blob: 7898f30e15020f68bddd43978ec858604513eaad [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2019-2021 NXP
*/
#include <net/dsa.h>
#include <dm/lists.h>
#include <dm/device_compat.h>
#include <dm/device-internal.h>
#include <dm/uclass-internal.h>
#include <linux/bitmap.h>
#include <miiphy.h>
#define DSA_PORT_CHILD_DRV_NAME "dsa-port"
/* per-device internal state structure */
struct dsa_priv {
struct phy_device *cpu_port_fixed_phy;
struct udevice *master_dev;
int num_ports;
u32 cpu_port;
int headroom;
int tailroom;
};
/* external API */
int dsa_set_tagging(struct udevice *dev, ushort headroom, ushort tailroom)
{
struct dsa_priv *priv;
if (!dev || !dev_get_uclass_priv(dev))
return -ENODEV;
if (headroom + tailroom > DSA_MAX_OVR)
return -EINVAL;
priv = dev_get_uclass_priv(dev);
if (headroom > 0)
priv->headroom = headroom;
if (tailroom > 0)
priv->tailroom = tailroom;
return 0;
}
/* returns the DSA master Ethernet device */
struct udevice *dsa_get_master(struct udevice *dev)
{
struct dsa_priv *priv = dev_get_uclass_priv(dev);
if (!priv)
return NULL;
return priv->master_dev;
}
/*
* Start the desired port, the CPU port and the master Eth interface.
* TODO: if cascaded we may need to _start ports in other switches too
*/
static int dsa_port_start(struct udevice *pdev)
{
struct udevice *dev = dev_get_parent(pdev);
struct dsa_priv *priv = dev_get_uclass_priv(dev);
struct udevice *master = dsa_get_master(dev);
struct dsa_ops *ops = dsa_get_ops(dev);
int err;
if (!priv)
return -ENODEV;
if (!master) {
dev_err(pdev, "DSA master Ethernet device not found!\n");
return -EINVAL;
}
if (ops->port_enable) {
struct dsa_port_pdata *port_pdata;
port_pdata = dev_get_parent_plat(pdev);
err = ops->port_enable(dev, port_pdata->index,
port_pdata->phy);
if (err)
return err;
err = ops->port_enable(dev, priv->cpu_port,
priv->cpu_port_fixed_phy);
if (err)
return err;
}
return eth_get_ops(master)->start(master);
}
/* Stop the desired port, the CPU port and the master Eth interface */
static void dsa_port_stop(struct udevice *pdev)
{
struct udevice *dev = dev_get_parent(pdev);
struct dsa_priv *priv = dev_get_uclass_priv(dev);
struct udevice *master = dsa_get_master(dev);
struct dsa_ops *ops = dsa_get_ops(dev);
if (!priv)
return;
if (ops->port_disable) {
struct dsa_port_pdata *port_pdata;
port_pdata = dev_get_parent_plat(pdev);
ops->port_disable(dev, port_pdata->index, port_pdata->phy);
ops->port_disable(dev, priv->cpu_port, NULL);
}
/*
* stop master only if it's active, don't probe it otherwise.
* Under normal usage it would be active because we're using it, but
* during tear-down it may have been removed ahead of us.
*/
if (master && device_active(master))
eth_get_ops(master)->stop(master);
}
/*
* Insert a DSA tag and call master Ethernet send on the resulting packet
* We copy the frame to a stack buffer where we have reserved headroom and
* tailroom space. Headroom and tailroom are set to 0.
*/
static int dsa_port_send(struct udevice *pdev, void *packet, int length)
{
struct udevice *dev = dev_get_parent(pdev);
struct dsa_priv *priv = dev_get_uclass_priv(dev);
int head = priv->headroom, tail = priv->tailroom;
struct udevice *master = dsa_get_master(dev);
struct dsa_ops *ops = dsa_get_ops(dev);
uchar dsa_packet_tmp[PKTSIZE_ALIGN];
struct dsa_port_pdata *port_pdata;
int err;
if (!master)
return -EINVAL;
if (length + head + tail > PKTSIZE_ALIGN)
return -EINVAL;
memset(dsa_packet_tmp, 0, head);
memset(dsa_packet_tmp + head + length, 0, tail);
memcpy(dsa_packet_tmp + head, packet, length);
length += head + tail;
/* copy back to preserve original buffer alignment */
memcpy(packet, dsa_packet_tmp, length);
port_pdata = dev_get_parent_plat(pdev);
err = ops->xmit(dev, port_pdata->index, packet, length);
if (err)
return err;
return eth_get_ops(master)->send(master, packet, length);
}
/* Receive a frame from master Ethernet, process it and pass it on */
static int dsa_port_recv(struct udevice *pdev, int flags, uchar **packetp)
{
struct udevice *dev = dev_get_parent(pdev);
struct dsa_priv *priv = dev_get_uclass_priv(dev);
int head = priv->headroom, tail = priv->tailroom;
struct udevice *master = dsa_get_master(dev);
struct dsa_ops *ops = dsa_get_ops(dev);
struct dsa_port_pdata *port_pdata;
int length, port_index, err;
if (!master)
return -EINVAL;
length = eth_get_ops(master)->recv(master, flags, packetp);
if (length <= 0)
return length;
/*
* If we receive frames from a different port or frames that DSA driver
* doesn't like we discard them here.
