blob: 4ceb5db47ff5db9a5dcb14abdb54a7057950b72d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Pin Control driver for SuperH Pin Function Controller.
*
* Authors: Magnus Damm, Paul Mundt, Laurent Pinchart
*
* Copyright (C) 2008 Magnus Damm
* Copyright (C) 2009 - 2012 Paul Mundt
* Copyright (C) 2017 Marek Vasut
*/
#define DRV_NAME "sh-pfc"
#include <dm.h>
#include <errno.h>
#include <dm/device_compat.h>
#include <dm/devres.h>
#include <dm/pinctrl.h>
#include <linux/bitops.h>
#include <linux/bug.h>
#include <linux/io.h>
#include <linux/sizes.h>
#include "sh_pfc.h"
enum sh_pfc_model {
SH_PFC_R8A7790 = 0,
SH_PFC_R8A7791,
SH_PFC_R8A7792,
SH_PFC_R8A7793,
SH_PFC_R8A7794,
SH_PFC_R8A7795,
SH_PFC_R8A77960,
SH_PFC_R8A77961,
SH_PFC_R8A774A1,
SH_PFC_R8A774B1,
SH_PFC_R8A774C0,
SH_PFC_R8A774E1,
SH_PFC_R8A77965,
SH_PFC_R8A77970,
SH_PFC_R8A77980,
SH_PFC_R8A77990,
SH_PFC_R8A77995,
SH_PFC_R8A779A0,
SH_PFC_R8A779F0,
SH_PFC_R8A779G0,
};
struct sh_pfc_pin_config {
u32 type;
const char *name;
};
struct sh_pfc_pinctrl {
struct sh_pfc *pfc;
struct sh_pfc_pin_config *configs;
};
struct sh_pfc_pin_range {
u16 start;
u16 end;
};
struct sh_pfc_pinctrl_priv {
struct sh_pfc pfc;
struct sh_pfc_pinctrl pmx;
};
int sh_pfc_get_pin_index(struct sh_pfc *pfc, unsigned int pin)
{
unsigned int offset;
unsigned int i;
for (i = 0, offset = 0; i < pfc->nr_ranges; ++i) {
const struct sh_pfc_pin_range *range = &pfc->ranges[i];
if (pin <= range->end)
return pin >= range->start
? offset + pin - range->start : -1;
offset += range->end - range->start + 1;
}
return -EINVAL;
}
static int sh_pfc_enum_in_range(u16 enum_id, const struct pinmux_range *r)
{
if (enum_id < r->begin)
return 0;
if (enum_id > r->end)
return 0;
return 1;
}
u32 sh_pfc_read_raw_reg(void __iomem *mapped_reg, unsigned int reg_width)
{
switch (reg_width) {
case 8:
return readb(mapped_reg);
case 16:
return readw(mapped_reg);
case 32:
return readl(mapped_reg);
}
BUG();
return 0;
}
void sh_pfc_write_raw_reg(void __iomem *mapped_reg, unsigned int reg_width,
u32 data)
{
switch (reg_width) {
case 8:
writeb(data, mapped_reg);
return;
case 16:
writew(data, mapped_reg);
return;
case 32:
writel(data, mapped_reg);
return;
}
BUG();
}
u32 sh_pfc_read(struct sh_pfc *pfc, u32 reg)
{
return sh_pfc_read_raw_reg((void __iomem *)(uintptr_t)reg, 32);
}
static void sh_pfc_unlock_reg(struct sh_pfc *pfc, u32 reg, u32 data)
{
u32 unlock;
if (!pfc->info->unlock_reg)
return;
if (pfc->info->unlock_reg >= 0x80000000UL)
unlock = pfc->info->unlock_reg;
else
/* unlock_reg is a mask */
unlock = reg & ~pfc->info->unlock_reg;
sh_pfc_write_raw_reg((void __iomem *)(uintptr_t)unlock, 32, ~data);
}
void sh_pfc_write(struct sh_pfc *pfc, u32 reg, u32 data)
{
sh_pfc_unlock_reg(pfc, reg, data);
sh_pfc_write_raw_reg((void __iomem *)(uintptr_t)reg, 32, data);
}
static void sh_pfc_config_reg_helper(struct sh_pfc *pfc,
const struct pinmux_cfg_reg *crp,
unsigned int in_pos,
void __iomem **mapped_regp, u32 *maskp,
unsigned int *posp)
{
unsigned int k;
*mapped_regp = (void __iomem *)(uintptr_t)crp->reg;
if (crp->field_width) {
*maskp = (1 << crp->field_width) - 1;
*posp = crp->reg_width - ((in_pos + 1) * crp->field_width);
} else {
*maskp = (1 << crp->var_field_width[in_pos]) - 1;
*posp = crp->reg_width;
for (k = 0; k <= in_pos; k++)
