| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) 2012-2017 Altera Corporation <www.altera.com> |
| */ |
| |
| #include <common.h> |
| #include <asm/io.h> |
| #include <errno.h> |
| #include <fdtdec.h> |
| #include <linux/libfdt.h> |
| #include <altera.h> |
| #include <miiphy.h> |
| #include <netdev.h> |
| #include <watchdog.h> |
| #include <asm/arch/misc.h> |
| #include <asm/arch/reset_manager.h> |
| #include <asm/arch/scan_manager.h> |
| #include <asm/arch/sdram.h> |
| #include <asm/arch/system_manager.h> |
| #include <asm/arch/nic301.h> |
| #include <asm/arch/scu.h> |
| #include <asm/pl310.h> |
| |
| #include <dt-bindings/reset/altr,rst-mgr.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| static struct pl310_regs *const pl310 = |
| (struct pl310_regs *)CONFIG_SYS_PL310_BASE; |
| static struct socfpga_system_manager *sysmgr_regs = |
| (struct socfpga_system_manager *)SOCFPGA_SYSMGR_ADDRESS; |
| static struct nic301_registers *nic301_regs = |
| (struct nic301_registers *)SOCFPGA_L3REGS_ADDRESS; |
| static struct scu_registers *scu_regs = |
| (struct scu_registers *)SOCFPGA_MPUSCU_ADDRESS; |
| |
| /* |
| * FPGA programming support for SoC FPGA Cyclone V |
| */ |
| static Altera_desc altera_fpga[] = { |
| { |
| /* Family */ |
| Altera_SoCFPGA, |
| /* Interface type */ |
| fast_passive_parallel, |
| /* No limitation as additional data will be ignored */ |
| -1, |
| /* No device function table */ |
| NULL, |
| /* Base interface address specified in driver */ |
| NULL, |
| /* No cookie implementation */ |
| 0 |
| }, |
| }; |
| |
| static const struct { |
| const u16 pn; |
| const char *name; |
| const char *var; |
| } socfpga_fpga_model[] = { |
| /* Cyclone V E */ |
| { 0x2b15, "Cyclone V, E/A2", "cv_e_a2" }, |
| { 0x2b05, "Cyclone V, E/A4", "cv_e_a4" }, |
| { 0x2b22, "Cyclone V, E/A5", "cv_e_a5" }, |
| { 0x2b13, "Cyclone V, E/A7", "cv_e_a7" }, |
| { 0x2b14, "Cyclone V, E/A9", "cv_e_a9" }, |
| /* Cyclone V GX/GT */ |
| { 0x2b01, "Cyclone V, GX/C3", "cv_gx_c3" }, |
| { 0x2b12, "Cyclone V, GX/C4", "cv_gx_c4" }, |
| { 0x2b02, "Cyclone V, GX/C5 or GT/D5", "cv_gx_c5" }, |
| { 0x2b03, "Cyclone V, GX/C7 or GT/D7", "cv_gx_c7" }, |
| { 0x2b04, "Cyclone V, GX/C9 or GT/D9", "cv_gx_c9" }, |
| /* Cyclone V SE/SX/ST */ |
| { 0x2d11, "Cyclone V, SE/A2 or SX/C2", "cv_se_a2" }, |
| { 0x2d01, "Cyclone V, SE/A4 or SX/C4", "cv_se_a4" }, |
| { 0x2d12, "Cyclone V, SE/A5 or SX/C5 or ST/D5", "cv_se_a5" }, |
| { 0x2d02, "Cyclone V, SE/A6 or SX/C6 or ST/D6", "cv_se_a6" }, |
| /* Arria V */ |
| { 0x2d03, "Arria V, D5", "av_d5" }, |
| }; |
| |
| static int socfpga_fpga_id(const bool print_id) |
| { |
| const u32 altera_mi = 0x6e; |
| const u32 id = scan_mgr_get_fpga_id(); |
| |
| const u32 lsb = id & 0x00000001; |
| const u32 mi = (id >> 1) & 0x000007ff; |
| const u32 pn = (id >> 12) & 0x0000ffff; |
| const u32 version = (id >> 28) & 0x0000000f; |
| int i; |
| |
| if ((mi != altera_mi) || (lsb != 1)) { |
| printf("FPGA: Not Altera chip ID\n"); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(socfpga_fpga_model); i++) |
| if (pn == socfpga_fpga_model[i].pn) |
| break; |
| |
| if (i == ARRAY_SIZE(socfpga_fpga_model)) { |
| printf("FPGA: Unknown Altera chip, ID 0x%08x\n", id); |
| return -EINVAL; |
| } |
| |
| if (print_id) |
| printf("FPGA: Altera %s, version 0x%01x\n", |
| socfpga_fpga_model[i].name, version); |
| return i; |
| } |
| |
| /* |
| * Print CPU information |
| */ |
| #if defined(CONFIG_DISPLAY_CPUINFO) |
| int print_cpuinfo(void) |
| { |
| const u32 bsel = |
| SYSMGR_GET_BOOTINFO_BSEL(readl(&sysmgr_regs->bootinfo)); |
| |
| puts("CPU: Altera SoCFPGA Platform\n"); |
| socfpga_fpga_id(1); |
| |
| printf("BOOT: %s\n", bsel_str[bsel].name); |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_ARCH_MISC_INIT |
| int arch_misc_init(void) |
| { |
| const u32 bsel = readl(&sysmgr_regs->bootinfo) & 0x7; |