* In case of discard we return with no frame and expect to be called
* again instead of looping here, so upper layer can deal with timeouts.
*/
port_pdata = dev_get_parent_plat(pdev);
err = ops->rcv(dev, &port_index, *packetp, length);
if (err || port_index != port_pdata->index || (length <= head + tail)) {
if (eth_get_ops(master)->free_pkt)
eth_get_ops(master)->free_pkt(master, *packetp, length);
return -EAGAIN;
}
/*
* We move the pointer over headroom here to avoid a copy. If free_pkt
* gets called we move the pointer back before calling master free_pkt.
*/
*packetp += head;
return length - head - tail;
}
static int dsa_port_free_pkt(struct udevice *pdev, uchar *packet, int length)
{
struct udevice *dev = dev_get_parent(pdev);
struct udevice *master = dsa_get_master(dev);
struct dsa_priv *priv;
if (!master)
return -EINVAL;
priv = dev_get_uclass_priv(dev);
if (eth_get_ops(master)->free_pkt) {
/* return the original pointer and length to master Eth */
packet -= priv->headroom;
length += priv->headroom - priv->tailroom;
return eth_get_ops(master)->free_pkt(master, packet, length);
}
return 0;
}
static int dsa_port_of_to_pdata(struct udevice *pdev)
{
struct dsa_port_pdata *port_pdata;
struct dsa_pdata *dsa_pdata;
struct eth_pdata *eth_pdata;
struct udevice *dev;
const char *label;
u32 index;
int err;
if (!pdev)
return -ENODEV;
err = ofnode_read_u32(dev_ofnode(pdev), "reg", &index);
if (err)
return err;
dev = dev_get_parent(pdev);
dsa_pdata = dev_get_uclass_plat(dev);
port_pdata = dev_get_parent_plat(pdev);
port_pdata->index = index;
label = ofnode_read_string(dev_ofnode(pdev), "label");
if (label)
strncpy(port_pdata->name, label, DSA_PORT_NAME_LENGTH);
eth_pdata = dev_get_plat(pdev);
eth_pdata->priv_pdata = port_pdata;
dev_dbg(pdev, "port %d node %s\n", port_pdata->index,
ofnode_get_name(dev_ofnode(pdev)));
return 0;
}
static const struct eth_ops dsa_port_ops = {
.start = dsa_port_start,
.send = dsa_port_send,
.recv = dsa_port_recv,
.stop = dsa_port_stop,
.free_pkt = dsa_port_free_pkt,
};
static int dsa_port_probe(struct udevice *pdev)
{
struct udevice *dev = dev_get_parent(pdev);
struct eth_pdata *eth_pdata, *master_pdata;
unsigned char env_enetaddr[ARP_HLEN];
struct dsa_port_pdata *port_pdata;
struct dsa_priv *dsa_priv;
struct udevice *master;
int ret;
port_pdata = dev_get_parent_plat(pdev);
dsa_priv = dev_get_uclass_priv(dev);
port_pdata->phy = dm_eth_phy_connect(pdev);
if (!port_pdata->phy)
return -ENODEV;
master = dsa_get_master(dev);
if (!master)
return -ENODEV;
/*
* Probe the master device. We depend on the master device for proper
* operation and we also need it for MAC inheritance below.
*/
ret = device_probe(master);
if (ret)
return ret;
/*
* Inherit port's hwaddr from the DSA master, unless the port already
* has a unique MAC address specified in the environment.
*/
eth_env_get_enetaddr_by_index("eth", dev_seq(pdev), env_enetaddr);
if (!is_zero_ethaddr(env_enetaddr))
return 0;
master_pdata = dev_get_plat(master);
eth_pdata = dev_get_plat(pdev);
memcpy(eth_pdata->enetaddr, master_pdata->enetaddr, ARP_HLEN);
eth_env_set_enetaddr_by_index("eth", dev_seq(pdev),
master_pdata->enetaddr);
return 0;
}
static int dsa_port_remove(struct udevice *pdev)
{
struct udevice *dev = dev_get_parent(pdev);
struct dsa_port_pdata *port_pdata;
struct dsa_priv *dsa_priv;
port_pdata = dev_get_parent_plat(pdev);
dsa_priv = dev_get_uclass_priv(dev);
port_pdata->phy = NULL;
return 0;
}
U_BOOT_DRIVER(dsa_port) = {
.name = DSA_PORT_CHILD_DRV_NAME,
.id = UCLASS_ETH,
.ops = &dsa_port_ops,
.probe = dsa_port_probe,
.remove = dsa_port_remove,
.of_to_plat = dsa_port_of_to_pdata,
.plat_auto = sizeof(struct eth_pdata),
};
/*
* This function mostly deals with pulling information out of the device tree
* into the pdata structure.