*posp -= abs(crp->var_field_width[k]);
}
}
static void sh_pfc_write_config_reg(struct sh_pfc *pfc,
const struct pinmux_cfg_reg *crp,
unsigned int field, u32 value)
{
void __iomem *mapped_reg;
unsigned int pos;
u32 mask, data;
sh_pfc_config_reg_helper(pfc, crp, field, &mapped_reg, &mask, &pos);
dev_dbg(pfc->dev, "write_reg addr = %x, value = 0x%x, field = %u, "
"r_width = %u, f_width = %u\n",
crp->reg, value, field, crp->reg_width, crp->field_width);
mask = ~(mask << pos);
value = value << pos;
data = sh_pfc_read_raw_reg(mapped_reg, crp->reg_width);
data &= mask;
data |= value;
sh_pfc_unlock_reg(pfc, crp->reg, data);
sh_pfc_write_raw_reg(mapped_reg, crp->reg_width, data);
}
static int sh_pfc_get_config_reg(struct sh_pfc *pfc, u16 enum_id,
const struct pinmux_cfg_reg **crp,
unsigned int *fieldp, u32 *valuep)
{
unsigned int k = 0;
while (1) {
const struct pinmux_cfg_reg *config_reg =
pfc->info->cfg_regs + k;
unsigned int r_width = config_reg->reg_width;
unsigned int f_width = config_reg->field_width;
unsigned int curr_width;
unsigned int bit_pos;
unsigned int pos = 0;
unsigned int m = 0;
if (!r_width)
break;
for (bit_pos = 0; bit_pos < r_width; bit_pos += curr_width, m++) {
u32 ncomb;
u32 n;
if (f_width) {
curr_width = f_width;
} else {
curr_width = abs(config_reg->var_field_width[m]);
if (config_reg->var_field_width[m] < 0)
continue;
}
ncomb = 1 << curr_width;
for (n = 0; n < ncomb; n++) {
if (config_reg->enum_ids[pos + n] == enum_id) {
*crp = config_reg;
*fieldp = m;
*valuep = n;
return 0;
}
}
pos += ncomb;
}
k++;
}
return -EINVAL;
}
static int sh_pfc_mark_to_enum(struct sh_pfc *pfc, u16 mark, int pos,
u16 *enum_idp)
{
const u16 *data = pfc->info->pinmux_data;
unsigned int k;
if (pos) {
*enum_idp = data[pos + 1];
return pos + 1;
}
for (k = 0; k < pfc->info->pinmux_data_size; k++) {
if (data[k] == mark) {
*enum_idp = data[k + 1];
return k + 1;
}
}
dev_err(pfc->dev, "cannot locate data/mark enum_id for mark %d\n",
mark);
return -EINVAL;
}
int sh_pfc_config_mux(struct sh_pfc *pfc, unsigned mark, int pinmux_type)
{
const struct pinmux_range *range;
int pos = 0;
switch (pinmux_type) {
case PINMUX_TYPE_GPIO:
case PINMUX_TYPE_FUNCTION:
range = NULL;
break;
case PINMUX_TYPE_OUTPUT:
range = &pfc->info->output;
break;
case PINMUX_TYPE_INPUT:
range = &pfc->info->input;
break;
default:
return -EINVAL;
}
/* Iterate over all the configuration fields we need to update. */
while (1) {
const struct pinmux_cfg_reg *cr;
unsigned int field;
u16 enum_id;
u32 value;
int in_range;
int ret;
pos = sh_pfc_mark_to_enum(pfc, mark, pos, &enum_id);
if (pos < 0)
return pos;
if (!enum_id)
break;
/* Check if the configuration field selects a function. If it
* doesn't, skip the field if it's not applicable to the
* requested pinmux type.
*/
in_range = sh_pfc_enum_in_range(enum_id, &pfc->info->function);
if (!in_range) {
if (pinmux_type == PINMUX_TYPE_FUNCTION) {
/* Functions are allowed to modify all
* fields.
*/
in_range = 1;
} else if (pinmux_type != PINMUX_TYPE_GPIO) {
/* Input/output types can only modify fields
* that correspond to their respective ranges.
*/
in_range = sh_pfc_enum_in_range(enum_id, range);
/*
* special case pass through for fixed
* input-only or output-only pins without
* function enum register association.
