| offset += block_len; |
| *used += block_len; |
| } |
| |
| /* If the length is not a multiple of block_len, adjust. */ |
| if (len_excl_bad > length) |
| *used -= (len_excl_bad - length); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_CMD_NAND_TRIMFFS |
| static size_t drop_ffs(const struct mtd_info *mtd, const u_char *buf, |
| const size_t *len) |
| { |
| size_t l = *len; |
| ssize_t i; |
| |
| for (i = l - 1; i >= 0; i--) |
| if (buf[i] != 0xFF) |
| break; |
| |
| /* The resulting length must be aligned to the minimum flash I/O size */ |
| l = i + 1; |
| l = (l + mtd->writesize - 1) / mtd->writesize; |
| l *= mtd->writesize; |
| |
| /* |
| * since the input length may be unaligned, prevent access past the end |
| * of the buffer |
| */ |
| return min(l, *len); |
| } |
| #endif |
| |
| /** |
| * nand_verify_page_oob: |
| * |
| * Verify a page of NAND flash, including the OOB. |
| * Reads page of NAND and verifies the contents and OOB against the |
| * values in ops. |
| * |
| * @param mtd nand mtd instance |
| * @param ops MTD operations, including data to verify |
| * @param ofs offset in flash |
| * Return: 0 in case of success |
| */ |
| int nand_verify_page_oob(struct mtd_info *mtd, struct mtd_oob_ops *ops, |
| loff_t ofs) |
| { |
| int rval; |
| struct mtd_oob_ops vops; |
| size_t verlen = mtd->writesize + mtd->oobsize; |
| |
| memcpy(&vops, ops, sizeof(vops)); |
| |
| vops.datbuf = memalign(ARCH_DMA_MINALIGN, verlen); |
| |
| if (!vops.datbuf) |
| return -ENOMEM; |
| |
| vops.oobbuf = vops.datbuf + mtd->writesize; |
| |
| rval = mtd_read_oob(mtd, ofs, &vops); |
| if (!rval) |
| rval = memcmp(ops->datbuf, vops.datbuf, vops.len); |
| if (!rval) |
| rval = memcmp(ops->oobbuf, vops.oobbuf, vops.ooblen); |
| |
| free(vops.datbuf); |
| |
| return rval ? -EIO : 0; |
| } |
| |
| /** |
| * nand_verify: |
| * |
| * Verify a region of NAND flash. |
| * Reads NAND in page-sized chunks and verifies the contents against |
| * the contents of a buffer. The offset into the NAND must be |
| * page-aligned, and the function doesn't handle skipping bad blocks. |
| * |
| * @param mtd nand mtd instance |
| * @param ofs offset in flash |
| * @param len buffer length |
| * @param buf buffer to read from |
| * Return: 0 in case of success |
| */ |
| int nand_verify(struct mtd_info *mtd, loff_t ofs, size_t len, u_char *buf) |
| { |
| int rval = 0; |
| size_t verofs; |
| size_t verlen = mtd->writesize; |
| uint8_t *verbuf = memalign(ARCH_DMA_MINALIGN, verlen); |
| |
| if (!verbuf) |
| return -ENOMEM; |
| |
| /* Read the NAND back in page-size groups to limit malloc size */ |
| for (verofs = ofs; verofs < ofs + len; |
| verofs += verlen, buf += verlen) { |
| verlen = min(mtd->writesize, (uint32_t)(ofs + len - verofs)); |
| rval = nand_read(mtd, verofs, &verlen, verbuf); |
| if (!rval || (rval == -EUCLEAN)) |
| rval = memcmp(buf, verbuf, verlen); |
| |
| if (rval) |
| break; |
| } |
| |
| free(verbuf); |
| |
| return rval ? -EIO : 0; |
| } |
| |
| /** |
| * nand_write_skip_bad: |
| * |
| * Write image to NAND flash. |
| * Blocks that are marked bad are skipped and the is written to the next |
| * block instead as long as the image is short enough to fit even after |
| * skipping the bad blocks. Due to bad blocks we may not be able to |
| * perform the requested write. In the case where the write would |
| * extend beyond the end of the NAND device, both length and actual (if |
| * not NULL) are set to 0. In the case where the write would extend |
| * beyond the limit we are passed, length is set to 0 and actual is set |
| * to the required length. |
| * |
| * @param mtd nand mtd instance |
| * @param offset offset in flash |
| * @param length buffer length |
| * @param actual set to size required to write length worth of |
| * buffer or 0 on error, if not NULL |
| * @param lim maximum size that actual may be in order to not |
| * exceed the buffer |
| * @param buffer buffer to read from |
| * @param flags flags modifying the behaviour of the write to NAND |
| * Return: 0 in case of success |
| */ |
| int nand_write_skip_bad(struct mtd_info *mtd, loff_t offset, size_t *length, |
| size_t *actual, loff_t lim, u_char *buffer, int flags) |
| { |
| int rval = 0, blocksize; |
| size_t left_to_write = *length; |
| size_t used_for_write = 0; |
| u_char *p_buffer = buffer; |
| int need_skip; |