* It goes through the list of switch ports, registers an eth device for each
* front panel port and identifies the cpu port connected to master eth device.
* TODO: support cascaded switches
*/
static int dsa_post_bind(struct udevice *dev)
{
struct dsa_pdata *pdata = dev_get_uclass_plat(dev);
ofnode node = dev_ofnode(dev), pnode;
int i, err, first_err = 0;
if (!pdata || !ofnode_valid(node))
return -ENODEV;
pdata->master_node = ofnode_null();
node = ofnode_find_subnode(node, "ports");
if (!ofnode_valid(node))
node = ofnode_find_subnode(node, "ethernet-ports");
if (!ofnode_valid(node)) {
dev_err(dev, "ports node is missing under DSA device!\n");
return -EINVAL;
}
pdata->num_ports = ofnode_get_child_count(node);
if (pdata->num_ports <= 0 || pdata->num_ports > DSA_MAX_PORTS) {
dev_err(dev, "invalid number of ports (%d)\n",
pdata->num_ports);
return -EINVAL;
}
/* look for the CPU port */
ofnode_for_each_subnode(pnode, node) {
u32 ethernet;
if (ofnode_read_u32(pnode, "ethernet", &ethernet))
continue;
pdata->master_node = ofnode_get_by_phandle(ethernet);
pdata->cpu_port_node = pnode;
break;
}
if (!ofnode_valid(pdata->master_node)) {
dev_err(dev, "master eth node missing!\n");
return -EINVAL;
}
if (ofnode_read_u32(pnode, "reg", &pdata->cpu_port)) {
dev_err(dev, "CPU port node not valid!\n");
return -EINVAL;
}
dev_dbg(dev, "master node %s on port %d\n",
ofnode_get_name(pdata->master_node), pdata->cpu_port);
for (i = 0; i < pdata->num_ports; i++) {
char name[DSA_PORT_NAME_LENGTH];
struct udevice *pdev;
/*
* If this is the CPU port don't register it as an ETH device,
* we skip it on purpose since I/O to/from it from the CPU
* isn't useful.
*/
if (i == pdata->cpu_port)
continue;
/*
* Set up default port names. If present, DT port labels
* will override the default port names.
*/
snprintf(name, DSA_PORT_NAME_LENGTH, "%s@%d", dev->name, i);
ofnode_for_each_subnode(pnode, node) {
u32 reg;
if (ofnode_read_u32(pnode, "reg", &reg))
continue;
if (reg == i)
break;
}
/*
* skip registration if port id not found or if the port
* is explicitly disabled in DT
*/
if (!ofnode_valid(pnode) || !ofnode_is_available(pnode))
continue;
err = device_bind_driver_to_node(dev, DSA_PORT_CHILD_DRV_NAME,
name, pnode, &pdev);
if (pdev) {
struct dsa_port_pdata *port_pdata;
port_pdata = dev_get_parent_plat(pdev);
strncpy(port_pdata->name, name, DSA_PORT_NAME_LENGTH);
pdev->name = port_pdata->name;
}
/* try to bind all ports but keep 1st error */
if (err && !first_err)
first_err = err;
}
if (first_err)
return first_err;
dev_dbg(dev, "DSA ports successfully bound\n");
return 0;
}
/**
* Initialize the uclass per device internal state structure (priv).
* TODO: pick up references to other switch devices here, if we're cascaded.
*/
static int dsa_pre_probe(struct udevice *dev)
{
struct dsa_pdata *pdata = dev_get_uclass_plat(dev);
struct dsa_priv *priv = dev_get_uclass_priv(dev);
if (!pdata || !priv)
return -ENODEV;
priv->num_ports = pdata->num_ports;
priv->cpu_port = pdata->cpu_port;
priv->cpu_port_fixed_phy = fixed_phy_create(pdata->cpu_port_node);
if (!priv->cpu_port_fixed_phy) {
dev_err(dev, "Failed to register fixed-link for CPU port\n");
return -ENODEV;
}
uclass_find_device_by_ofnode(UCLASS_ETH, pdata->master_node,
&priv->master_dev);
return 0;
}
UCLASS_DRIVER(dsa) = {
.id = UCLASS_DSA,
.name = "dsa",
.post_bind = dsa_post_bind,
.pre_probe = dsa_pre_probe,
.per_device_auto = sizeof(struct dsa_priv),
.per_device_plat_auto = sizeof(struct dsa_pdata),
.per_child_plat_auto = sizeof(struct dsa_port_pdata),
.flags = DM_UC_FLAG_SEQ_ALIAS,
};