*/
if (in_range && enum_id == range->force)
continue;
}
/* GPIOs are only allowed to modify function fields. */
}
if (!in_range)
continue;
ret = sh_pfc_get_config_reg(pfc, enum_id, &cr, &field, &value);
if (ret < 0)
return ret;
sh_pfc_write_config_reg(pfc, cr, field, value);
}
return 0;
}
const struct pinmux_bias_reg *
rcar_pin_to_bias_reg(const struct sh_pfc_soc_info *info, unsigned int pin,
unsigned int *bit)
{
unsigned int i, j;
for (i = 0; info->bias_regs[i].puen || info->bias_regs[i].pud; i++) {
for (j = 0; j < ARRAY_SIZE(info->bias_regs[i].pins); j++) {
if (info->bias_regs[i].pins[j] == pin) {
*bit = j;
return &info->bias_regs[i];
}
}
}
WARN_ONCE(1, "Pin %u is not in bias info list\n", pin);
return NULL;
}
unsigned int rcar_pinmux_get_bias(struct sh_pfc *pfc, unsigned int pin)
{
const struct pinmux_bias_reg *reg;
unsigned int bit;
reg = rcar_pin_to_bias_reg(pfc->info, pin, &bit);
if (!reg)
return PIN_CONFIG_BIAS_DISABLE;
if (reg->puen) {
if (!(sh_pfc_read(pfc, reg->puen) & BIT(bit)))
return PIN_CONFIG_BIAS_DISABLE;
else if (!reg->pud || (sh_pfc_read(pfc, reg->pud) & BIT(bit)))
return PIN_CONFIG_BIAS_PULL_UP;
else
return PIN_CONFIG_BIAS_PULL_DOWN;
} else {
if (sh_pfc_read(pfc, reg->pud) & BIT(bit))
return PIN_CONFIG_BIAS_PULL_DOWN;
else
return PIN_CONFIG_BIAS_DISABLE;
}
}
void rcar_pinmux_set_bias(struct sh_pfc *pfc, unsigned int pin,
unsigned int bias)
{
const struct pinmux_bias_reg *reg;
u32 enable, updown;
unsigned int bit;
reg = rcar_pin_to_bias_reg(pfc->info, pin, &bit);
if (!reg)
return;
if (reg->puen) {
enable = sh_pfc_read(pfc, reg->puen) & ~BIT(bit);
if (bias != PIN_CONFIG_BIAS_DISABLE) {
enable |= BIT(bit);
if (reg->pud) {
updown = sh_pfc_read(pfc, reg->pud) & ~BIT(bit);
if (bias == PIN_CONFIG_BIAS_PULL_UP)
updown |= BIT(bit);
sh_pfc_write(pfc, reg->pud, updown);
}
}
sh_pfc_write(pfc, reg->puen, enable);
} else {
enable = sh_pfc_read(pfc, reg->pud) & ~BIT(bit);
if (bias == PIN_CONFIG_BIAS_PULL_DOWN)
enable |= BIT(bit);
sh_pfc_write(pfc, reg->pud, enable);
}
}
static int sh_pfc_init_ranges(struct sh_pfc *pfc)
{
struct sh_pfc_pin_range *range;
unsigned int nr_ranges;
unsigned int i;
if (pfc->info->pins[0].pin == (u16)-1) {
/* Pin number -1 denotes that the SoC doesn't report pin numbers
* in its pin arrays yet. Consider the pin numbers range as
* continuous and allocate a single range.
*/
pfc->nr_ranges = 1;
pfc->ranges = kzalloc(sizeof(*pfc->ranges), GFP_KERNEL);
if (pfc->ranges == NULL)
return -ENOMEM;
pfc->ranges->start = 0;
pfc->ranges->end = pfc->info->nr_pins - 1;
pfc->nr_gpio_pins = pfc->info->nr_pins;
return 0;
}
/* Count, allocate and fill the ranges. The PFC SoC data pins array must
* be sorted by pin numbers, and pins without a GPIO port must come
* last.