| |
| if (actual) |
| *actual = 0; |
| |
| blocksize = mtd->erasesize; |
| |
| /* |
| * nand_write() handles unaligned, partial page writes. |
| * |
| * We allow length to be unaligned, for convenience in |
| * using the $filesize variable. |
| * |
| * However, starting at an unaligned offset makes the |
| * semantics of bad block skipping ambiguous (really, |
| * you should only start a block skipping access at a |
| * partition boundary). So don't try to handle that. |
| */ |
| if ((offset & (mtd->writesize - 1)) != 0) { |
| printf("Attempt to write non page-aligned data\n"); |
| *length = 0; |
| return -EINVAL; |
| } |
| |
| need_skip = check_skip_len(mtd, offset, *length, &used_for_write); |
| |
| if (actual) |
| *actual = used_for_write; |
| |
| if (need_skip < 0) { |
| printf("Attempt to write outside the flash area\n"); |
| *length = 0; |
| return -EINVAL; |
| } |
| |
| if (used_for_write > lim) { |
| puts("Size of write exceeds partition or device limit\n"); |
| *length = 0; |
| return -EFBIG; |
| } |
| |
| if (!need_skip && !(flags & WITH_DROP_FFS)) { |
| rval = nand_write(mtd, offset, length, buffer); |
| |
| if ((flags & WITH_WR_VERIFY) && !rval) |
| rval = nand_verify(mtd, offset, *length, buffer); |
| |
| if (rval == 0) |
| return 0; |
| |
| *length = 0; |
| printf("NAND write to offset %llx failed %d\n", |
| offset, rval); |
| return rval; |
| } |
| |
| while (left_to_write > 0) { |
| loff_t block_start = offset & ~(loff_t)(mtd->erasesize - 1); |
| size_t block_offset = offset & (mtd->erasesize - 1); |
| size_t write_size, truncated_write_size; |
| |
| schedule(); |
| |
| if (nand_block_isbad(mtd, block_start)) { |
| printf("Skip bad block 0x%08llx\n", block_start); |
| offset += mtd->erasesize - block_offset; |
| continue; |
| } |
| |
| if (left_to_write < (blocksize - block_offset)) |
| write_size = left_to_write; |
| else |
| write_size = blocksize - block_offset; |
| |
| truncated_write_size = write_size; |
| #ifdef CONFIG_CMD_NAND_TRIMFFS |
| if (flags & WITH_DROP_FFS) |
| truncated_write_size = drop_ffs(mtd, p_buffer, |
| &write_size); |
| #endif |
| |
| rval = nand_write(mtd, offset, &truncated_write_size, |
| p_buffer); |
| |
| if ((flags & WITH_WR_VERIFY) && !rval) |
| rval = nand_verify(mtd, offset, |
| truncated_write_size, p_buffer); |
| |
| offset += write_size; |
| p_buffer += write_size; |
| |
| if (rval != 0) { |
| printf("NAND write to offset %llx failed %d\n", |
| offset, rval); |
| *length -= left_to_write; |
| return rval; |
| } |
| |
| left_to_write -= write_size; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * nand_read_skip_bad: |
| * |
| * Read image from NAND flash. |
| * Blocks that are marked bad are skipped and the next block is read |
| * instead as long as the image is short enough to fit even after |
| * skipping the bad blocks. Due to bad blocks we may not be able to |
| * perform the requested read. In the case where the read would extend |
| * beyond the end of the NAND device, both length and actual (if not |
| * NULL) are set to 0. In the case where the read would extend beyond |
| * the limit we are passed, length is set to 0 and actual is set to the |
| * required length. |
| * |
| * @param mtd nand mtd instance |
| * @param offset offset in flash |
| * @param length buffer length, on return holds number of read bytes |
| * @param actual set to size required to read length worth of buffer or 0 |
| * on error, if not NULL |
| * @param lim maximum size that actual may be in order to not exceed the |
| * buffer |
| * @param buffer buffer to write to |
| * Return: 0 in case of success |
| */ |
| int nand_read_skip_bad(struct mtd_info *mtd, loff_t offset, size_t *length, |
| size_t *actual, loff_t lim, u_char *buffer) |
| { |
| int rval; |
| size_t left_to_read = *length; |
| size_t used_for_read = 0; |
| u_char *p_buffer = buffer; |
| int need_skip; |
| |
| if ((offset & (mtd->writesize - 1)) != 0) { |
| printf("Attempt to read non page-aligned data\n"); |
| *length = 0; |
| if (actual) |
| *actual = 0; |
| return -EINVAL; |
| } |
| |
| need_skip = check_skip_len(mtd, offset, *length, &used_for_read); |
| |
| if (actual) |
| *actual = used_for_read; |
| |
| if (need_skip < 0) { |
| printf("Attempt to read outside the flash area\n"); |
| *length = 0; |
| return -EINVAL; |
| } |
| |
| if (used_for_read > lim) { |