| const int fpga_id = socfpga_fpga_id(0); |
| env_set("bootmode", bsel_str[bsel].mode); |
| if (fpga_id >= 0) |
| env_set("fpgatype", socfpga_fpga_model[fpga_id].var); |
| return 0; |
| } |
| #endif |
| |
| /* |
| * Convert all NIC-301 AMBA slaves from secure to non-secure |
| */ |
| static void socfpga_nic301_slave_ns(void) |
| { |
| writel(0x1, &nic301_regs->lwhps2fpgaregs); |
| writel(0x1, &nic301_regs->hps2fpgaregs); |
| writel(0x1, &nic301_regs->acp); |
| writel(0x1, &nic301_regs->rom); |
| writel(0x1, &nic301_regs->ocram); |
| writel(0x1, &nic301_regs->sdrdata); |
| } |
| |
| void socfpga_sdram_remap_zero(void) |
| { |
| u32 remap; |
| |
| socfpga_nic301_slave_ns(); |
| |
| /* |
| * Private components security: |
| * U-Boot : configure private timer, global timer and cpu component |
| * access as non secure for kernel stage (as required by Linux) |
| */ |
| setbits_le32(&scu_regs->sacr, 0xfff); |
| |
| /* Configure the L2 controller to make SDRAM start at 0 */ |
| remap = 0x1; /* remap.mpuzero */ |
| /* Keep fpga bridge enabled when running from FPGA onchip RAM */ |
| if (socfpga_is_booting_from_fpga()) |
| remap |= 0x8; /* remap.hps2fpga */ |
| writel(remap, &nic301_regs->remap); |
| |
| writel(0x1, &pl310->pl310_addr_filter_start); |
| } |
| |
| static u32 iswgrp_handoff[8]; |
| |
| int arch_early_init_r(void) |
| { |
| int i; |
| |
| /* |
| * Write magic value into magic register to unlock support for |
| * issuing warm reset. The ancient kernel code expects this |
| * value to be written into the register by the bootloader, so |
| * to support that old code, we write it here instead of in the |
| * reset_cpu() function just before resetting the CPU. |
| */ |
| writel(0xae9efebc, &sysmgr_regs->romcodegrp_warmramgrp_enable); |
| |
| for (i = 0; i < 8; i++) /* Cache initial SW setting regs */ |
| iswgrp_handoff[i] = readl(&sysmgr_regs->iswgrp_handoff[i]); |
| |
| socfpga_bridges_reset(1); |
| |
| socfpga_sdram_remap_zero(); |
| |
| /* Add device descriptor to FPGA device table */ |
| socfpga_fpga_add(&altera_fpga[0]); |
| |
| return 0; |
| } |
| |
| #ifndef CONFIG_SPL_BUILD |
| static struct socfpga_reset_manager *reset_manager_base = |
| (struct socfpga_reset_manager *)SOCFPGA_RSTMGR_ADDRESS; |
| static struct socfpga_sdr_ctrl *sdr_ctrl = |
| (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; |
| |
| static void socfpga_sdram_apply_static_cfg(void) |
| { |
| const u32 applymask = 0x8; |
| u32 val = readl(&sdr_ctrl->static_cfg) | applymask; |
| |
| /* |
| * SDRAM staticcfg register specific: |
| * When applying the register setting, the CPU must not access |
| * SDRAM. Luckily for us, we can abuse i-cache here to help us |
| * circumvent the SDRAM access issue. The idea is to make sure |
| * that the code is in one full i-cache line by branching past |
| * it and back. Once it is in the i-cache, we execute the core |
| * of the code and apply the register settings. |
| * |
| * The code below uses 7 instructions, while the Cortex-A9 has |
| * 32-byte cachelines, thus the limit is 8 instructions total. |
| */ |
| asm volatile( |
| ".align 5 \n" |
| " b 2f \n" |
| "1: str %0, [%1] \n" |
| " dsb \n" |
| " isb \n" |
| " b 3f \n" |
| "2: b 1b \n" |
| "3: nop \n" |
| : : "r"(val), "r"(&sdr_ctrl->static_cfg) : "memory", "cc"); |
| } |
| |
| void do_bridge_reset(int enable) |
| { |
| if (enable) { |
| writel(iswgrp_handoff[2], &sysmgr_regs->fpgaintfgrp_module); |
| socfpga_sdram_apply_static_cfg(); |
| writel(iswgrp_handoff[3], &sdr_ctrl->fpgaport_rst); |
| writel(iswgrp_handoff[0], &reset_manager_base->brg_mod_reset); |
| writel(iswgrp_handoff[1], &nic301_regs->remap); |
| } else { |
| writel(0, &sysmgr_regs->fpgaintfgrp_module); |
| writel(0, &sdr_ctrl->fpgaport_rst); |
| socfpga_sdram_apply_static_cfg(); |
| writel(0, &reset_manager_base->brg_mod_reset); |
| writel(1, &nic301_regs->remap); |
| } |
| } |
| #endif |