*/
for (i = 1, nr_ranges = 1; i < pfc->info->nr_pins; ++i) {
if (pfc->info->pins[i-1].pin != pfc->info->pins[i].pin - 1)
nr_ranges++;
}
pfc->nr_ranges = nr_ranges;
pfc->ranges = kzalloc(sizeof(*pfc->ranges) * nr_ranges, GFP_KERNEL);
if (pfc->ranges == NULL)
return -ENOMEM;
range = pfc->ranges;
range->start = pfc->info->pins[0].pin;
for (i = 1; i < pfc->info->nr_pins; ++i) {
if (pfc->info->pins[i-1].pin == pfc->info->pins[i].pin - 1)
continue;
range->end = pfc->info->pins[i-1].pin;
if (!(pfc->info->pins[i-1].configs & SH_PFC_PIN_CFG_NO_GPIO))
pfc->nr_gpio_pins = range->end + 1;
range++;
range->start = pfc->info->pins[i].pin;
}
range->end = pfc->info->pins[i-1].pin;
if (!(pfc->info->pins[i-1].configs & SH_PFC_PIN_CFG_NO_GPIO))
pfc->nr_gpio_pins = range->end + 1;
return 0;
}
static int sh_pfc_pinctrl_get_pins_count(struct udevice *dev)
{
struct sh_pfc_pinctrl_priv *priv = dev_get_priv(dev);
return priv->pfc.info->nr_pins;
}
static const char *sh_pfc_pinctrl_get_pin_name(struct udevice *dev,
unsigned selector)
{
struct sh_pfc_pinctrl_priv *priv = dev_get_priv(dev);
return priv->pfc.info->pins[selector].name;
}
static int sh_pfc_pinctrl_get_groups_count(struct udevice *dev)
{
struct sh_pfc_pinctrl_priv *priv = dev_get_priv(dev);
return priv->pfc.info->nr_groups;
}
static const char *sh_pfc_pinctrl_get_group_name(struct udevice *dev,
unsigned selector)
{
struct sh_pfc_pinctrl_priv *priv = dev_get_priv(dev);
return priv->pfc.info->groups[selector].name;
}
static int sh_pfc_pinctrl_get_pin_muxing(struct udevice *dev,
unsigned int selector,
char *buf, int size)
{
struct sh_pfc_pinctrl_priv *priv = dev_get_priv(dev);
struct sh_pfc_pinctrl *pmx = &priv->pmx;
struct sh_pfc *pfc = &priv->pfc;
struct sh_pfc_pin_config *cfg;
const struct sh_pfc_pin *pin;
int idx;
pin = &priv->pfc.info->pins[selector];
if (!pin) {
snprintf(buf, size, "Unknown");
return -EINVAL;
}
idx = sh_pfc_get_pin_index(pfc, pin->pin);
cfg = &pmx->configs[idx];
snprintf(buf, size, "%s", cfg->name);
return 0;
}
static int sh_pfc_pinctrl_get_functions_count(struct udevice *dev)
{
struct sh_pfc_pinctrl_priv *priv = dev_get_priv(dev);
return priv->pfc.info->nr_functions;
}
static const char *sh_pfc_pinctrl_get_function_name(struct udevice *dev,
unsigned selector)
{
struct sh_pfc_pinctrl_priv *priv = dev_get_priv(dev);
return priv->pfc.info->functions[selector].name;
}
static int sh_pfc_gpio_request_enable(struct udevice *dev,
unsigned pin_selector)
{
struct sh_pfc_pinctrl_priv *priv = dev_get_priv(dev);
struct sh_pfc_pinctrl *pmx = &priv->pmx;
struct sh_pfc *pfc = &priv->pfc;
struct sh_pfc_pin_config *cfg;
const struct sh_pfc_pin *pin = NULL;
int i, ret, idx;
for (i = 0; i < pfc->info->nr_pins; i++) {
if (priv->pfc.info->pins[i].pin != pin_selector)
continue;
pin = &priv->pfc.info->pins[i];
break;
}
if (!pin)
return -EINVAL;
idx = sh_pfc_get_pin_index(pfc, pin->pin);
cfg = &pmx->configs[idx];
if (cfg->type != PINMUX_TYPE_NONE) {
if (!strcmp(cfg->name, pin->name))
return 0;
dev_err(pfc->dev, "Pin already used as %s\n",
cfg->name);
return -EBUSY;
}
ret = sh_pfc_config_mux(pfc, pin->enum_id, PINMUX_TYPE_GPIO);
if (ret)
return ret;
cfg->type = PINMUX_TYPE_GPIO;
cfg->name = "gpio";
return 0;
}
static int sh_pfc_gpio_disable_free(struct udevice *dev,
unsigned pin_selector)
{
struct sh_pfc_pinctrl_priv *priv = dev_get_priv(dev);
struct sh_pfc_pinctrl *pmx = &priv->pmx;
struct sh_pfc *pfc = &priv->pfc;
struct sh_pfc_pin_config *cfg;
const struct sh_pfc_pin *pin = NULL;