| puts("Size of read exceeds partition or device limit\n"); |
| *length = 0; |
| return -EFBIG; |
| } |
| |
| if (!need_skip) { |
| rval = nand_read(mtd, offset, length, buffer); |
| if (!rval || rval == -EUCLEAN) |
| return 0; |
| |
| *length = 0; |
| printf("NAND read from offset %llx failed %d\n", |
| offset, rval); |
| return rval; |
| } |
| |
| while (left_to_read > 0) { |
| size_t block_offset = offset & (mtd->erasesize - 1); |
| size_t read_length; |
| |
| schedule(); |
| |
| if (nand_block_isbad(mtd, offset & ~(mtd->erasesize - 1))) { |
| printf("Skipping bad block 0x%08llx\n", |
| offset & ~(mtd->erasesize - 1)); |
| offset += mtd->erasesize - block_offset; |
| continue; |
| } |
| |
| if (left_to_read < (mtd->erasesize - block_offset)) |
| read_length = left_to_read; |
| else |
| read_length = mtd->erasesize - block_offset; |
| |
| rval = nand_read(mtd, offset, &read_length, p_buffer); |
| if (rval && rval != -EUCLEAN) { |
| printf("NAND read from offset %llx failed %d\n", |
| offset, rval); |
| *length -= left_to_read; |
| return rval; |
| } |
| |
| left_to_read -= read_length; |
| offset += read_length; |
| p_buffer += read_length; |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_CMD_NAND_TORTURE |
| |
| /** |
| * check_pattern: |
| * |
| * Check if buffer contains only a certain byte pattern. |
| * |
| * @param buf buffer to check |
| * @param patt the pattern to check |
| * @param size buffer size in bytes |
| * Return: 1 if there are only patt bytes in buf |
| * 0 if something else was found |
| */ |
| static int check_pattern(const u_char *buf, u_char patt, int size) |
| { |
| int i; |
| |
| for (i = 0; i < size; i++) |
| if (buf[i] != patt) |
| return 0; |
| return 1; |
| } |
| |
| /** |
| * nand_torture: |
| * |
| * Torture a block of NAND flash. |
| * This is useful to determine if a block that caused a write error is still |
| * good or should be marked as bad. |
| * |
| * @param mtd nand mtd instance |
| * @param offset offset in flash |
| * Return: 0 if the block is still good |
| */ |
| int nand_torture(struct mtd_info *mtd, loff_t offset) |
| { |
| u_char patterns[] = {0xa5, 0x5a, 0x00}; |
| struct erase_info instr = { |
| .mtd = mtd, |
| .addr = offset, |
| .len = mtd->erasesize, |
| }; |
| size_t retlen; |
| int err, ret = -1, i, patt_count; |
| u_char *buf; |
| |
| if ((offset & (mtd->erasesize - 1)) != 0) { |
| puts("Attempt to torture a block at a non block-aligned offset\n"); |
| return -EINVAL; |
| } |
| |
| if (offset + mtd->erasesize > mtd->size) { |
| puts("Attempt to torture a block outside the flash area\n"); |
| return -EINVAL; |
| } |
| |
| patt_count = ARRAY_SIZE(patterns); |
| |
| buf = malloc_cache_aligned(mtd->erasesize); |
| if (buf == NULL) { |
| puts("Out of memory for erase block buffer\n"); |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < patt_count; i++) { |
| err = mtd_erase(mtd, &instr); |
| if (err) { |
| printf("%s: erase() failed for block at 0x%llx: %d\n", |
| mtd->name, instr.addr, err); |
| goto out; |
| } |
| |
| /* Make sure the block contains only 0xff bytes */ |
| err = mtd_read(mtd, offset, mtd->erasesize, &retlen, buf); |
| if ((err && err != -EUCLEAN) || retlen != mtd->erasesize) { |
| printf("%s: read() failed for block at 0x%llx: %d\n", |
| mtd->name, instr.addr, err); |
| goto out; |
| } |
| |
| err = check_pattern(buf, 0xff, mtd->erasesize); |
| if (!err) { |
| printf("Erased block at 0x%llx, but a non-0xff byte was found\n", |
| offset); |
| ret = -EIO; |
| goto out; |
| } |
| |
| /* Write a pattern and check it */ |
| memset(buf, patterns[i], mtd->erasesize); |
| err = mtd_write(mtd, offset, mtd->erasesize, &retlen, buf); |
| if (err || retlen != mtd->erasesize) { |
| printf("%s: write() failed for block at 0x%llx: %d\n", |
| mtd->name, instr.addr, err); |
| goto out; |
| } |
| |
| err = mtd_read(mtd, offset, mtd->erasesize, &retlen, buf); |
| if ((err && err != -EUCLEAN) || retlen != mtd->erasesize) { |
| printf("%s: read() failed for block at 0x%llx: %d\n", |
| mtd->name, instr.addr, err); |
| goto out; |
| } |
| |
| err = check_pattern(buf, patterns[i], mtd->erasesize); |
| if (!err) { |
| printf("Pattern 0x%.2x checking failed for block at " |
| "0x%llx\n", patterns[i], offset); |
| ret = -EIO; |
| goto out; |
| } |
| } |
| |
| ret = 0; |
| |
| out: |
| free(buf); |
| return ret; |
| } |
| |
| #endif |