int i, idx;
for (i = 0; i < pfc->info->nr_pins; i++) {
if (priv->pfc.info->pins[i].pin != pin_selector)
continue;
pin = &priv->pfc.info->pins[i];
break;
}
if (!pin)
return -EINVAL;
idx = sh_pfc_get_pin_index(pfc, pin->pin);
cfg = &pmx->configs[idx];
cfg->type = PINMUX_TYPE_NONE;
cfg->name = "none";
return 0;
}
static int sh_pfc_pinctrl_pin_set(struct udevice *dev, unsigned pin_selector,
unsigned func_selector)
{
struct sh_pfc_pinctrl_priv *priv = dev_get_priv(dev);
struct sh_pfc_pinctrl *pmx = &priv->pmx;
struct sh_pfc *pfc = &priv->pfc;
const struct sh_pfc_pin *pin = &priv->pfc.info->pins[pin_selector];
int idx = sh_pfc_get_pin_index(pfc, pin->pin);
struct sh_pfc_pin_config *cfg = &pmx->configs[idx];
int ret;
if (cfg->type != PINMUX_TYPE_NONE) {
if (!strcmp(cfg->name, pin->name))
return 0;
dev_err(pfc->dev, "Pin already used as %s\n",
cfg->name);
return -EBUSY;
}
ret = sh_pfc_config_mux(pfc, pin->enum_id, PINMUX_TYPE_FUNCTION);
if (ret)
return ret;
cfg->type = PINMUX_TYPE_FUNCTION;
cfg->name = "function";
return 0;
}
static int sh_pfc_pinctrl_group_set(struct udevice *dev, unsigned group_selector,
unsigned func_selector)
{
struct sh_pfc_pinctrl_priv *priv = dev_get_priv(dev);
struct sh_pfc_pinctrl *pmx = &priv->pmx;
struct sh_pfc *pfc = &priv->pfc;
const struct sh_pfc_pin_group *grp = &priv->pfc.info->groups[group_selector];
bool grp_pins_configured = true;
struct sh_pfc_pin_config *cfg;
unsigned int i;
int ret = 0;
int idx;
for (i = 0; i < grp->nr_pins; ++i) {
idx = sh_pfc_get_pin_index(pfc, grp->pins[i]);
cfg = &pmx->configs[idx];
if (cfg->type != PINMUX_TYPE_NONE) {
if (!strcmp(cfg->name, grp->name))
continue;
dev_err(pfc->dev, "Pin already used as %s\n",
cfg->name);
ret = -EBUSY;
goto done;
} else {
grp_pins_configured = false;
}
}
if (grp_pins_configured)
return 0;
for (i = 0; i < grp->nr_pins; ++i) {
ret = sh_pfc_config_mux(pfc, grp->mux[i], PINMUX_TYPE_FUNCTION);
if (ret < 0)
break;
idx = sh_pfc_get_pin_index(pfc, grp->pins[i]);
cfg = &pmx->configs[idx];
cfg->type = PINMUX_TYPE_FUNCTION;
cfg->name = priv->pfc.info->groups[group_selector].name;
}
done:
return ret;
}
#if CONFIG_IS_ENABLED(PINCONF)
static const struct pinconf_param sh_pfc_pinconf_params[] = {
{ "bias-disable", PIN_CONFIG_BIAS_DISABLE, 0 },
{ "bias-pull-up", PIN_CONFIG_BIAS_PULL_UP, 1 },
{ "bias-pull-down", PIN_CONFIG_BIAS_PULL_DOWN, 1 },
{ "drive-strength", PIN_CONFIG_DRIVE_STRENGTH, 0 },
{ "power-source", PIN_CONFIG_POWER_SOURCE, 3300 },
};
static void __iomem *
sh_pfc_pinconf_find_drive_strength_reg(struct sh_pfc *pfc, unsigned int pin,
unsigned int *offset, unsigned int *size)
{
const struct pinmux_drive_reg_field *field;
const struct pinmux_drive_reg *reg;
unsigned int i;
for (reg = pfc->info->drive_regs; reg->reg; ++reg) {
for (i = 0; i < ARRAY_SIZE(reg->fields); ++i) {
field = &reg->fields[i];
if (field->size && field->pin == pin) {
*offset = field->offset;
*size = field->size;
return (void __iomem *)(uintptr_t)reg->reg;
}
}
}
return NULL;
}
static int sh_pfc_pinconf_set_drive_strength(struct sh_pfc *pfc,
unsigned int pin, u16 strength)
{
unsigned int offset;
unsigned int size;
unsigned int step;
void __iomem *reg;
u32 val;
reg = sh_pfc_pinconf_find_drive_strength_reg(pfc, pin, &offset, &size);
if (!reg)
return -EINVAL;
step = size == 2 ? 6 : 3;
if (strength < step || strength > 24)
return -EINVAL;
/* Convert the value from mA based on a full drive strength value of
* 24mA. We can make the full value configurable later if needed.
*/
strength = strength / step - 1;
val = sh_pfc_read_raw_reg(reg, 32);
val &= ~GENMASK(offset + 4 - 1, offset);
val |= strength << offset;
sh_pfc_unlock_reg(pfc, (uintptr_t)reg, val);
sh_pfc_write_raw_reg(reg, 32, val);
return 0;
}
/* Check whether the requested parameter is supported for a pin. */
static bool sh_pfc_pinconf_validate(struct sh_pfc *pfc, unsigned int _pin,
unsigned int param)
{
int idx = sh_pfc_get_pin_index(pfc, _pin);
const struct sh_pfc_pin *pin = &pfc->info->pins[idx];
switch (param) {
case PIN_CONFIG_BIAS_DISABLE:
return pin->configs &
(SH_PFC_PIN_CFG_PULL_UP | SH_PFC_PIN_CFG_PULL_DOWN);
case PIN_CONFIG_BIAS_PULL_UP:
return pin->configs & SH_PFC_PIN_CFG_PULL_UP;
case PIN_CONFIG_BIAS_PULL_DOWN:
return pin->configs & SH_PFC_PIN_CFG_PULL_DOWN;
case PIN_CONFIG_DRIVE_STRENGTH:
return pin->configs & SH_PFC_PIN_CFG_DRIVE_STRENGTH;
case PIN_CONFIG_POWER_SOURCE:
return pin->configs & SH_PFC_PIN_CFG_IO_VOLTAGE_MASK;
default:
return false;
}
}
static int sh_pfc_pinconf_set(struct sh_pfc_pinctrl *pmx, unsigned _pin,
unsigned int param, unsigned int arg)
{
struct sh_pfc *pfc = pmx->pfc;
void __iomem *pocctrl;
u32 addr, val;
int bit, ret;
int idx = sh_pfc_get_pin_index(pfc, _pin);
const struct sh_pfc_pin *pin = &pfc->info->pins[idx];
unsigned int mode, hi, lo;
if (!sh_pfc_pinconf_validate(pfc, _pin, param))
return -ENOTSUPP;
switch (param) {
case PIN_CONFIG_BIAS_PULL_UP:
case PIN_CONFIG_BIAS_PULL_DOWN:
case PIN_CONFIG_BIAS_DISABLE:
if (!pfc->info->ops || !pfc->info->ops->set_bias)
return -ENOTSUPP;
pfc->info->ops->set_bias(pfc, _pin, param);
break;
case PIN_CONFIG_DRIVE_STRENGTH:
ret = sh_pfc_pinconf_set_drive_strength(pfc, _pin, arg);
if (ret < 0)
return ret;
break;
case PIN_CONFIG_POWER_SOURCE:
if (!pfc->info->ops || !pfc->info->ops->pin_to_pocctrl)
return -ENOTSUPP;
bit = pfc->info->ops->pin_to_pocctrl(_pin, &addr);
if (bit < 0) {
printf("invalid pin %#x", _pin);
return bit;
}
if (arg != 1800 && arg != 2500 && arg != 3300)
return -EINVAL;
pocctrl = (void __iomem *)(uintptr_t)addr;
mode = pin->configs & SH_PFC_PIN_CFG_IO_VOLTAGE_MASK;
lo = mode <= SH_PFC_PIN_CFG_IO_VOLTAGE_18_33 ? 1800 : 2500;
hi = mode >= SH_PFC_PIN_CFG_IO_VOLTAGE_18_33 ? 3300 : 2500;
val = sh_pfc_read_raw_reg(pocctrl, 32);
if (arg == hi)
val |= BIT(bit);
else
val &= ~BIT(bit);
sh_pfc_unlock_reg(pfc, addr, val);
sh_pfc_write_raw_reg(pocctrl, 32, val);
break;
default:
return -ENOTSUPP;
}
return 0;
}
static int sh_pfc_pinconf_pin_set(struct udevice *dev,
unsigned int pin_selector,
unsigned int param, unsigned int arg)
{
struct sh_pfc_pinctrl_priv *priv = dev_get_priv(dev);
struct sh_pfc_pinctrl *pmx = &priv->pmx;
struct sh_pfc *pfc = &priv->pfc;
const struct sh_pfc_pin *pin = &pfc->info->pins[pin_selector];
sh_pfc_pinconf_set(pmx, pin->pin, param, arg);
return 0;
}
static int sh_pfc_pinconf_group_set(struct udevice *dev,
unsigned int group_selector,
unsigned int param, unsigned int arg)
{
struct sh_pfc_pinctrl_priv *priv = dev_get_priv(dev);
struct sh_pfc_pinctrl *pmx = &priv->pmx;
struct sh_pfc *pfc = &priv->pfc;
const struct sh_pfc_pin_group *grp = &pfc->info->groups[group_selector];
unsigned int i;
for (i = 0; i < grp->nr_pins; i++)
sh_pfc_pinconf_set(pmx, grp->pins[i], param, arg);
return 0;
}
#endif
static struct pinctrl_ops sh_pfc_pinctrl_ops = {
.get_pins_count = sh_pfc_pinctrl_get_pins_count,
.get_pin_name = sh_pfc_pinctrl_get_pin_name,
.get_groups_count = sh_pfc_pinctrl_get_groups_count,
.get_group_name = sh_pfc_pinctrl_get_group_name,
.get_pin_muxing = sh_pfc_pinctrl_get_pin_muxing,
.get_functions_count = sh_pfc_pinctrl_get_functions_count,
.get_function_name = sh_pfc_pinctrl_get_function_name,
#if CONFIG_IS_ENABLED(PINCONF)
.pinconf_num_params = ARRAY_SIZE(sh_pfc_pinconf_params),
.pinconf_params = sh_pfc_pinconf_params,
.pinconf_set = sh_pfc_pinconf_pin_set,
.pinconf_group_set = sh_pfc_pinconf_group_set,
#endif
.pinmux_set = sh_pfc_pinctrl_pin_set,
.pinmux_group_set = sh_pfc_pinctrl_group_set,
.set_state = pinctrl_generic_set_state,
.gpio_request_enable = sh_pfc_gpio_request_enable,
.gpio_disable_free = sh_pfc_gpio_disable_free,
};
static int sh_pfc_map_pins(struct sh_pfc *pfc, struct sh_pfc_pinctrl *pmx)
{
unsigned int i;
/* Allocate and initialize the pins and configs arrays. */
pmx->configs = kzalloc(sizeof(*pmx->configs) * pfc->info->nr_pins,
GFP_KERNEL);
if (unlikely(!pmx->configs))
return -ENOMEM;
for (i = 0; i < pfc->info->nr_pins; ++i) {
struct sh_pfc_pin_config *cfg = &pmx->configs[i];
cfg->type = PINMUX_TYPE_NONE;
cfg->name = "none";
}
return 0;
}
static int sh_pfc_pinctrl_probe(struct udevice *dev)
{
struct sh_pfc_pinctrl_priv *priv = dev_get_priv(dev);
enum sh_pfc_model model = dev_get_driver_data(dev);
fdt_addr_t base;
base = dev_read_addr(dev);
if (base == FDT_ADDR_T_NONE)
return -EINVAL;
priv->pfc.regs = devm_ioremap(dev, base, SZ_2K);
if (!priv->pfc.regs)
return -ENOMEM;
#ifdef CONFIG_PINCTRL_PFC_R8A7790
if (model == SH_PFC_R8A7790)
priv->pfc.info = &r8a7790_pinmux_info;
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A7791
if (model == SH_PFC_R8A7791)
priv->pfc.info = &r8a7791_pinmux_info;
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A7792
if (model == SH_PFC_R8A7792)
priv->pfc.info = &r8a7792_pinmux_info;
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A7793
if (model == SH_PFC_R8A7793)
priv->pfc.info = &r8a7793_pinmux_info;
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A7794
if (model == SH_PFC_R8A7794)
priv->pfc.info = &r8a7794_pinmux_info;
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A77951
if (model == SH_PFC_R8A7795)
priv->pfc.info = &r8a77951_pinmux_info;
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A77960
if (model == SH_PFC_R8A77960)
priv->pfc.info = &r8a77960_pinmux_info;
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A77961
if (model == SH_PFC_R8A77961)
priv->pfc.info = &r8a77961_pinmux_info;
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A774A1
if (model == SH_PFC_R8A774A1)
priv->pfc.info = &r8a774a1_pinmux_info;
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A774B1
if (model == SH_PFC_R8A774B1)
priv->pfc.info = &r8a774b1_pinmux_info;
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A774C0
if (model == SH_PFC_R8A774C0)
priv->pfc.info = &r8a774c0_pinmux_info;
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A774E1
if (model == SH_PFC_R8A774E1)
priv->pfc.info = &r8a774e1_pinmux_info;
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A77965
if (model == SH_PFC_R8A77965)
priv->pfc.info = &r8a77965_pinmux_info;
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A77970
if (model == SH_PFC_R8A77970)
priv->pfc.info = &r8a77970_pinmux_info;
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A77980
if (model == SH_PFC_R8A77980)
priv->pfc.info = &r8a77980_pinmux_info;
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A77990
if (model == SH_PFC_R8A77990)
priv->pfc.info = &r8a77990_pinmux_info;
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A77995
if (model == SH_PFC_R8A77995)
priv->pfc.info = &r8a77995_pinmux_info;
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A779A0
if (model == SH_PFC_R8A779A0)
priv->pfc.info = &r8a779a0_pinmux_info;
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A779F0
if (model == SH_PFC_R8A779F0)
priv->pfc.info = &r8a779f0_pinmux_info;
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A779G0
if (model == SH_PFC_R8A779G0)
priv->pfc.info = &r8a779g0_pinmux_info;
#endif
priv->pmx.pfc = &priv->pfc;
sh_pfc_init_ranges(&priv->pfc);
sh_pfc_map_pins(&priv->pfc, &priv->pmx);
return 0;
}
static const struct udevice_id sh_pfc_pinctrl_ids[] = {
#ifdef CONFIG_PINCTRL_PFC_R8A7790
{
.compatible = "renesas,pfc-r8a7790",
.data = SH_PFC_R8A7790,
},
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A7791
{
.compatible = "renesas,pfc-r8a7791",
.data = SH_PFC_R8A7791,
},
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A7792
{
.compatible = "renesas,pfc-r8a7792",
.data = SH_PFC_R8A7792,
},
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A7793
{
.compatible = "renesas,pfc-r8a7793",
.data = SH_PFC_R8A7793,
},
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A7794
{
.compatible = "renesas,pfc-r8a7794",
.data = SH_PFC_R8A7794,
},
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A77951
{
.compatible = "renesas,pfc-r8a7795",
.data = SH_PFC_R8A7795,
},
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A77960
{
.compatible = "renesas,pfc-r8a7796",
.data = SH_PFC_R8A77960,
},
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A77961
{
.compatible = "renesas,pfc-r8a77961",
.data = SH_PFC_R8A77961,
},
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A774A1
{
.compatible = "renesas,pfc-r8a774a1",
.data = SH_PFC_R8A774A1,
},
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A774B1
{
.compatible = "renesas,pfc-r8a774b1",
.data = SH_PFC_R8A774B1,
},
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A774C0
{
.compatible = "renesas,pfc-r8a774c0",
.data = SH_PFC_R8A774C0,
},
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A774E1
{
.compatible = "renesas,pfc-r8a774e1",
.data = SH_PFC_R8A774E1,
},
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A77965
{
.compatible = "renesas,pfc-r8a77965",
.data = SH_PFC_R8A77965,
},
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A77970
{
.compatible = "renesas,pfc-r8a77970",
.data = SH_PFC_R8A77970,
},
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A77980
{
.compatible = "renesas,pfc-r8a77980",
.data = SH_PFC_R8A77980,
},
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A77990
{
.compatible = "renesas,pfc-r8a77990",
.data = SH_PFC_R8A77990,
},
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A77995
{
.compatible = "renesas,pfc-r8a77995",
.data = SH_PFC_R8A77995,
},
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A779A0
{
.compatible = "renesas,pfc-r8a779a0",
.data = SH_PFC_R8A779A0,
},
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A779F0
{
.compatible = "renesas,pfc-r8a779f0",
.data = SH_PFC_R8A779F0,
},
#endif
#ifdef CONFIG_PINCTRL_PFC_R8A779G0
{
.compatible = "renesas,pfc-r8a779g0",
.data = SH_PFC_R8A779G0,
},
#endif
{ },
};
U_BOOT_DRIVER(pinctrl_sh_pfc) = {
.name = "sh_pfc_pinctrl",
.id = UCLASS_PINCTRL,
.of_match = sh_pfc_pinctrl_ids,
.priv_auto = sizeof(struct sh_pfc_pinctrl_priv),
.ops = &sh_pfc_pinctrl_ops,
.probe = sh_pfc_pinctrl_probe,
};